糖尿病足血管病变的治疗进展
Progress in the Treatment of Diabetic Foot Vascular Disease
DOI: 10.12677/ACM.2024.141007, PDF, HTML, XML, 下载: 74  浏览: 169 
作者: 刘家辰, 白 超*:新疆医科大学第一附属医院消化血管外科中心血管甲状腺外科,新疆 乌鲁木齐
关键词: 糖尿病足血管病变介入治疗手术治疗Diabetic Foot Vascular Disease Interventional Therapy Surgical Treatment
摘要: 糖尿病足溃疡是长期且管理不佳的糖尿病所常见的结果,足部溃疡的后果包括功能状态下降、感染、住院、下肢截肢和死亡,严重影响了糖尿病患者的生活质量及经济负担。外周血管系统的血运重建也是溃疡管理的关键组成部分。本文主要针对糖尿病足血管病变已成熟的技术(普通球囊血管成形术、裸金属支架、覆膜支架、自体静脉搭桥手术、开放式深静脉动脉化)与新技术(药物涂层球囊、药物洗脱支架、血栓动脉内膜切除术、改良球囊、经皮斑块切除术、血管内碎石术、经皮深静脉动脉化、生物可吸收支架)进行介绍,同时探求新的治疗方式,明确各个治疗方式之间的优越性及优缺点。
Abstract: Diabetic foot ulcer is a common result of long-term and poorly managed diabetes. The consequences of foot ulcer include decreased functional status, infection, hospitalization, lower limb amputation, and death, which seriously affect the quality of life and economic burden of patients with diabetes. Revascularization of the peripheral vascular system is also a key component of ulcer management. This article mainly focuses on the mature technologies (standard balloon angioplasty, bare metal stents, covered stents, autologous vein bypass surgery, open deep vein arterialization) and new technologies (drug-coated balloon, drug-eluting stents, thrombotic endarterectomy, modified bal-loon, percutaneous atherectomy, Intravascular lithotripsy, percutaneous deep vein arterialization, and angioplasty) of diabetic foot vascular disease. At the same time, new treatment methods are explored, and the advantages and disadvantages of each treatment method are clarified.
文章引用:刘家辰, 白超. 糖尿病足血管病变的治疗进展[J]. 临床医学进展, 2024, 14(1): 42-54. https://doi.org/10.12677/ACM.2024.141007

1. 引言

糖尿病足溃疡(diabetic foot ulcer, DFU)是长期且管理不佳的糖尿病所常见的结果。足部溃疡的后果包括功能状态下降、感染、住院、下肢截肢和死亡。足部溃疡的终生风险为19%至34%。溃疡后3~5年复发率为65%,终生下肢截肢发生率为20%,5年死亡率为50%~70%,严重影响了糖尿病患者的生活质量及经济负担 [1] 。外周血管系统的血运重建也是溃疡管理的关键组成部分 [2] 。糖尿病足的外周动脉疾病(Peripheral artery disease, PAD)常表现为血管受累极为弥漫,累及多条动脉,在小腿段动脉中尤其严重,闭塞时间长,闭塞长度长(50%的患者闭塞长度 > 10 cm),血管侧支形成能力差 [3] 。膝下动脉组织病理学常提示血栓性管腔闭塞,动脉粥样硬化不明显,主要表现为动脉中层钙化 [4] 。相关研究指出以血管体(Angiosomes)的概念进行糖尿病足的血运重建,其被定义为由目标动脉供养的深层组织和皮肤的三维单位 [5] 。可通过介入手术行直接血运重建(Direct revascularization, DR)及间接血运重建(indirect revascularisation, IR)为血管体提供血运,虽然相关系统评价指出与IR相比,接受DR的受试者愈合的比例更高,并且带侧支的IR在伤口愈合方面可能与DR具有相似的结局 [6] 。但Chuter V等人指出 [7] ,DR的血管介入手术方式有效性暂无定论,相关证据质量低。一项回顾性研究也指出,在12个月时,DR和IR在无截肢生存期(73.2% vs 71.6%; p = 0.841)、无主要不良肢体事件(71.7% vs 66.1%; p = 0.617)和治愈率(72.7% vs 72.0%; p = 1.000)方面没有显著差异 [8] 。针对糖尿病足的血运重建,我们希望做到最佳的是恢复足部的血供,Settembre N等人的竞争性风险分析也表明 [9] ,足背动脉及足底动脉弓开放对截肢率降低有显著影响,可能对血管体靶向血运重建获益最好。对于前脚掌的广泛组织损失(WIfI临床的分级4级)或难以愈合的区域,足背和足底动脉的再通及其吻合可最大程度上改善血流供应 [10] ,间接说明了在糖尿病足溃疡,尤其是足部远端的溃疡,足背动脉及足底动脉弓的开放是至关重要的。本文主要针对糖尿病足血管病变已成熟的技术与新技术进行介绍,同时探求新的治疗方式,明确各个治疗方式之间的优越性及优缺点。

2. 传统治疗方式

2.1. 普通球囊血管成形术(Plain Old Balloon Angioplasty, POBA)

POBA会压碎动脉粥样硬化斑块并增加管腔直径,但再狭窄率很高,1年时长病变的再狭窄率为40% 至70%,术中出现弹性反冲或限流夹层的概率大,后期可能出现重塑部位管腔狭窄率高于未处理段血管可能性 [11] ,因为以上种种缺点,POBA在实际临床引用中常结合其他手术治疗方式,但不可否认其价格低廉的优点。

2.2. 裸金属支架(Bare-Metal Stents, BMS)及覆膜支架(Covered Stent)

作为POBA的补充治疗方式,下肢动脉内支架置入已在临床中应用多年。但相关随机对照实验结果显示,BMS不能预防新生内膜增生,支架内再狭窄和支架骨折的风险随着病变长度的增加而增加。进而提出覆膜支架在下肢血管介入中的应用,覆盖在支架上的膨胀聚四氟乙烯(ePTFE)可防止新生内膜组织的向内生长,使通畅性不太依赖于病变长度 [12] 。对不同类型覆膜支架治疗主髂动脉闭塞性疾病的系统评价表示其在12个月时技术成功率和通畅率高,对于复杂的主髂动脉病变,5年随访表示覆膜支架优于BMS [13] 。VIABAHN肝素结合覆膜支架长期随访安全有效,无靶病变血运重建率(freedom from target lesion revascularization, fTLR)为79.1%,5年内未发生截肢、急性肢体缺血或支架骨折 [14] 。然而,覆膜支架可能增加支架血栓形成的风险以及近端和远端边缘再狭窄的风险,在3年终点,裸镍钛合金支架在初级辅助通畅方面表现出优于VIABAHN的统计学优势(88.8%;95% CI,78.0%~94.5% BMS vs 69.8%;95% CI,53.5%~81.3% VIABAHN覆膜支架;p = 0.04) [15] ,急性肢体缺血(acute limb ischemia, ALI)风险较高,但原发性大截肢风险不高。血栓性支架移植物再干预后的临床结局并不理想 [16] 。同时针对球囊扩张支架(balloon-expandable stent, BE)或自膨胀支架(self-expanding stent, SE)进行随机ICE试验发现,SE与BE相比,治疗髂动脉闭塞性疾病12个月再狭窄率较低,靶病变血运重建(target lesion revascularization, TLR)率显著降低。两组均未出现安全问题 [17] 。

2.3. 自体静脉搭桥手术

2016年AHA/ACC关于下肢外周动脉疾病患者管理指南中指出:许多大型随机对照试验已证明膝上搭桥可选用自体静脉逆转或原位静脉搭桥 [18] 。对于预计寿命超过2年的患者通常应首先接受搭桥手术,尤其是在静脉可作为导管的情况下 [19] 。后针对下肢静脉搭桥手术相关系统评价及Meta分析结果也相继发表,Almasri J的文章指出,与所有其他干预措施相比,大隐静脉搭桥术的通畅率最高,而移植到膝关节目标以下的通畅率和保肢率明显较差 [20] 。有随机对照试验指出,在具有足够大隐静脉进行手术血运重建的慢性肢体威胁性缺血(chronic limb-threatening ischemia, CLTI)患者中,手术组发生重大肢体不良事件或死亡的发生率显著低于血管内组 [21] 。而后续针对腘下的CLTI患者的随机对照研究发现,建议采用最佳的血管内治疗第一血运重建策略 [22] 。但Peters F等人研究指出,外周血管内介入手术后更有利的结局完全归因于患者特征的差异,而不是手术类型。所有手术方法在现实世界中的表现都相似 [23] 。

如果患者同侧大隐静脉已被使用的情况下,对侧大隐静脉、小隐静脉或手臂静脉是可能的替代方案,且在结局参数方面都是相等的,但显而易见的是,大隐静脉的通畅性和肢体挽救率优于非自体静脉和异位静脉导管 [24] 。虽然该手术通畅率较其他手术明显升高,但局限在须有可使用的大隐静脉,同侧大隐静脉无法使用的患者对侧大隐静脉的可用率 < 50%,限制了手术的应用,同时手术创伤大,术后恢复时间长也是该手术的不良方面。

2.4. 开放式深静脉动脉化(Deep Venous Arterializations, DVA)

对于没有流出道远端靶点的患者,DVA在近端动脉流入和远端静脉流出之间建立连接,同时破坏足部静脉瓣膜。这使得血液流到足部,并可能解决静息痛或帮助慢性伤口愈合。在早期开放式深静脉动脉化手术中,导管静脉可以在吻合术前采集、逆转和直接隧道处理。或者破坏瓣膜,静脉保持在原位以执行旁路。其手术必须进行远端静脉靶血管的瓣膜切开术;技术包括使用逆行球囊导管、瓣膜切开器、扩张器、直接瓣膜切除术和切割球囊以破坏瓣膜 [25] 。在一项针对严重肢体缺血患者队列中静脉动脉化和足部搭桥术的比较研究显示,静脉动脉化组中,早期闭塞率为15%,1年通畅率为71%,保肢率为53% [26] 。另一项系统评价提示12个月时保肢的汇总比例为75%。静脉动脉化可能是面临患肢截肢患者的宝贵治疗选择;然而目前的证据质量低 [27] 。

3. 新型治疗方式

3.1. 药物涂层球囊

因POBA再狭窄率高、即刻弹性反冲或限流夹层和晚期负重塑等不良表现,支架植入逐渐引用起来。然而,永久性金属植入物会导致内膜增生,并且随着病变段长度增加,支架断裂的风险随之上升。为了减少内膜增生,提出通过药物涂层球囊(drug-coated balloons, DCB)或药物涂层支架进行局部给药 [28] 。因此近年来DCB的相关研究较为火热,相关药物主要集中于紫杉醇及西罗莫司等抗内膜增殖药物。然而,在2018年,Katsanos等人发表了一项系统评价和荟萃分析,基于28项关于紫杉醇涂层设备与标准护理的随机对照试验(randomized clinical trial, RCT),并报告了与使用紫杉醇涂层设备相关的迟发死亡率增加 [29] 。后续针对药物涂层装置在下肢应用中的有效性和安全性,完善相关RCT后提示该文失访率较高可能是一个问题,并且对紫杉醇涂层装置死亡率升高提出质疑。尚未确定对死亡率升高的合理机制解释 [30] 。因以上问题而停止入组的大型随机对照试验重新进行,BASIL-3试验已接近完成入组阶段。SWEDEPAD和BASIL-3试验可能最终解决这一临床困境,如果最终观察到的死亡率上升问题在数据集中得到证实,那么对西罗莫司涂层装置的持续评估 [31] 以及先进血管成像的新兴改进提供了替代解决方案。

3.1.1. 药物涂层球囊在膝上动脉的应用

针对DCB治疗股腘动脉疾病的Meta分析中,糖尿病患者亚组相较于非糖尿病患者原发性通畅率显着降低,这与冠状动脉介入治疗中观察到的结果一致 [32] 。同时也指出糖尿病和非糖尿病患者在DCB血管成形术后的5年再干预率相似,但糖尿病患者的死亡率预计更高 [33] 。尽管如此,Acotec中对糖尿病患者的亚组分析研究显示,与POBA相比,DCB组的6个月晚期管腔丢失显着降低,这表明DCB即使在糖尿病患者中也有效 [34] 。也有相关RCT研究使得紫杉醇药物球囊安全性和有效性得到证实,大截肢率和靶病变血运重建率低 [35] [36] ,初期通畅率显著提高 [37] [38] 。紫杉醇血浆水平在1小时内降至较低水平 [39] 。相比于裸金属支架,DCB表现出显著更高的通畅性、更低的血运重建率和主要不良事件发生率,并且死亡率、截肢或血栓形成与BMS相比没有统计学意义差异 [40] 。

3.1.2. 药物涂层球囊在膝下动脉的应用

IN.PACT DEEP随机对照试验5年随访数据指出(实验组、对照组糖尿病患病率分别为75.7%、68.9%),使用DCB血管成形术的CLTI患者进行胫动脉血运重建术的长期安全性和有效性与POBA相当。紫杉醇暴露与5年随访时截肢风险增加或全因死亡率无关 [41] 。而一项专门针对严重肢体缺血的糖尿病患者膝下血管成形术随机对照试验指出,与POBA相比,药物洗脱球囊在糖尿病重度肢体缺血患者膝下病变治疗中可显著减少1年再狭窄、靶病变血运重建和靶血管闭塞 [42] 。相同的,AcotecTM药物洗脱球囊的随机对照试验也指出在膝下血管成形术中,与POBA相比,LitosTM DCB显著减少了晚期管腔丢失、血管再闭塞和临床驱动的靶病变血运重建 [43] 。然而Ipema J等人的Meta分析却指出膝下动脉中DCB血管成形术与标准PTA比较,在保肢率、生存率、无截肢生存期、再狭窄和TLR方面无统计学意义差异 [44] 。有一项针对亚洲人群的随机对照试验甚至指出DCB组和POBA组在膝下动脉治疗后6个月初级通畅率相似。POBA组12个月的无截肢生存率更高 [45] 。因此需要更多的RCT试验及系统综述针对亚洲人群的膝下动脉DCB应用的支持。

DCB的开发是为了解决以前方法的一些局限性。它们能够将抗增殖药物输送到血管壁中,同时“不留下任何东西”。与药物洗脱支架和其他现有治疗方法相比,DCB具有许多潜在的优势,包括持久的抗再狭窄疗效,广泛的表面接触,均匀的药物分布,没有支架足迹或聚合物残留物 [46] 。此外,DCB可用于治疗支架无法有效覆盖的血管病变,例如高机械应力区域(曲折动脉),微小血管,广泛病变和分叉病变。然而成本是一个重大障碍,缺乏可靠的成本效益研究是一个严重的问题。尽管如此,DCB表现出球囊血管成形术固有的机械限制,最明显的是缺乏支架和机械支撑,这限制了它们的独立适用性。因此,如果最初使用DCB的结果不令人满意(即夹层,反冲,无效扩张),则始终需要补救支架置入术,从而破坏其主要应用目的。另一个可能的制约因素是需要血管损伤才能获得最佳药物分布。具有严重血管损伤的气压伤是由球囊血管成形术引起的。斑块压迫不是管腔扩张的重要原因,管腔增大的主要原因是斑块破裂伴动脉夹层和整个动脉壁过度拉伸。此外,血管微切割本身被认为可以促进药物转移并在组织中产生适当的药物生物利用度,因此需要在正确的球囊尺寸和血管损伤程度之间取得微妙的平衡 [47] 。

3.2. 药物洗脱支架

为了降低再狭窄率(任何血管内干预后最常见的失败原因),开发了药物洗脱支架(drug-eluting stents, DES)。尽管DCB在钙化程度较低的短病变中显示出有希望的结果,但其在治疗复杂疾病中的疗效仍不明确。当DCB用于治疗慢性完全闭塞(Chronic total occlusion, CTO)或长病变时,经常需要支架,而钙化的存在导致血管扩张减低,延迟血管阻力和减少血管壁中的药物摄取 [48] 。DES在冠状动脉介入方面的成功导致了下肢动脉中DES的研究,希望为患有跛行或严重肢体缺血的患者提供安全持久的微创治疗选择。

3.2.1. 药物洗脱支架在膝上动脉的应用

不含聚合物的紫杉醇洗脱Zilver PTXTM支架是第一个在治疗跛行患者短股腘动脉病变方面显示出良好5年效果的DES。与POBA及BMS相比,Zilver PTX药物洗脱支架的RCT试验指出整个DES组的临床获益、通畅性和TLR优于POBA。同时,临时DES的临床获益、通畅性和TLR均优于临时BMS [49] 。同时一项随机对照试验指出DCB在治疗高危人群的复杂股腘动脉病变方面并不优于DES,其再狭窄率和临床驱动的靶病变血运重建率相似 [50] 。DES与DCB加补救支架置入术在股腘段介入治疗中的有效性和安全性相当;在长达36个月的时间里观察到有利于DES的趋势 [51] 。一项回顾性研究指出,Zilver PTX支架的初次通畅率低于Viabahn肝素覆膜支架,但支架血栓形成率较低 [52] 。另一项回顾性研究指出与交织镍钛诺支架相比(INSTM,Supera),两种支架(INS和DES)在股腘病变中的临床驱动的靶病变血运重建(clinically driven target lesion revascularization, CD-TLR)结果相当,因此即使对于钙化或腘动脉病变,两者没有差异 [53] 。EluviaTM是一种含氟聚合物紫杉醇洗脱血管支架,其具有更长的药物释放时间 [54] 。一项回顾性研究证明了其在严重钙化、长股腘动脉病变中较好的1年支架通畅性、安全性和有效性 [55] ,2年结局有相似的结果 [56] 。另一项回顾性研究(糖尿病患病率在60.1%~66.9%)指出,与VIABAHN肝素覆膜支架相比,接受Eluvia DES治疗的股腘动脉闭塞性疾病病变在≤15 cm的病变中具有统计学上显著较高的初级通畅率,并且CD-TLR和伴随通畅性丧失的ALI的风险减低 [57] 。与BMS的随机对照试验表达了优良的1年初级通畅性 [58] 。Eluvia组与Zilver PTX组相比,股腘病变一年时晚期管腔丢失(late lumen loss, LLL)显著降低 [59] ,支架血栓形成或CD-TLR风险降低,12个月时初级通畅性高,并且具有相似的安全性 [60] 。一项涵盖了Zilver PTXTM DES (Cook Medical)和EluviaTM DES (Boston Scientific),PACT AdmiralTM DCB (美敦力公司),LUTONIXTM DCB (巴德)和RangerTM DCB (波士顿科学)等多款药涂球囊及支架的多中心回顾研究指出DES组1年和2年的初级通畅性明显高于DCB组。然而,DES与通畅性丧失时的临床症状加重和复杂的病变特征有关 [61] 。ILLUMINA研究显示,使用两性药物制剂的西罗莫司NiTiDES支架系统治疗有症状的股腘部病变,在24个月内具有良好的初级通畅性和安全性 [62] 。

3.2.2. 药物洗脱支架在膝下动脉的应用

针对紫杉醇药物洗脱支架在膝下动脉的相关应用,一项随机对照试验针对经皮腔内血管成形术联合裸金属支架补救(PTA-BMS)与DES治疗严重肢体缺血腘下病变的5年随访结果发现,与PTA-BMS相比,DES治疗严重肢体缺血患者腘下病变后的截肢率和无事件生存率结果均有所改善 [63] [64] 。后续有西莫罗司洗脱支架相关随机对照试验指出,在膝下长段病变中,与紫杉醇DCB相比,DES与显著较低的术后即刻残余狭窄相关,并在6个月时显著减少血管再狭窄 [65] ,一年的随机对照试验ACHILLES表现出了相同的结果 [66] 。与裸金属支架相比,西罗莫司洗脱支架则表现出较高的中期通畅率 [67] [68] 。虽然其相较于BMS表现出不错的有效性和安全性 [69] ,降低了再干预和截肢的风险,但对1年随访时死亡率和卢瑟福分级改善没有明显差异 [70] 。同时一项针对DES治疗后长期临床影响的荟萃分析中指出:腘下DES治疗在3年时不优于对照治疗(BMS/PTA),尽管DES治疗后12个月的短期获益明显 [71] ,但需要进一步进行随访时间更长的随机试验 [72] 。

3.3. 斑块、钙化处理

3.3.1. 血栓动脉内膜切除术(Thromboendarterectomy, TEA)

标准的血管内治疗,如POBA和支架植入术,对严重钙化病变的效果有限。特别是环形钙化的病变导致球囊和支架扩张不足,因此长期通畅性差。必须进行血管准备以获得管腔和去钙化,从而促进更好的支架部署和药物沉积到血管壁中。针对内膜下斑块行TEA是股总动脉段金标准治疗方法。随着相关药涂球囊与药涂支架的发展,为明确血管内治疗(endovascular therapy, EVT)或开放手术优越性,有相关随机对照试验进行了研究。Nakama T等人在一项日本多中心研究中指出,与POBA相比,TEA显示出更好的1年通畅性。术后长期卧床削减了TEA的优越性,但应对结节性钙化显示其优越性 [73] 。一项回顾性研究也显示出较好的初期通畅率,短期随访中围手术期并发症和发病率没有显著增加,其相对于介入手术的安全性也得到了保障。在不适合动脉内膜切除术的患者中(无法耐受全麻手术的患者),DCB血管成形术提供了相似的二次通畅率,可以被认为是一种替代疗法 [74] 。

3.3.2. 改良球囊(Modified Balloons)

使用专门的球囊有助于限制夹层和应急支架的置入率,并可增加DCB扩张后药物进入血管壁的摄取。常用的改良球囊包括三类:切割球囊、刻痕球囊和最小创伤球囊。切割球囊的表面包括非常锋利的金属刀片,这对于切割特定位置的动脉粥样硬化斑块非常有用。刻痕球囊上有电线或聚合物,可以显著增加与斑块精确破裂相关的特定点的压力。最后,最小创伤气球对应于巧克力PTA球囊(美敦力公司,Santa Rosa,CA,USA)。这种半顺应性的气球被包裹在镍钛合金笼中,形成一系列凹槽和枕头,以限制夹层向血管壁的传播。在球囊扩张过程中,融合器能够使球囊以可控的方式扩张,减少过度膨胀和扭转 [75] 。虽然有不少前瞻性研究显示其较为可靠的有效性和安全性 [76] [77] [78] ,但是在用作支架置入准备的辅助药物和独立治疗时较DCB均未显著改善血管通畅性 [78] ,在Chocolate Touch DCB与Lutonix DCB随机对照试验糖尿病亚组中也有类似表达结果 [79] 。针对下肢动脉的相关随机对照试验较少,但在针对严重钙化性冠状动脉中的系统评价指出,与对照治疗POBA相比,支架置入前使用改良球囊进行病灶准备策略不能改善临床或影像学结局 [80] ,可能需要进一步的随机对照试验乃至荟萃分析评估其优越性。

3.3.3. 管腔减容

当由于突入管腔的钙化而需要进行管腔减容时,经皮斑块切除术是一种获得管腔并限制夹层和临时支架置入术的选择。根据所选设备,斑块切除术可以是定向的(SilverHawkTM、TurboHawkTM、HawkoneTM、PantherisTM)、混合的(PhoenixTM)、旋转的(JetstreamTM)或全程的(Diamondback360®外周轨道斑块切除术),或者可以使用激光技术进行消融(Turbo-EliteTM激光斑块切除术导管) [75] 。相关前瞻性研究明确斑块切除术在治疗复杂钙化外周病变患者方面极好的安全性,较低的补救支架置入率和临床可接受的低TLR率 [81] 。同时在治疗糖尿病患者PAD方面并不劣效 [82] 。增加了中度或重度钙化股腘病变的管腔尺寸 [83] 。但也有随机对照试验指出定向斑块旋切术 + DCB治疗长腘下动脉病变与单独治疗DCB相比,在6个月和1年时临床和技术结果相当 [84] 。

3.3.4. 血管内碎石术(Intravascular Lithotripsy, IVL)

血管内碎石术是一种用于修饰钙化斑块的新技术,它部署了嵌入碎石发射器的一次性球囊导管。它采用类似于用于肾结石的冲击波碎石术的概念,产生脉动声压波以安全地破坏钙化。荟萃分析支持IVL作为下肢PAD钙化斑块修饰的有效且安全的方法,可减少59.3% (95% CI 53.30%~65.31%)的管腔狭窄,且血管并发症最少 [85] 。随机对照试验比较股腘动脉钙化患者接受IVL或POBA的短期结局,然后再进行DCB治疗有症状的外周动脉疾病的结果显示,IVL组的手术成功率更高(65.8% vs. 50.4%; p = 0.01),IVL组残留狭窄病变 ≤ 30%的占比更多,而PTA组的限流夹层更常见。PTA组的后扩张和支架置入也更高。30天时主要不良事件发生率和CD-TLR在两组之间具有可比性。IVL是一种有效的血管准备策略,有助于外周动脉疾病患者钙化股腘动脉的根治性血管内治疗 [86] 。

3.4. 经皮深静脉动脉化(Percutaneous Deep Venous Arterializations, pDVA)

LimFlow (LimFlow SA,法国巴黎)是一种血管内DVA系统,尚未在美国获得批准。该系统由顺行7F动脉导管和逆行5F静脉通路导管组成。插入导管,进行初始动脉造影和静脉造影以确定血管之间的最短距离 [25] 。一项前瞻性、多中心、单臂、早期可行性研究PROMISE I对LimFlow支架移植系统的可行性、安全性和有效性进行评估,30天、6个月和12个月的无截肢生存率分别为91%、74%和70%。6个月时伤口完全愈合为67%,12个月时为75%。对16例患者(52%)进行了再干预,其中14例(88%)发生在前3个月内。大多数再干预(n = 12; 75%)涉及支架内LimFlow回路近端的动脉流入道,并且没有因为支架内狭窄被再干预 [87] 。另一项回顾性研究也指出在6、12和24个月时,无截肢生存率的估计值分别为83.9%、71.0%和67.2%,保肢的估计值分别为86.8%、79.8%和79.8%,伤口完全愈合的估计值分别为36.6%、68.2%和72.7%。伤口完全愈合的中位时间为4.9个月(范围0.5~15)。21例患者随访期间DVA回路闭塞;闭塞的中位时间为2.6个月。对17例患者进行了闭塞再干预:16例因伤口未愈合,1例因新发溃疡 [88] 。一项前瞻性、单组、多中心研究指出LimFlow 6个月时无截肢生存期为66.1%,76.0%的患者实现了保肢,63例患者中的16例(25%)的伤口完全愈合,32例(51%)的伤口正在愈合过程中 [89] 。LimFlow pDVA系统用于治疗无选择性CLTI患者。观察到很高的技术成功率,很大比例的患者在12个月时没有大截肢而存活。这些结果表明了早期安全性,并且可以在慢性威胁肢体缺血且没有常规手术或血管内血运重建治疗选择的患者中成功进行。

3.5. 生物可吸收支架

生物可吸收或可生物降解支架由可在体内溶解或吸收的材料制成,支架生物可吸收性的想法被认为是革命性的(第三代支架) [90] 。Absorb生物可吸收血管支架(BVS) (Abbott Vascular, Santa Clara, California)具有与当前一代DES相似的机械支架和抗增殖特性。然而,在血运重建和血管壁稳定后,它通过惰性水解过程被人体吸收。该装置的可吸收性使其具有巨大的潜力,可以进行积极的血管壁重塑、稳定动脉粥样硬化斑块和恢复收缩功能。Varcoe RL等人进行的一项前瞻性研究指出在38例接受治疗的肢体中,30例(79%)出现临床改善。在50个支架中有3个(6%)检测到再狭窄,12个月和24个月时的初次通畅率分别为96%和84.6%,12个月和24个月时免于临床驱动的靶病变血运重建率分别为96%和96%。在接受组织丢失治疗的患者中,64%的伤口完全愈合,没有大截肢,保肢率为100% [91] 。12个月的随访表明,使用膝以下的Absorb生物可吸收血管支架具有出色的安全性、通畅性和无靶病变血运重建。

4. 结论

对于血管病变的治疗各国学者在不同的治疗方式上面推陈出新,完善了大量的随机对照试验证明其优越性,但目前我国国内的相关研究仍较少,相关结果能否应用于我国人群仍未可知。目前针对糖尿病足血管病变的临床研究仍多以下肢动脉硬化闭塞症及慢性肢体缺血的设计标准作为研究方式,部分实验结果因纳入患者中糖尿病占比较少使得参考意义不明确,鲜有针对糖尿病患者的相关子集研究,后续有必要针对下肢血管病变中具有糖尿病的患者进行更为细致的研究以明确其特异性,为糖尿病足血管病变的治疗提供更有力的证据。

致谢

在本文的构思及撰写过程中感谢通讯作者对我的细心指导及纠正,对转载和引用权的资料、文献的所有者,表示感谢。

NOTES

*通讯作者。

参考文献

[1] McDermott, K., Fang, M., Boulton, A.J.M., Selvin, E. and Hicks, C.W. (2023) Etiology, Epidemiology, and Disparities in the Burden of Diabetic Foot Ulcers. Diabetes Care, 46, 209-221.
https://doi.org/10.2337/dci22-0043
[2] Hinchliffe, R.J., Forsythe, R.O., Apelqvist, J., et al. (2020) Guidelines on Diagnosis, Prognosis, and Management of Peripheral Artery Disease in Patients with Foot Ulcers and Diabetes (IWGDF 2019 Update). Diabetes/Metabolism Research and Reviews, 36, e3276.
https://doi.org/10.1002/dmrr.3276
[3] Graziani, L., Silvestro, A., Bertone, V., et al. (2007) Vascular Involvement in Diabetic Subjects with Ischemic Foot Ulcer: A New Morphologic Categorization of Disease Severity. European Journal of Vascular and Endovascular Surgery, 33, 453-460.
https://doi.org/10.1016/j.ejvs.2006.11.022
[4] Narula, N., Dannenberg, A.J., Olin, J.W., et al. (2018) Pathology of Peripheral Artery Disease in Patients with Critical Limb Ischemia. Journal of the American College of Cardiology, 72, 2152-2163.
https://doi.org/10.1016/j.jacc.2018.08.002
[5] Taylor, G.I. and Palmer, J.H. (1987) The Vascular Territories (An-giosomes) of the Body: Experimental Study and Clinical Applications. British Journal of Plastic Surgery, 40, 113-141.
https://doi.org/10.1016/0007-1226(87)90185-8
[6] Jongsma, H., Bekken, J.A., Akkersdijk, G.P., Hoeks, S.E., Verhagen, H.J. and Fioole, B. (2017) Angiosome-Directed Revascularization in Patients with Critical Limb Ischemia. Journal of Vascular Surgery, 65, 1208-1219.e1.
https://doi.org/10.1016/j.jvs.2016.10.100
[7] Chuter, V., Schaper, N., Mills, J., et al. (2023) Effectiveness of Re-vascularisation for the Ulcerated Foot in Patients with Diabetes and Peripheral Artery Disease: A Systematic Review. Diabetes/Metabolism Research and Reviews, e3700.
https://doi.org/10.1002/dmrr.3700
[8] Kurianov, P., Lipin, A., Antropov, A., et al. (2022) Propensity-Matched Analysis Does Not Support Angiosome-Guided Revascularization of Multilevel Peripheral Artery Disease (PAD). Vascular Medicine, 27, 47-54.
https://doi.org/10.1177/1358863X211038627
[9] Settembre, N., Biancari, F., Spillerova, K., Albäck, A., Söder-ström, M. and Venermo, M. (2020) Competing Risk Analysis of the Impact of Pedal Arch Status and Angio-some-Targeted Revascularization in Chronic Limb-Threatening Ischemia. Annals of Vascular Surgery, 68, 384-390.
https://doi.org/10.1016/j.avsg.2020.03.042
[10] Choke, E., Tang, T.Y., Cheng, S.C. and Tay, J.S. (2020) Treatment of Lower Limb Ischaemia in Patients with Diabetes. Diabetes/Metabolism Research and Reviews, 36, e3262.
https://doi.org/10.1002/dmrr.3262
[11] Caradu, C., Lakhlifi, E., Colacchio, E.C., et al. (2019) Systematic Review and Updated Meta-Analysis of the Use of Drug-Coated Balloon Angioplasty versus Plain Old Balloon Angioplasty for Femoropopliteal Arterial Disease. Journal of Vascular Surgery, 70, 981-995.e10.
https://doi.org/10.1016/j.jvs.2019.01.080
[12] Lammer, J., Zeller, T., Hausegger, K.A., et al. (2013) Hepa-rin-Bonded Covered Stents versus Bare-Metal Stents for Complex Femoropopliteal Artery Lesions: The Randomized VIASTAR Trial (Viabahn Endoprosthesis with PROPATEN Bioactive Surface [VIA] versus Bare Nitinol Stent in the Treatment of Long Lesions in Superficial Femoral Artery Occlusive Disease). Journal of the American College of Cardi-ology, 62, 1320-1327.
https://doi.org/10.1016/j.jacc.2013.05.079
[13] Mwipatayi, B.P., Ouriel, K., Anwari, T., et al. (2020) A Systematic Review of Covered Balloon-Expandable Stents for Treating Aortoiliac Occlusive Disease. Journal of Vascular Surgery, 72, 1473-1486.e2.
https://doi.org/10.1016/j.jvs.2020.01.084
[14] Ohki, T., Kichikawa, K., Yokoi, H., et al. (2021) Long-Term Results of the Japanese Multicenter Viabahn Trial of Heparin Bonded Endovascular Stent Grafts for Long and Complex Lesions in the Superficial Femoral Artery. Journal of Vascular Surgery, 74, 1958-1967.e2.
https://doi.org/10.1016/j.jvs.2021.05.056
[15] Geraghty, P.J., Mewissen, M.W., Jaff, M.R., Ansel, G.M. and VIBRANT Investigators (2013) Three-Year Results of the VIBRANT Trial of VIABAHN Endoprosthesis versus Bare Nitinol Stent Implantation for Complex Superficial Femoral Artery Occlusive Disease. Journal of Vascular Surgery, 58, 386-395.e4.
https://doi.org/10.1016/j.jvs.2013.01.050
[16] Ichihashi, S., Takahara, M., Iida, O., et al. (2021) Clinical Impact of Stent Graft Thrombosis in Femoropopliteal Arterial Lesions. JACC: Cardiovascular Interventions, 14, 1137-1147.
https://doi.org/10.1016/j.jcin.2021.03.030
[17] Krankenberg, H., Zeller, T., Ingwersen, M., et al. (2017) Self-Expanding versus Balloon-Expandable Stents for Iliac Artery Occlusive Disease: The Randomized ICE Trial. JACC: Cardiovascular Interventions, 10, 1694-1704.
https://doi.org/10.1016/j.jcin.2017.05.015
[18] Gerhard-Herman, M.D., Gornik, H.L., Barrett, C., et al. (2017) 2016 AHA/ACC Guideline on the Management of Patients with Lower Extremity Peripheral Artery Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation, 135, e726-e779.
https://doi.org/10.1161/CIR.0000000000000502
[19] Bradbury, A.W., Adam, D.J., Bell, J., et al. (2010) Multi-centre Randomised Controlled Trial of the Clinical and Cost-Effectiveness of a Bypass-Surgery-First versus a Bal-loon-Angioplasty-First Revascularisation Strategy for Severe Limb Ischaemia Due to Infrainguinal Disease. The Bypass versus Angioplasty in Severe Ischaemia of the Leg (BASIL) Trial. Health Technology Assessment, 14.
https://doi.org/10.3310/hta14140
[20] Almasri, J., Adusumalli, J., Asi, N., et al. (2019) A Systematic Review and Meta-Analysis of Revascularization Outcomes of Infrainguinal Chronic Limb-Threatening Ischemia. European Journal of Vascular and Endovascular Surgery, 58, S110-S119.
https://doi.org/10.1016/j.ejvs.2019.04.013
[21] Bradbury, A.W., Moakes, C.A., Popplewell, M., et al. (2023) A Vein Bypass First versus a Best Endovascular Treatment First Re-vascularisation Strategy for Patients with Chronic Limb Threatening Ischaemia Who Required an Infra-Popliteal, with or without an Additional More Proximal Infra-Inguinal Revascularisation Procedure to Restore Limb Perfusion (BASIL-2): An Open-Label, Randomised, Multicentre, Phase 3 Trial. The Lancet, 401, 1798-1809.
https://doi.org/10.1016/S0140-6736(23)00462-2
[22] Farber, A., Menard, M.T., Conte, M.S., et al. (2022) Surgery or Endovascular Therapy for Chronic Limb-Threatening Ischemia. The New England Journal of Medicine, 387, 2305-2316.
https://doi.org/10.1056/NEJMoa2207899
[23] Peters, F., Behrendt, C.A. and IDOMENEO Collabo-rators (2023) Limb Related Outcomes of Endovascular vs. Open Surgical Revascularisation in Patients with Peripheral Arterial Occlusive Disease: A Report from the Prospective GermanVasc Cohort Study. European Journal of Vascular and Endovascular Surgery, 66, 85-93.
https://doi.org/10.1016/j.ejvs.2023.03.040
[24] Nierlich, P., Enzmann, F.K., Metzger, P., et al. (2020) Alternative Venous Conduits for Below Knee Bypass in the Absence of Ipsilateral Great Saphenous Vein. European Journal of Vascular and Endovascular Surgery, 60, 403-409.
https://doi.org/10.1016/j.ejvs.2020.06.016
[25] Ho, V.T., Gologorsky, R., Kibrik, P., et al. (2020) Open, Percuta-neous, and Hybrid Deep Venous Arterialization Technique for No-Option Foot Salvage. Journal of Vascular Surgery, 71, 2152-2160.
https://doi.org/10.1016/j.jvs.2019.10.085
[26] Schreve, M.A., Minnee, R.C., Bosma, J., Leijdekkers, V.J., Idu, M.M. and Vahl, A.C. (2014) Comparative Study of Venous Arterialization and Pedal Bypass in a Patient Cohort with Critical Limb Ischemia. Annals of Vascular Surgery, 28, 1123-1127.
https://doi.org/10.1016/j.avsg.2013.08.010
[27] Schreve, M.A., Vos, C.G., Vahl, A.C., et al. (2017) Venous Arte-rialisation for Salvage of Critically Ischaemic Limbs: A Systematic Review and Meta-Analysis. European Journal of Vascular and Endovascular Surgery, 53, 387-402.
https://doi.org/10.1016/j.ejvs.2016.11.007
[28] Katsanos, K., Spiliopoulos, S., Kitrou, P., Krokidis, M. and Karna-batidis, D. (2018) Risk of Death Following Application of Paclitaxel-Coated Balloons and Stents in the Femoropopliteal Artery of the Leg: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Journal of the American Heart Association, 7, e011245.
https://doi.org/10.1161/JAHA.118.011245
[29] Amlani, V., Falkenberg, M. and Nordanstig, J. (2021) The Current Status of Drug-Coated Devices in Lower Extremity Peripheral Artery Disease Interventions. Progress in Cardiovascular Diseases, 65, 23-28.
https://doi.org/10.1016/j.pcad.2021.02.002
[30] Zeller, T., Brechtel, K., Meyer, D.R., Noory, E., Beschorner, U. and Albrecht, T. (2020) Six-Month Outcomes from the First-in-Human, Single-Arm SELUTION Sus-tained-Limus-Release Drug-Eluting Balloon Trial in Femoropopliteal Lesions. Journal of Endovascular Therapy, 27, 683-690.
https://doi.org/10.1177/1526602820941811
[31] Tang, T.Y., Yap, C., Soon, S.X.Y., et al. (2021) World’s First Experience Treating TASC II C and D Tibial Occlusive Disease Using the Selution SLR Sirolimus-Eluting Balloon: Six-Month Results From the PRESTIGE Study. Journal of Endovascular Therapy, 28, 555-566.
https://doi.org/10.1177/15266028211007457
[32] Wang, J.L., Qin, Z., Wang, Z.J., et al. (2018) New Predictors of In-Stent Restenosis in Patients with Diabetes Mellitus Undergoing Percutaneous Coronary Intervention with Drug-Eluting Stent. Journal of Geriatric Cardiology, 15, 137-145.
[33] Reijnen, M.M.P.J., van Wijck, I., Brodmann, M., et al. (2023) Five-Year Outcomes after Paclitaxel Drug-Coated Balloon Treatment of Femoropopliteal Lesions in Diabetic and Chronic Limb-Threatening Ischemia Cohorts: IN.PACT Global Study Post Hoc Analysis. CardioVascular and Interventional Radiology, 46, 1329-1345.
https://doi.org/10.1007/s00270-023-03478-y
[34] Jia, X., Zhang, J., Zhuang, B., et al. (2016) Acotec Drug-Coated Balloon Catheter: Randomized, Multicenter, Controlled Clinical Study in Femoropopliteal Arteries: Evidence from the AcoArt I Trial. JACC: Cardiovascular Interventions, 9, 1941-1949.
https://doi.org/10.1016/j.jcin.2016.06.055
[35] Brodmann, M., Moscovic, M., Wang, J.C.C., et al. (2020) Re-al-World Experience with a Paclitaxel-Coated Balloon in Critical Limb Ischemia: 24-Month Subgroup Outcomes of BIOLUX P-III. JACC: Cardiovascular Interventions, 13, 2289-2299.
https://doi.org/10.1016/j.jcin.2020.06.059
[36] Sachar, R., Soga, Y., Ansari, M.M., et al. (2021) 1-Year Results from the RANGER II SFA Randomized Trial of the Ranger Drug-Coated Balloon. JACC: Cardiovascular Interventions, 14, 1123-1133.
https://doi.org/10.1016/j.jcin.2021.03.021
[37] Schneider, P.A., Laird, J.R., Tepe, G., et al. (2018) Treatment Effect of Drug-Coated Balloons Is Durable to 3 Years in the Femoropopliteal Arteries: Long-Term Results of the IN.PACT SFA Randomized Trial. Circulation: Cardiovascular Interventions, 11, e005891.
https://doi.org/10.1161/CIRCINTERVENTIONS.118.006699
[38] Rosenfield, K., Jaff, M.R., White, C.J., et al. (2015) Trial of a Paclitaxel-Coated Balloon for Femoropopliteal Artery Disease. The New England Journal of Medicine, 373, 145-153.
https://doi.org/10.1056/NEJMoa1406235
[39] Krishnan, P., Faries, P., Niazi, K., et al. (2017) Stel-larex Drug-Coated Balloon for Treatment of Femoropopliteal Disease: Twelve-Month Outcomes from the Randomized ILLUMENATE Pivotal and Pharmacokinetic Studies. Circulation, 136, 1102-1113.
https://doi.org/10.1161/CIRCULATIONAHA.117.028893
[40] Shishehbor, M.H., Scheinert, D., Jain, A., et al. (2023) Comparison of Drug-Coated Balloons vs Bare-Metal Stents in Patients with Femoropopliteal Arterial Disease. Journal of the American College of Cardiology, 81, 237-249.
https://doi.org/10.1016/j.jacc.2022.10.016
[41] Zeller, T., Micari, A., Scheinert, D., et al. (2020) The IN.PACT DEEP Clinical Drug-Coated Balloon Trial: 5-Year Outcomes. JACC: Cardiovascular Interventions, 13, 431-443.
https://doi.org/10.1016/j.jcin.2019.10.059
[42] Liistro, F., Porto, I., Angioli, P., et al. (2013) Drug-Eluting Balloon in Peripheral Intervention for below the Knee Angioplasty Evaluation (DEBATE-BTK): A Randomized Trial in Diabetic Patients with Critical Limb Ischemia. Circulation, 128, 615-621.
https://doi.org/10.1161/CIRCULATIONAHA.113.001811
[43] Liistro, F., Angioli, P., Ventoruzzo, G., et al. (2020) Randomized Controlled Trial of Acotec Drug-Eluting Balloon versus Plain Balloon for Below-the-Knee Angio-plasty. JACC: Cardiovascular Interventions, 13, 2277-2286.
https://doi.org/10.1016/j.jcin.2020.06.045
[44] Ipema, J., et al. (2020) Editor’s Choice-Drug Coated Balloon An-gioplasty vs. Standard Percutaneous Transluminal Angioplasty in below the Knee Peripheral Arterial Disease: A System-atic Review and Meta-Analysis. European Journal of Vascular and Endovascular Surgery, 59, 265-275.
https://doi.org/10.1016/j.ejvs.2019.10.002
[45] Patel, A., Irani, F.G., Pua, U., et al. (2021) Randomized Controlled Trial Comparing Drug-Coated Balloon Angioplasty versus Conventional Balloon Angioplasty for Treating Be-low-the-Knee Arteries in Critical Limb Ischemia: The SINGA-PACLI Trial. Radiology, 300, 715-724.
https://doi.org/10.1148/radiol.2021204294
[46] Byrne, R.A., Joner, M., Alfonso, F. and Kastrati, A. (2014) Drug-Coated Balloon Therapy in Coronary and Peripheral Artery Disease. Nature Reviews Cardiology, 11, 13-23.
https://doi.org/10.1038/nrcardio.2013.165
[47] Qamar, S.U.R., Spahić, L., Benolić, L., Zivanovic, M. and Filipović, N. (2023) Treatment of Peripheral Artery Disease Using Injectable Biomaterials and Drug-Coated Balloons: Safety and Efficacy Perspective. Pharmaceutics, 15, Article No. 1813.
https://doi.org/10.3390/pharmaceutics15071813
[48] Fanelli, F., Cannavale, A., Gazzetti, M., et al. (2014) Calcium Burden Assessment and Impact on Drug-Eluting Balloons in Peripheral Arterial Disease. CardioVascular and Interven-tional Radiology, 37, 898-907.
https://doi.org/10.1007/s00270-014-0904-3
[49] Dake, M.D., Ansel, G.M., Jaff, M.R., et al. (2016) Durable Clin-ical Effectiveness with Paclitaxel-Eluting Stents in the Femoropopliteal Artery: 5-Year Results of the Zilver PTX Ran-domized Trial. Circulation, 133, 1472-1483.
https://doi.org/10.1161/CIRCULATIONAHA.115.016900
[50] Liistro, F., Angioli, P., Porto, I., et al. (2019) Drug-Eluting Balloon versus Drug-Eluting Stent for Complex Femoropopliteal Arterial Lesions: The DRASTICO Study. Journal of the American College of Cardiology, 74, 205-215.
https://doi.org/10.1016/j.jacc.2019.04.057
[51] Bausback, Y., Wittig, T., Schmidt, A., et al. (2019) Drug-Eluting Stent versus Drug-Coated Balloon Revascularization in Patients with Femoropopliteal Arterial Disease. Journal of the American College of Cardiology, 73, 667-679.
https://doi.org/10.1016/j.jacc.2018.11.039
[52] Tsujimura, T., Takahara, M., Iida, O., et al. (2021) Clinical Out-comes of Polymer-Free, Paclitaxel-Coated Stents vs Stent Grafts in Peripheral Arterial Disease Patients with Femoropop-liteal Artery Lesions. Journal of Vascular Surgery, 73, 1998-2008.e1.
https://doi.org/10.1016/j.jvs.2020.12.061
[53] Haine, A., Schmid, M.J., Schindewolf, M., et al. (2019) Comparison between Interwoven Nitinol and Drug Eluting Stents for Endovascular Treatment of Femoropopliteal Artery Disease. European Journal of Vascular and Endovascular Surgery, 58, 865-873.
https://doi.org/10.1016/j.ejvs.2019.09.002
[54] Müller-Hülsbeck, S. (2016) EluviaTM Peripheral Stent System for the Treatment of Peripheral Lesions above the Knee. Expert Opinion on Drug Delivery, 13, 1639-1644.
https://doi.org/10.1080/17425247.2016.1230098
[55] Kum, S., Ipema, J., Huizing, E., et al. (2021) Outcomes of the Paclitaxel-Eluting Eluvia Stent for Long Femoropopliteal Lesions in Asian Patients with Predominantly Chronic Limb-Threatening Ischemia. Vascular Medicine, 26, 267-272.
https://doi.org/10.1177/1358863X20987894
[56] Stavroulakis, K., Torsello, G., Bosiers, M., Argyriou, A., Tsilimparis, N. and Bisdas, T. (2021) 2-Year Outcomes of the Eluvia Drug-Eluting Stent for the Treatment of Complex Femoropopliteal Lesions. JACC: Cardiovascular Interventions, 14, 692-701.
https://doi.org/10.1016/j.jcin.2021.01.026
[57] Ichihashi, S., Takahara, M., Yamaoka, T., et al. (2022) Drug Eluting versus Covered Stent for Femoropopliteal Artery Lesions: Results of the ULTIMATE Study. European Journal of Vas-cular and Endovascular Surgery, 64, 359-366.
https://doi.org/10.1016/j.ejvs.2022.05.046
[58] Gouëffic, Y., Torsello, G., Zeller, T., et al. (2022) Efficacy of a Drug-Eluting Stent versus Bare Metal Stents for Symptomatic Femoropopliteal Peripheral Artery Disease: Primary Re-sults of the EMINENT Randomized Trial. Circulation, 146, 1564-1576.
https://doi.org/10.1161/CIRCULATIONAHA.122.059606
[59] Soga, Y., Fujihara, M., Tomoi, Y., et al. (2020) One-Year Late Lumen Loss between a Polymer-Coated Paclitaxel-Eluting Stent (Eluvia) and a Polymer-Free Paclitax-el-Coated Stent (Zilver PTX) for Femoropopliteal Disease. Journal of Atherosclerosis and Thrombosis, 27, 164-171.
https://doi.org/10.5551/jat.50369
[60] Gray, W.A., Keirse, K., Soga, Y., et al. (2018) A Polymer-Coated, Paclitax-el-Eluting Stent (Eluvia) versus a Polymer-Free, Paclitaxel-Coated Stent (Zilver PTX) for Endovascular Femoropopliteal Intervention (IMPERIAL): A Randomised, Non-Inferiority Trial. The Lancet, 392, 1541-1551.
https://doi.org/10.1016/S0140-6736(18)32262-1
[61] Nagatomi, S., Takahara, M., Nakai, T., et al. (2023) Com-paring the Impact of the Loss of Patency between Treatment with Drug-Coated Balloon Angioplasty and Drug-Eluting Stent Placement. Journal of Vascular Surgery, 77, 1751-1759.
https://doi.org/10.1016/j.jvs.2023.01.207
[62] Steiner, S., Honton, B., Langhoff, R., et al. (2022) 2-Year Results with a Sirolimus-Eluting Self-Expanding Stent for Femoropopliteal Lesions: The First-in-Human ILLUMINA Study. JACC: Cardiovascular Interventions, 15, 618-626.
https://doi.org/10.1016/j.jcin.2021.12.034
[63] Spreen, M.I., Martens, J.M., Knippenberg, B., et al. (2017) Long-Term Follow-Up of the PADI Trial: Percutaneous Transluminal Angioplasty versus Drug-Eluting Stents for In-frapopliteal Lesions in Critical Limb Ischemia. Journal of the American Heart Association, 6, e004877.
https://doi.org/10.1161/JAHA.116.004877
[64] Spreen, M.I., Martens, J.M., Hansen, B.E., et al. (2016) Percuta-neous Transluminal Angioplasty and Drug-Eluting Stents for Infrapopliteal Lesions in Critical Limb Ischemia (PADI) Trial. Circulation: Cardiovascular Interventions, 9, e002376.
[65] Siablis, D., Kitrou, P.M., Spiliopoulos, S., Katsanos, K. and Karnabatidis, D. (2014) Paclitaxel-Coated Balloon Angioplasty versus Drug-Eluting Stenting for the Treatment of Infrapopliteal Long-Segment Arterial Occlusive Disease: The IDEAS Randomized Controlled Trial. JACC: Cardiovas-cular Interventions, 7, 1048-1056.
https://doi.org/10.1016/j.jcin.2014.04.015
[66] Scheinert, D., Katsanos, K., Zeller, T., et al. (2012) A Prospective Randomized Multicenter Comparison of Balloon Angioplasty and Infrapopliteal Stenting with the Sirolimus-Eluting Stent in Patients with Ischemic Peripheral Arterial Disease: 1-Year Results from the ACHILLES Trial. Journal of the American College of Cardiology, 60, 2290-2295.
https://doi.org/10.1016/j.jacc.2012.08.989
[67] Rastan, A., Tepe, G., Krankenberg, H., et al. (2011) Siroli-mus-Eluting Stents vs. Bare-Metal Stents for Treatment of Focal Lesions in Infrapopliteal Arteries: A Double-Blind, Multi-Centre, Randomized Clinical Trial. European Heart Journal, 32, 2274-2281.
https://doi.org/10.1093/eurheartj/ehr144
[68] Bosiers, M., Scheinert, D., Peeters, P., et al. (2012) Randomized Comparison of Everolimus-Eluting versus Bare-Metal Stents in Patients with Critical Limb Ischemia and Infrapopliteal Arterial Occlusive Disease. Journal of Vascular Surgery, 55, 390-398.
https://doi.org/10.1016/j.jvs.2011.07.099
[69] Fong, K.Y., Xin, L., Ng, J., Loh, S.E.K., Ng, J.J. and Choong, A.M.T.L. (2023) A Systematic Review and Meta-Analysis of Sirolimus-Eluting Stents for Treatment of Below-the-Knee Arterial Disease. Journal of Vascular Surgery, 77, 1264-1273.e3.
https://doi.org/10.1016/j.jvs.2022.09.022
[70] Fusaro, M., Cassese, S., Ndrepepa, G., et al. (2013) Drug-Eluting Stents for Revascularization of Infrapopliteal Arteries: Updated Meta-Analysis of Randomized Trials. JACC: Cardiovas-cular Interventions, 6, 1284-1293.
https://doi.org/10.1016/j.jcin.2013.08.007
[71] Katsanos, K., Spiliopoulos, S., Diamantopoulos, A., Karnabatidis, D., Sabharwal, T. and Siablis, D. (2013) Systematic Review of Infrapopliteal Drug-Eluting Stents: A Meta-Analysis of Randomized Controlled Trials. CardioVascular and Interventional Radiology, 36, 645-658.
https://doi.org/10.1007/s00270-013-0578-2
[72] Liu, X., Zheng, G. and Wen, S. (2017) Drug-Eluting Stents ver-sus Control Therapy in the Infrapopliteal Disease: A Meta-Analysis of Eight Randomized Controlled Trials and Two Cohort Studies. International Journal of Surgery, 44, 166-175.
https://doi.org/10.1016/j.ijsu.2017.06.075
[73] Nakama, T., Takahara, M., Iwata, Y., et al. (2022) 1-Year Out-comes of Thromboendarterectomy vs Endovascular Therapy for Common Femoral Artery Lesions: CAULIFLOWER Study Results. JACC: Cardiovascular Interventions, 15, 1453-1463.
https://doi.org/10.1016/j.jcin.2022.03.010
[74] Kuo, T.T., Chen, P.L., Huang, C.Y., Lee, C.Y., Shih, C.C. and Chen, I.M. (2019) Outcome of Drug-Eluting Balloon Angioplasty versus Endarterectomy in Common Femoral Artery Occlusive Disease. Journal of Vascular Surgery, 69, 141-147.
https://doi.org/10.1016/j.jvs.2018.05.225
[75] Saucy, F., Probst, H. and Trunfio, R. (2020) Vessel Preparation Is Essential to Optimize Endovascular Therapy of Infrainguinal Lesions. Frontiers in Cardiovascular Medicine, 7, Article ID: 558129.
https://doi.org/10.3389/fcvm.2020.558129
[76] Mustapha, J.A., Lansky, A., Shishehbor, M., et al. (2018) A Pro-spective, Multi-Center Study of the Chocolate Balloon in Femoropopliteal Peripheral Artery Disease: The Chocolate BAR Registry. Catheterization and Cardiovascular Interventions, 91, 1144-1148.
https://doi.org/10.1002/ccd.27565
[77] Shimada, Y., Kino, N., Tonomura, D., et al. (2019) Efficacy of Cutting Balloon Angioplasty for Chronic Total Occlusion of Femoropopliteal Arteries. Annals of Vascular Surgery, 58, 91-100.
https://doi.org/10.1016/j.avsg.2018.10.056
[78] Kronlage, M., Werner, C., Dufner, M., et al. (2020) Long-Term Outcome upon Treatment of Calcified Lesions of the Lower Limb Using Scoring Angioplasty Balloon (AngioSculptTM). Clinical Research in Cardiology, 109, 1177-1185.
https://doi.org/10.1007/s00392-020-01610-3
[79] Böhme, T., Zeller, T., Shishehbor, M.H., et al. (2023) Chocolate Touch versus Lutonix Drug-Coated Balloon for Femoropopliteal Lesions in Diabetes: The Chocolate Touch Study. Journal of Endovascular Therapy.
https://doi.org/10.1177/15266028231179589
[80] Scalamogna, M., Kuna, C., Voll, F., et al. (2023) Modified Bal-loons to Prepare Severely Calcified Coronary Lesions before Stent Implantation: A Systematic Review and Me-ta-Analysis of Randomized Trials. Clinical Research in Cardiology.
https://doi.org/10.1007/s00392-023-02324-y
[81] Giusca, S., Hagstotz, S., Lichtenberg, M., et al. (2022) Phoenix Atherectomy for Patients with Peripheral Artery Disease. EuroIntervention, 18, e432-e442.
https://doi.org/10.4244/EIJ-D-21-01070
[82] McKinsey, J.F., Zeller, T., Rocha-Singh, K.J., Jaff, M.R., Garcia, L.A. and Definitive Le Investigators (2014) Lower Extremity Revascularization Using Directional Atherectomy: 12-Month Prospective Results of the DEFINITIVE LE Study. JACC: Cardiovascular Interventions, 7, 923-933.
https://doi.org/10.1016/j.jcin.2014.05.006
[83] Maehara, A., Mintz, G.S., Shimshak, T.M., et al. (2015) Intravas-cular Ultrasound Evaluation of JETSTREAM Atherectomy Removal of Superficial Calcium in Peripheral Arteries. Eu-roIntervention, 11, 96-103.
https://doi.org/10.4244/EIJV11I1A17
[84] Rastan, A., Brodmann, M., Böhme, T., et al. (2021) Atherectomy and Drug-Coated Balloon Angioplasty for the Treatment of Long Infrapopliteal Lesions: A Randomized Controlled Trial. Circulation: Cardiovascular Interventions, 14, e010280.
https://doi.org/10.1161/CIRCINTERVENTIONS.120.010280
[85] Wong, C.P., Chan, L.P., Au, D.M., Chan, H.W.C. and Chan, Y.C. (2022) Efficacy and Safety of Intravascular Lithotripsy in Lower Extremity Peripheral Artery Disease: A Systematic Review and Meta-Analysis. European Journal of Vascular and Endovascular Surgery, 63, 446-456.
https://doi.org/10.1016/j.ejvs.2021.10.035
[86] Tepe, G., Brodmann, M., Werner, M., et al. (2021) Intra-vascular Lithotripsy for Peripheral Artery Calcification: 30-Day Outcomes from the Randomized Disrupt PAD III Trial. JACC: Cardiovascular Interventions, 14, 1352-1361.
https://doi.org/10.1016/j.jcin.2021.04.010
[87] Clair, D.G., Mustapha, J.A., Shishehbor, M.H., et al. (2021) PROMISE I: Early Feasibility Study of the LimFlow System for Percutaneous Deep Vein Arterialization in No-Option Chronic Limb-Threatening Ischemia: 12-Month Results. Journal of Vascular Surgery, 74, 1626-1635.
https://doi.org/10.1016/j.jvs.2021.04.057
[88] Schmidt, A., Schreve, M.A., Huizing, E., et al. (2020) Midterm Outcomes of Percutaneous Deep Venous Arterialization with a Dedicated System for Patients with No-Option Chronic Limb-Threatening Ischemia: The ALPS Multicenter Study. Journal of Endovascular Therapy, 27, 658-665.
https://doi.org/10.1177/1526602820922179
[89] Shishehbor, M.H., Powell, R.J., Montero-Baker, M.F., et al. (2023) Transcatheter Arterialization of Deep Veins in Chronic Limb-Threatening Ischemia. The New England Journal of Medicine, 388, 1171-1180.
https://doi.org/10.1056/NEJMoa2212754
[90] Beshchasna, N., Saqib, M., Kraskiewicz, H., et al. (2020) Recent Advances in Manufacturing Innovative Stents. Pharmaceutics, 12, Article No. 349.
https://doi.org/10.3390/pharmaceutics12040349
[91] Varcoe, R.L., Schouten, O., Thomas, S.D. and Lennox, A.F. (2016) Experience with the Absorb Everolimus-Eluting Bioresorbable Vascular Scaffold in Arteries below the Knee: 12-Month Clinical and Imaging Outcomes. JACC: Cardiovascular Interventions, 9, 1721-1728.
https://doi.org/10.1016/j.jcin.2016.06.005