|
[1]
|
Sangwan, V.K. and Hersam, M.C. (2018) Electronic Transport in Two-Dimensional Materials. Annual Review of Physical Chemistry, 69, 299-325. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Taft, E.A. and Philipp, H.R. (1965) Optical Properties of Graphite. Physical Review, 138, A197. [Google Scholar] [CrossRef]
|
|
[3]
|
Duerloo, K.N., Ong, M.T. and Reed, E.J. (2012) Intrinsic Piezoelectricity in Two-Dimensional Materials. Journal of Physical Chemistry Letters, 3, 2871-2876. [Google Scholar] [CrossRef]
|
|
[4]
|
Liu, L., Feng, Y.P. and Shen, Z.X. (2003) Structural and Electronic Properties of h-BN. Physical Review B, 68, Article ID: 104102. [Google Scholar] [CrossRef]
|
|
[5]
|
Zhang, J.L., Zhao, S., Han, C., Wang, Z., Zhong, S., Sun, S., Guo, R., Zhou, X., Gu, C.D., Yuan, K.D., Li, Z. and Chen, W. (2016) Epitaxial Growth of Single Layer Blue Phosphorus: A New Phase of Two-Dimensional Phosphorus. Nano Letters, 16, 4903-4908. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Wang, Q., Kalantar-Zadeh, K., Kis, A., et al. (2012) Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides. Nature Nanotech, 7, 699-712. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Guan, Z. and Ni, S. (2020) Predicted 2D Ferromagnetic Janus VSeTe Monolayer with High Curie Temperature, Large Valley Polarization and Magnetic Crystal Anisotropy. Nanoscale, 12, 22735-22742. [Google Scholar] [CrossRef]
|
|
[8]
|
Ju, L., Bie, M., Tang, X., Shang, J. and Kou, L. (2020) Janus WSSe Monolayer: An Excellent Photocatalyst for Overall Water Splitting. ACS Applied Materials & Interfaces, 12, 29335-29343. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Cui, Z., Bai, K., Ding, Y., Wang, X., Li, E. and Zheng, J. (2020) Janus XSSe/SiC (X = Mo, W) van der Waals Heterostructures as Promising Water-Splitting Photocatalysts. Physica E: Low-Dimensional Systems and Nanostructures, 123, Article ID: 114207. [Google Scholar] [CrossRef]
|
|
[10]
|
Ma, X., Wu, X., Wang, H. and Wang, Y. (2018) A Janus MoSSe Monolayer: A Potential Wide Solar-Spectrum Water-Splitting Photocatalyst with a Low Carrier Recombination Rate. Journal of Materials Chemistry A, 6, 2295-2301. [Google Scholar] [CrossRef]
|
|
[11]
|
Ren, K., Wang, S., Luo, Y., Chou, J.P., Yu, J., Tang, W. and Sun, M. (2020) High-Efficiency Photocatalyst for Water Splitting: A Janus MoSSe/XN (X = Ga, Al) van der Waals Heterostructure. Journal of Physics D: Applied Physics, 53, Article ID: 185504. [Google Scholar] [CrossRef]
|
|
[12]
|
Hu, T., Jia, F., Zhao, G., Wu, J., Stroppa, A. and Ren, W. (2018) Intrinsic and Anisotropic Rashba Spin Splitting in Janus Transition-Metal Dichalcogenide Monolayers. Physical Review B, 97, Article ID: 235404. [Google Scholar] [CrossRef]
|
|
[13]
|
Tang, X. and Kou, L. (2022) 2D Janus Transition Metal Dichalcogenides: Properties and Applications. Physica Status Solidi (B), 259, Article ID: 2100562. [Google Scholar] [CrossRef]
|
|
[14]
|
Yuan, H., Su, J., Zhang, P., Lin, Z., Zhang, J., Zhang, J., Chang, J. and Hao, Y. (2021) Tuning the Intrinsic Electric Field of Janus-TMDs to Realize High-Performance β-Ga2O3 Device Based on β-Ga2O3/Janus-TMD Heterostructures. Materials Today Physics, 21, Article ID: 100549. [Google Scholar] [CrossRef]
|
|
[15]
|
Jin, C., Tang, X., Tan, X., Smith, S.C., Dai, Y. and Kou, L. (2019) A Janus MoSSe Monolayer: A Superior and Strain-Sensitive Gas Sensing Material. Journal of Materials Chemistry A, 7, 1099-1106. [Google Scholar] [CrossRef]
|
|
[16]
|
Chaurasiya, R. and Dixit, A. (2019) Defect Engineered MoSSe Janus Monolayer as a Promising Two Dimensional Material for NO2 and NO Gas Sensing. Applied Surface Science, 490, 204-219. [Google Scholar] [CrossRef]
|
|
[17]
|
Idrees, M., Din, H., Ali, R., Rehman, G., Hussain, T., Nguyen, C., Ahmad, I. and Amin, B. (2019) Optoelectronic and Solar Cell Applications of Janus Monolayers and Their van der Waals Heterostructures. Physical Chemistry Chemical Physics, 21, 18612-18621. [Google Scholar] [CrossRef]
|
|
[18]
|
Freysoldt, C. and Neugebauer, J. (2018) First-Principles Calculations for Charged Defects at Surfaces, Interfaces, and Two-Dimensional Materials in the Presence of Electric Fields. Physical Review B, 97, Article ID: 205425. [Google Scholar] [CrossRef]
|
|
[19]
|
Deng, S., Li, L. and Rees, P. (2019) Graphene/MoXY Heterostructures Adjusted by Interlayer Distance, External Electric Field, and Strain for Tunable Devices. ACS Applied Nano Materials, 2, 3977-3988. [Google Scholar] [CrossRef]
|
|
[20]
|
Wang, Y., Chen, R., Luo, X., Liang, Q., Wang, Y. and Xie, Q. (2022) First-Principles Calculations on Janus MoSSe/ Graphene van der Waals Heterostructures: Implications for Electronic Devices. ACS Applied Nano Materials, 5, 8371- 8381. [Google Scholar] [CrossRef]
|
|
[21]
|
Kresse, G. and Joubert, D. (1999) From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Physical Review B, 59, 1758-1775. [Google Scholar] [CrossRef]
|
|
[22]
|
Perdew, J.P., Burke, K. and Ernzerhof, M. (1996) Generalized Gradient Approximation Made Simple. Physical Review Letters, 77, 3865-3868. [Google Scholar] [CrossRef]
|