|
[1]
|
Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., Skouta, R., Zaitsev, E.M., Gleason, C.E., Patel, D.N., Bauer, A.J., Cant-ley, A.M., Yang, W.S., Morrison III, B. and Stockwell, B.R. (2012) Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell, 149, 1060-1072. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Xie, Y., Hou, W., Song, X., Yu, Y., Huang, J., Sun, X., Kang, R. and Tang, D. (2016) Ferroptosis: Process and Function. Cell Death & Differentiation, 23, 369-379. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Frazer, D.M. and Anderson, G.J. (2014) The Regulation of Iron Transport. BioFactors, 40, 206-214. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Bogdan, A.R., Miyazawa, M., Hashimoto, K. and Tsuji, Y. (2016) Regula-tors of Iron Homeostasis: New Players in Metabolism, Cell Death, and Disease. Trends in Biochemical Sciences, 41, 274-286. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Gao, M., Monian, P., Pan, Q., Zhang, W., Xiang, J. and Jiang, X. (2016) Ferroptosis Is an Autophagic Cell Death Process. Cell Research, 26, 1021-1032. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Wang, S., Luo, J., Zhang, Z., Dong, D., Shen, Y., Fang, Y., Hu, L., Liu, M., Dai, C., Peng, S., Fang, Z. and Shang, P. (2018) Iron and Magnetic: New Research Direction of the Ferropto-sis-Based Cancer Therapy. American Journal of Cancer Research, 8, 1933-1946.
|
|
[7]
|
Yang, W.S., SriRamaratnam, R., Welsch, M.E., Shimada, K., Skouta, R., Viswanathan, V.S., Cheah, J.H., Clemons, P.A., Shamji, A.F., Clish, C.B., Brown, L.M., Girotti, A.W., Cornish, V.W., Schreiber, S.L. and Stockwell, B.R. (2014) Regulation of Ferroptotic Can-cer Cell Death by GPX4. Cell, 156, 317-331. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Friedmann Angeli, J.P., Schneider, M., Proneth, B., Tyurina, Y.Y., Tyurin, V.A., Hammond, V.J., Herbach, N., Aichler, M., Walch, A., Eggenhofer, E., Basavarajappa, D., Rådmark, O., Kobayashi, S., Seibt, T., Beck, H., Neff, F., Esposito, I., Wanke, R., Förster, H., Yefremova, O., Heinrichmeyer, M., Bornkamm, G.W., Geissler, E.K., Thomas, S.B., Stockwell, B.R., O’Donnell, V.B., Kagan, V.E., Schick, J.A. and Conrad, M. (2014) Inactivation of the Ferroptosis Regulator Gpx4 Triggers Acute Renal Failure in Mice. Nature Cell Biology, 16, 1180-1191. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
黄晶, 汤芸, 张春. 硒蛋白与肾脏疾病的研究进展[J]. 中华肾脏病杂志, 2020, 36(2): 165-170.
|
|
[10]
|
.唐珍, 王含彦, 郭冬梅. 胱氨酸/谷氨酸反向转运体的研究进展[J]. 川北医学院学报, 2021, 36(11): 1536-1540.
|
|
[11]
|
Dolma, S., Lessnick, S.L., Hahn, W.C., et al. (2003) Identification of Genotype-Selective Antitumor Agents Using Synthetic Lethal Chemical Screening in Engineered Human Tumells. Cancer Cell, 285, 285-296. [Google Scholar] [CrossRef]
|
|
[12]
|
Doll, S., Proneth, B., Tyurina, Y.Y., Panzilius, E., Kobayashi, S., Ingold, I., Irmler, M., Beckers, J., Aichler, M., Walch, A., Prokisch, H., Trümbach, D., Mao, G., Qu, F., Bayir, H., Füllekrug, J., Scheel, C.H., Wurst, W., Schick, J.A., Kagan, V.E., Angeli, J.P. and Conrad, M. (2017) ACSL4 Dictates Ferroptosis Sensitivity by Shaping Cellular Lipid Composition. Nature Chemical Biology, 13, 91-98. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Gaschler, M.M. and Stockwell, B.R. (2017) Lipid Peroxidation in Cell Death. Biochemical and Biophysical Research Communications, 482, 419-425. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Fitzwalter, B.E. and Thorburn, A. (2015) Recent Insights into Cell Death and Autophagy. The FEBS Journal, 282, 4279-4288. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Levine, B. and Kroemer, G. (2008) Autophagy in the Pathogenesis of Disease. Cell, 132, 27-42. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Kang, R. and Tang, D. (2017) Autophagy and Ferroptosis—What’s the Connection? Current Pathobiology Reports, 5, 153-159. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Park, E. and Chung, S.W. (2019) ROS-Mediated Autophagy Increases Intracellular Iron Levels and Ferroptosis by Ferritin and Transferrin Receptor Regulation. Cell Death & Disease, 10, Article No. 822. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Ou, Y., Wang, S.J., Li, D., Chu, B. and Gu, W. (2016) Activation of SAT1 Engages Polyamine Metabolism with p53- Mediated Ferroptotic Responses. Proceedings of the National Academy of Sciences of the United States of America, 113, E6806-E6812. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Jiang, L., Kon, N., Li, T., Wang, S.J., Su, T., Hibshoosh, H., Baer, R. and Gu, W. (2015) Ferroptosis as a p53-Mediated Activity during Tumour Suppression. Nature, 520, 57-62. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Tarangelo, A., Magtanong, L., Bieging-Rolett, K.T., Li, Y., Ye, J., Attardi, L.D. and Dixon, S.J. (2018) p53 Suppresses Metabolic Stress-Induced Ferroptosis in Cancer Cells. Cell Reports, 22, 569-575. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Chang, L.C., Chiang, S.K., Chen, S.E., Yu, Y.L., Chou, R.H. and Chang, W.C. (2018) Heme Oxygenase-1 Mediates BAY 11-7085 Induced Ferroptosis. Cancer Letters, 416, 124-137. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Sun, X., Ou, Z., Chen, R., Niu, X., Chen, D., Kang, R. and Tang, D. (2016) Activation of the p62-Keap1-NRF2 Pathway Protects against Ferroptosis in Hepatocellular Carcinoma Cells. Hepatology, 63, 173-184. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Doll, S., Freitas, F.P., Shah, R., Aldrovandi, M., da Silva, M.C., Ingold, I., Goya Grocin, A., Xavier da Silva, T.N., Panzilius, E., Scheel, C.H., Mourão, A., Buday, K., Sato, M., Wanninger, J., Vignane, T., Mohana, V., Rehberg, M., Flatley, A., Schepers, A., Kurz, A., White, D., Sauer, M., Sattler, M., Tate, E.W., Schmitz, W., Schulze, A., O’Donnell, V., Proneth, B., Popowicz, G.M., Pratt, D.A., Angeli, J.P.F. and Conrad, M. (2019) FSP1 Is a Glutathione-Independent Ferroptosis Suppressor. Nature, 575, 693-698. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Yagoda, N., von Rechenberg, M., Zaganjor, E., Bauer, A.J., Yang, W.S., Fridman, D.J., Wolpaw, A.J., Smukste, I., Peltier, J.M., Boniface, J.J., Smith, R., Lessnick, S.L., Sahasrabudhe, S. and Stockwell, B.R. (2007) RAS-RAF-MEK- Dependent Oxidative Cell Death Involving Voltage-Dependent Anion Channels. Nature, 447, 864-868. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Sun, X., Ou, Z., Xie, M., Kang, R., Fan, Y., Niu, X., Wang, H., Cao, L. and Tang, D. (2015) HSPB1 as a Novel Regulator of Ferroptotic Cancer Cell Death. Oncogene, 34, 5617-5625. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Yuan, H., Li, X., Zhang, X., Kang, R. and Tang, D. (2016) CISD1 Inhib-its Ferroptosis by Protection against Mitochondrial Lipid Peroxidation. Biochemical and Biophysical Research Commu-nications, 478, 838-844. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Song, X., Xie, Y., Kang, R., Hou, W., Sun, X., Epperly, M.W., Greenberger, J.S. and Tang, D. (2016) FANCD2 Protects against Bone Marrow Injury from Ferroptosis. Biochemical and Biophysical Research Communications, 480, 443-449. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Hu, Z., Zhang, H., Yi, B., Yang, S., Liu, J., Hu, J., Wang, J., Cao, K. and Zhang, W. (2020) VDR Activation Attenuate Cisplatin Induced AKI by Inhibiting Ferroptosis. Cell Death & Disease, 11, Article No. 73. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Guerrero-Hue, M., García-Caballero, C., Palomino-Antolín, A., Rubio-Navarro, A., Vázquez-Carballo, C., Herencia, C., Martín-Sanchez, D., Farré-Alins, V., Egea, J., Cannata, P., Pra-ga, M., Ortiz, A., Egido, J., Sanz, A.B. and Moreno, J.A. (2019) Curcumin Reduces Renal Damage Associated with Rhabdomyolysis by Decreasing Ferroptosis-Mediated Cell Death. FASEB Journal, 33, 8961-8975. [Google Scholar] [CrossRef]
|
|
[30]
|
Li, X., Zou, Y., Xing, J., Fu, Y.Y., Wang, K.Y., Wan, P.Z. and Zhai, X.Y. (2020) Pretreatment with Roxadustat (FG- 4592) Attenuates Folic Acid-Induced Kidney Injury through Antifer-roptosis via Akt/GSK-3β/Nrf2 Pathway. Oxidative Medicine and Cellular Longevity, 2020, Article ID: 6286984. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Li, X., Duan, L., Yuan, S., et al. (2019) Ferroptosis Inhibitor Alleviates Radiation-Induced Lung Fibrosis (RILF) via Down-Regulation of TGF-β1. Journal of Inflammation, 16, Article No. 11. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Gong, Y., Wang, N., Liu, N. and Dong, H. (2019) Lipid Peroxi-dation and GPX4 Inhibition Are Common Causes for Myofibroblast Differentiation and Ferroptosis. DNA and Cell Bi-ology, 38, 725-733. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Li, S., Zheng, L., Zhang, J., Liu, X. and Wu, Z. (2021) Inhibition of Ferroptosis by Up-Regulating Nrf2 Delayed the Progression of Diabetic Nephropathy. Free Radical Biology and Medi-cine, 162, 435-449. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Chaudhary, K., Chilakala, A., Ananth, S., Mandala, A., Veeranan-Karmegam, R., Powell, F.L., Ganapathy, V. and Gnana- Prakasam, J.P. (2019) Renal Iron Accelerates the Progression of Diabetic Nephropathy in the HFE Gene Knockout Mouse Model of Iron Overload. American Journal of Physiology-Renal Physiology, 317, F512-F517. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Yang, W.H., Ding, C.C., Sun, T., Rupprecht, G., Lin, C.C., Hsu, D. and Chi, J.T. (2019) The Hippo Pathway Effector TAZ Regulates Ferroptosis in Renal Cell Carcinoma. Cell Reports, 28, 2501-2508.E4. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Zou, Y., Palte, M.J., Deik, A.A., Li, H., Eaton, J.K., Wang, W., Tseng, Y.Y., Deasy, R., Kost-Alimova, M., Dančík, V., Leshchiner, E.S., Viswanathan, V.S., Signoretti, S., Choueiri, T.K., Boehm, J.S., Wagner, B.K., Doench, J.G., Clish, C.B., Clemons, P.A. and Schreiber, S.L. (2019) A GPX4-Dependent Cancer Cell State Underlies the Clear-Cell Morphology and Confers Sensitivity to Ferroptosis. Nature Communications, 10, Article No. 1617. [Google Scholar] [CrossRef] [PubMed]
|