HJDM  >> Vol. 2 No. 3 (July 2012)

    基于目标规划法的灰色Verhulst负荷预测模型
    Grey Verhulst Load Forecasting Model Based on Objective Programming

  • 全文下载: PDF(247KB)    PP.21-24   DOI: 10.12677/HJDM.2012.23005  
  • 下载量: 3,092  浏览量: 12,118  

作者:  

周德强:长江大学信息与数学学院,荆州;
向锋:胜利油田石油开发中心,东营

关键词:
负荷预测目标规划法最小一乘法最小二乘法灰色Verhulst模型Load Forecasting; Objective Programming; Least Absolute Deviation; Least Square Procedure; Grey Verhulst Model

摘要:

为克服传统灰色Verhulst模型中利用最小二乘法估计参数存在的不足,改善灰色Verhulst模型在具有“S型”增长或处于饱和增长状态的中长期电力负荷预测中的精度,提出在最小一乘法准则下,利用目标规划法估计灰色Verhulst模型参数的方法。对某中长期负荷进行预测,并与传统的灰色Verhulst模型进行对比分析。结果表明,该方法发挥了最小一乘法受奇异值影响小,稳健性好的优点,避免了利用最小二乘法估计灰色Verhulst模型参数存在的不足,预测精度更高。

In order to overcome the defects of parameters estimation in traditional grey Verhulst model by means of least square procedure, and enhance the forecasting accuracy of grey Verhulst model in medium and long-term load forecasting for load growth in S-type or load growth being saturated, an estimation method based on least absolute de- viation, which use objective programming to estimate the parameters of grey Verhulst is presented. Then, this model is applied to long-term load forecasting, and is compared with the traditional grey Verhulst model. The results show that the method takes advantages of the benefits of least absolute deviation, which is small influenced by singular value, and robustness is good. This model avoids the defects of parameters estimation in traditional grey Verhulst model by means of least square procedure, and forecasting precision is higher.

文章引用:
周德强, 向锋. 基于目标规划法的灰色Verhulst负荷预测模型[J]. 数据挖掘, 2012, 2(3): 21-24. http://dx.doi.org/10.12677/HJDM.2012.23005

参考文献

[1] 俞明生, 冯桂宏, 杨祥. 组合优化灰色模型在中长期电力负荷预测中的应用[J]. 沈阳工业大学学报, 2007, 29(2): 450- 453.
[2] 徐军华, 刘天琪. 基于小波分解和人工神经网络的短期负荷预测[J]. 电网技术, 2004, 28(8): 30-33.
[3] 李元诚, 方廷健, 于尔铿. 短期负荷预测的支持向量机方法研究[J]. 中国电机工程学报, 2003, 23(6): 55-59.
[4] 杨延西, 刘丁. 基于小波变换和最小二乘支持向量机的短期电力负荷预测[J]. 电网技术, 2005, 29(13): 60-64.
[5] 高强, 王胜辉, 徐建源. 基于人工神经网络的中期电力负荷预测[J]. 沈阳工业大学学报, 2004, 26(1): 41-43.
[6] 王成山, 杨军, 张崇见. 灰色系统理论在城市年用电量预测中的应用——不同预测方法的分析比较[J]. 电网技术, 1999, 23(2): 15-18.
[7] 张伏生, 刘芳, 赵文彬等. 灰色Verhulst模型在中长期负荷预测中的应用[J]. 电网技术, 2003, 27(5): 37-39.
[8] 张俊芳, 吴伊昂, 吴军基. 基于灰色理论负荷预测的应用研究[J]. 电力自动化设备, 2004, 24(5): 24-26.
[9] 王福建, 李铁强, 俞传正. 道路交通事故灰色Verhulst预测模型[J]. 交通运输工程学报, 2006, 6(1): 122-126.
[10] Z. J. Guo, J. Ye and X. Q. Song. Verhulst model on time series error corrected for port throughput forecasting. Journal of the Eastern Asia Society for Transportation Studies, 2005, 6: 881- 891.
[11] D. H. Li. Verhulst model to predicate ground displacement and deformation. Coal Science and Technology, 2004, 32(3): 58-59.
[12] 安德洪, 韩文秀, 岳毅宏. 组合预测法的改进及其在负荷预测中的应用[J]. 系统工程与电子技术, 2006, 26(6): 842-844.
[13] V. N. Vapnik. The nature of statistical learning theory. Heidell- berg: Springer Verlag, 1995.