EGFR-TKIs耐药与EGFR突变非小细胞肺癌中PD-L1表达的研究进展
Research Progress of EGFR-TKIs Resistance and PD-L1 Expression in EGFR-Mutant Non-Small Cell Lung Cancer
DOI: 10.12677/ACM.2024.141027, PDF, HTML, XML, 下载: 70  浏览: 121 
作者: 温雅婷:内蒙古医科大学研究生院,内蒙古 呼和浩特 ;高俊珍*:内蒙古医科大学附属医院呼吸与危重症医学科,内蒙古 呼和浩特
关键词: EGFR肿瘤微环境PD-L1EGFR-TKIs耐药信号通路EGFR Tumor Microenvironment PD-L1 EGFR-TKIs Resistance Signaling Pathway
摘要: 表皮生长因子受体酪氨酸激酶抑制剂可改善EGFR突变的非小细胞肺癌患者生存期。然而部分患者表现出原发性/获得性耐药,疗效间存在差异。PD-L1表达水平可作为免疫检查点抑制剂治疗的预测性生物标志物,PD-1/PD-L1抑制剂已被批准用于晚期NSCLC的一线治疗。研究表明,部分EGFR突变NSCLC患者免疫治疗效果欠佳,可能与其肿瘤微环境相关。本文就EGFR突变患者的肿瘤微环境与PD-L1的联系、PD-L1在EGFR突变的非小细胞肺癌患者中表达率及与EGFR-TKIs疗效等方面的研究进行综述。
Abstract: Epidermal growth factor receptor tyrosine kinase inhibitors improve survival in patients with EGFR-mutated non-small cell lung cancer. However, some patients exhibit primary/acquired re-sistance and efficacies are different. PD-L1 expression level can be used as a predictive biomarker for treatment with immune checkpoint inhibitors, and PD-1/PD-L1 inhibitors have been approved for first-line treatment of advanced NSCLC. Studies have shown that some EGFR mutant NSCLC pa-tients have poor immunotherapy outcomes, which may be related to their tumor microenvironment. In this article, we review the studies on the association between tumor microenvironment and PD-L1 in patients with EGFR mutations, the expression rate of PD-L1 in patients with EGFR- mutated NSCLC, and the efficacy with EGFR-TKIs.
文章引用:温雅婷, 高俊珍. EGFR-TKIs耐药与EGFR突变非小细胞肺癌中PD-L1表达的研究进展[J]. 临床医学进展, 2024, 14(1): 183-189. https://doi.org/10.12677/ACM.2024.141027

1. 引言

肺癌是最常见的癌症类型,也是中国癌症死亡的主要原因 [1] 。非小细胞肺癌(non-small cell lung cancer, NSCLC)约占肺癌的85%。亚洲人群肺腺癌患者表皮生长因子受体(epidermal growth factor receptor, EGFR)突变率高达51% [2] 。EGFR-TKIs是EGFR突变晚期非小细胞肺癌患者治疗的首选。程序性死亡配体1 (programmed death ligand 1, PD-L1)能够与T细胞上的程序性死亡受体1 (programmed death receptor 1, PD-1)结合,抑制T细胞的活性和促进调节性T细胞的分化,抑制免疫反应 [3] 。EGFR-TKIs在治疗后不可避免出现耐药,耐药机制包括靶基因修饰、旁路激活和表型转化等多种机制,但仍有部分机制不明。肿瘤免疫微环境的变化也被认为可能是耐药机制之一 [4] [5] 。本综述就EGFR突变患者肿瘤微环境及变化、EGFR突变与PD-L1信号传导通路及二者联系,以探讨PD-L1表达水平与EGFR突变晚期非小细胞肺癌患者之间的联系,为临床治疗提供参考。

2. EGFR突变非小细胞肺癌中PD-L1表达与EGFR-TKIs耐药的联系

研究发现,EGFR-TKIs耐药时可诱导PD-L1的高表达 [6] 。奥希替尼治疗后,循环肿瘤细胞中PD-L1的表达水平在疾病进展时倾向于显著升高(34.6%) [7] ,表明PD-L1在EGFR-TKIs耐药时上调。EGFR-TKIs耐药可能上调PD-L1表达来改变肿瘤微环境(tumor microenviroment, TME) [8] [9] 。这种免疫微环境变化可能使EGFR-TKIs耐药。目前EGFR突变非小细胞肺癌患者肿瘤免疫微环境的研究处在探索阶段,需进一步探索。

3. EGFR突变患者不同阶段的TME特征

3.1. EGFR突变的TME特征及临床意义

肿瘤微环境是肿瘤细胞赖以生存和发展的内环境,由癌细胞、微血管、淋巴管、免疫细胞和细胞因子等多种因素共同组成,存在错综复杂的相互作用,同一肿瘤内的免疫状态、营养、PH和间质压力的水平可变,因此TME在癌症的发生、发展和转移中起重要作用 [10] [11] 。

EGFR突变患者的肿瘤微环境表现较为复杂。目前研究结果显示其为一种非炎性、免疫抑制性TME,其中肿瘤突变负荷(Tumor mutation burden, TMB)较低、缺乏CD8+肿瘤浸润淋巴细胞(Tumor infiltratinglym-phocycte, TIL)、调节性T细胞(Tregs)浸润、骨髓来源的抑制细胞(MDSCs)增加、多种促肿瘤炎性细胞因子增加和PD-L1表达上调,为肿瘤细胞增殖创造了有利的微环境 [12] 。

广东省人民医院团队通过单细胞测序探索发现EGFR突变的肺腺癌组织中缺乏组织常驻记忆CD8+ T细胞,主要是由于缺失肿瘤相关巨噬细胞(Tumor-associated macrophage, TAM)和肿瘤相关成纤维细胞(Cancer-associated fibroblast, CAF),导致无法招募、驻留和扩增CD8+ T记忆细胞。与EGFR野生型相比,EGFR突变型肺腺癌的T细胞和其他细胞类型之间的多种免疫检查点(如PD-1和PD-L1)相关作用显著减少 [13] 。

一项回顾性研究观察到携带EGFR突变的NSCLC肿瘤的PD-L1表达水平低,CD8+ TILs也很少。相反,其他研究检测到EGFR突变的肿瘤中PD-L1的高表达 [14] 。临床前研究表明,EGFR激活可上调PD-L1表达,诱导T细胞凋亡、免疫逃逸。在携带EGFR突变的肺腺癌小鼠模型中,观察到巨噬细胞MHC-II表达减少,巨噬细胞IL1RA表达增强,吞噬活性增加,归因于M2表型巨噬细胞增加。EGFR突变的NSCLC特点是CD8+ T细胞和免疫抑制细胞的水平较低,但Tregs数量和PD-L1表达水平都有所增加,这导致效应性T细胞活性降低,有利于免疫逃逸和癌症进展 [15] [16] 。因此,EGFR突变在细胞生长、生存和免疫逃逸机制的发展中起着关键作用。

3.2. EGFR-TKIs治疗后的TME特征

EGFR-TKIs抑制EGFR通路激活,并通过多种途径调节肿瘤免疫微环境,诱导抗肿瘤反应,促进T细胞介导的抗癌作用,减少T细胞凋亡,提高CD8+ T细胞和DCs水平,增加MHC I类和II类分子的表达,增强抗原呈递对IFN-γ的反应,并提高IL-10、CCL2和IFN-γ水平,减少FOXP3+ Tregs,抑制巨噬细胞极化为M2表型,并减少PD-L1的表达 [17] 。

日本的Yoshiya教授团队,回顾性分析EGFR突变患者的TME,依据PD-L1肿瘤比例和CD8+评分,将TME分为四种类型:(a) 高/高(13.5%, n = 7);(b) 低/低(42.3%, n = 22);(c) 高/低(17.3%, n = 9)和(d) 低/高(26.9%, n = 14),结果显示无进展生存期在(a)型中最短,在(d)型中最长(mPFS 2.4 vs 11.3 vs 8.4 vs 17.5个月;P = 0.0000077),反映出EGFR-TKIs的疗效根据TME的不同而有所不同,具有低PD-L1和高CD8+表达的表型可能是从这种治疗中最大获益的类型 [18] 。Kohsuke等在EGFR-TKIs治疗进展后再次活检,结果显示部分患者PD-L1表达水平升高,治疗后CD8+和FOXP3+ TIL密度显着降低(中位数292.8→224.0/mm2,P = 0.0274和249.6→150.4/mm2,P < 0.0001),但在高PD-L1表达肿瘤中CD8+ TIL密度保持不变。结果表明,EGFR-TKIs治疗可以改善EGFR突变阳性NSCLC的肿瘤免疫微环境,增加肿瘤浸润CD8+ T细胞数量并上调PD-L1表达。这些发现有助于解释为什么EGFR-TKIs治疗可以改善患者的预后 [19] 。但周彩存教授团队研究EGFR-TKIs对EGFR驱动的肺癌模型TME中发现,使用敏感的EGFR-TKIs后,增加的CD8+ T细胞和DCs驱散了FOXP3+ Tregs,并抑制了巨噬细胞的M2极化。然而随着治疗的继续,这种变化消失了 [20] 。因此,TKI治疗可重建一个健康的免疫微环境,诱导肿瘤消退,但其作用是不断变化的。

3.3. EGFR-TKIs耐药后的TME特征

在EGFR突变非小细胞肺癌中,EGFR-TKIs耐药TME出现免疫抑制性改变。与EGFR-TKIs敏感的肿瘤相比,EGFR-TKIs药肿瘤中免疫抑制细胞数量增多,免疫活化细胞数量减少,并且免疫抑制因子更活跃。此外,EGFR-TKIs耐药的癌细胞表现出上皮–间质转化 [21] 。同济大学研究团队使用单细胞测序分析显示,EGFR-TKIs耐药后患者的细胞成分出现变化。短TKI-PFS患者较长TKI-PFS患者的CD3+淋巴细胞、CD8+效应T细胞和INF-γ + CD8+ T细胞在TME中浸润的比例明显更高,M2样巨噬细胞比例较低,促炎细胞增多的一致性加强了TKI-PFS短的患者更可能从联合免疫疗法中获益的理论基础。更重要的是,通过流式细胞技术,CD4+ T细胞中FOXP3+的比例在短TKI-PFS患者中明显升高,这可能是效应性T细胞激活增加的反馈结果 [22] 。

4. EGFR突变及PD-L1表达的信号传导通路及其联系

EGFR突变后激活酪氨酸激酶,并激活其下游信号通路:RAS/RAF/MEK、PI3K/AKT/mTOR等通路,参与肿瘤细胞的增殖、生长、侵袭、转移及血管生成。此外,EGFR可促进肿瘤细胞从宿主抗肿瘤免疫中逃逸:通过激活ERK、AKT-mTOR和STAT3上调PD-L1表达;增加乳酸的排泄抑制CTL活性;激活GSK-3β/FOXP3来增加Tregs的数量和活性,并抑制CIITA的诱导降低MHC I和MHC II的表达 [23] 。

EGFR突变NSCLC细胞系中PD-L1的表达水平显著高于EGFR野生型 [24] 。通过EGFR-TKIs (如吉非替尼或厄洛替尼)抑制EGFR活性,减少细胞系中PD-L1表达水平 [23] [25] 。小鼠模型中,EGFR突变上调PD-L1表达,而EGFR-TKIs治疗下调PD-L1表达 [23] 。因此,EGFR信号可以直接或间接地驱动PD-L1的上调 [26] [27] 。研究表明AKT/mTOR通路与EGFR突变介导的PD-L1表达相关 [28] 。MTOR激活诱导PD-L的翻译而非转录上调PD-L表达。IFN-γ介导的PD-L表达也依赖于mTOR。AKT-STAT3途径也可能在有EGFR突变的NSCLC细胞系上的调节PD-L1表达中起作用 [29] [30] [31] ,因为抑制AKT或STAT3活性可以下调PD-L1的表达。还有研究表明,EGFR突变可通过ERK1/2途径上调PD-L1表达。因此,EGFR-TKIs治疗中PD-L1表达的机制是复杂的,这可能取决于基因的突变状态及不同的信号通路。

5. EGFR突变非小细胞肺癌中PD-L1表达水平

日本一项研究中肺腺癌患者PD-L1肿瘤阳性比例分数(tumor proportion score, TPS) ≥ 50%的患者占29.6% [32] 。欧美报道中,EGFR突变NSCLC患者中PD-L1 TPS ≥ 50%占11% [33] 。东亚人群中EGFR突变合并PD-L1表达的比例较欧美人群偏高,但总体EGFR突变合并PD-L1表达率偏低 [34] 。PD-L1表达水平与EGFR突变的关系尚无定论。

6. PD-L1表达水平与EGFR-TKIs耐药的联系

研究中PD-L1表达的临床研究产生了相互矛盾的结果。一些研究显示,PD-L1阳性表达与EGFR-TKIs治疗后更大的DCR和更长的PFS和OS明显相关 [35] [36] [37] 。另一项研究发现PD-L1表达与疗效之间没有明显相关性 [38] [39] 。部分研究表明,接受EGFR-TKIs治疗的EGFR突变患者中,PD-L1的表达与不良预后有关 [40] [41] [42] [43] [44] 。

D’Incecco等人的研究显示,在意大利56名EGFR突变并使用吉非替尼或厄洛替尼治疗的晚期NSCLC患者中,PD-L1阳性患者的TTP (11.7月vs 5.7月,P < 0.0001)和OS (21.9月vs 12.5月,P = 0.09)较PD-L1阴性患者显著延长 [35] 。一项中国回顾性研究显示,PD-L1阳性与EGFR-TKIs治疗后更长的无进展生存期、更高的疾病控制率相关 [36] 。韩国一项研究中,在66例EGFR突变EGFR-TKIs治疗的患者中,PD-L1阳性的进展期比PD-L1阴性组短2个月,但未达到统计学意义 [37] 。

一项中国研究中,在99名EGFR突变组中,PD-L1阳性患者的PFS和OS与PD-L1阴性患者相比没有明显差异 [38] 。另一项研究中,一线EGFR-TKIs治疗EGFR突变转移性NSCLC,不同PD-L1表达状态组是PFS无统计学差异。对于PD-L1 < 1%,1%~49%和≥50%的组,中位PFS分别为13.6,18.4和15.7个月(P = 0.738)。OS也观察到类似的结果,分别为33.6,30.1和48.6个月(P = 0.769) [39] 。

Hsu等人研究包括123名EGFR突变的肺腺癌患者,在PD-L1 ≥ 50%患者中,EGFR-TKIs的中位PFS和OS分别为1.6个月(95% CI, 1.1~2.0)和10.1个月(95% CI, 6.4~13.8),明显短于PD-L1 < 1%的患者(中位PFS,7.3个月;95% CI,2.7~12.0;中位OS,38.2个月;95% CI,26.1~50.3) [41] 。EGFR突变患者被分为原发性耐药和疾病控制组,原发性耐药组中分别有22.7%和30.3%的患者PD-L1 TPS ≥ 50或≥25%,而在疾病控制组中,其频率分别只有1.8%和3.5% (均为P < 0.001)。这些结果显示较高的PD-L1表达水平与较高的原发性EGFR-TKI耐药发生率有关。Yoneshima等人发现PD-L1表达与接受EGFR-TKIs治疗的EGFR突变型NSCLC患者较短的PFS明显相关 [42] 。另外部分研究显示,PD-L1高表达不仅预示着对EGFR-TKIs的反应不佳,而且还与这些药物的原发性耐药有关 [40] [41] [42] [43] 。一项针对101名EGFR突变型NSCLC患者的研究中,与弱PD-L1表达相比,强PD-L1表达与ORR下降和PFS缩短显著相关(ORR,35.7% vs. 63.2% vs. 67.3%;P = 0.002;PFS,3.8 vs. 6.0 vs. 9.5个月;P < 0.001) [43] 。Yang等人对153名EGFR突变的肺腺癌患者进行了一项研究,EGFR-TKIs的ORR和PFS在PD-L1表达<50%的患者中更好,且多变量分析中PD-L1 < 50%是延长PFS的独立预后因素(HR, 0.433; 95% CI, 0.250~0.751; P = 0.003)。此外,在TPS ≥ 50%的患者中,有相当一部分对EGFR-TKIs产生了原发性耐药(44.4%) [44] 。治疗前EGFR突变的晚期NSCLC的PD-L1表达水平可能与一线EGFR-TKIs耐药相关,但仍不明确,需要继续深入研究。

7. 总结与展望

由于有关EGFR突变的非小细胞肺癌中PD-L1状态的研究存在矛盾,可能还有其他机制导致免疫抑制。TME在调节肿瘤进展中起着重要作用,显著影响患者的免疫应答效率。EGFR突变可能增加PD-L1表达并促进EGFR-TKIs耐药NSCLC肿瘤的免疫逃逸水平,但是它并不表明对免疫检查点抑制剂有效。最近,IMpower150试验结果显示阿替利珠单抗、贝伐珠单抗、卡铂和紫杉醇(ABCP)四药联合与贝伐单抗加卡铂加紫杉醇(BCP)在EGFR突变患者中可改善总生存率,这显示了抗血管生成药物在增强EGFR突变患者免疫治疗的功效中的潜在作用。因此,EGFR-TKIs耐药患者是否能够最终从检查点治疗中获益,及免疫检查点治疗、化疗和靶向治疗的开始时间及顺序、治疗持续时间、与其他治疗的结合方式和优势人群的确定,这些机制应该被进一步探究。综上所述,PD-L1表达与EGFR突变非小细胞肺癌患者的EGFR-TKIs疗效有一定的关联。然而仍需要进一步的研究来证实这种关系,并确定最佳治疗方案,以实现精准治疗。

NOTES

*通讯作者。

参考文献

[1] Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A. and Bray, F. (2021) Global Cancer Sta-tistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2] Shi, Y., Au, J.S., Thongpra-sert, S., Srinivasan, S., Tsai, C.M., Khoa, M.T., Heeroma, K., Itoh, Y., Cornelio, G. and Yang, P.C. (2014) A Prospec-tive, Molecular Epidemiology Study of EGFR Mutations in Asian Patients with Advanced Non-Small-Cell Lung Cancer of Adenocarcinoma Histology (PIONEER). Journal of Thoracic Oncology, 9, 154-162.
https://doi.org/10.1097/JTO.0000000000000033
[3] Nan, X., Xie, C., Yu, X. and Liu, J. (2017) EGFR TKI as First-Line Treatment for Patients with Advanced EGFR Mutation-Positive Non-Small-Cell Lung Cancer. Oncotarget, 8, 75712-75726.
https://doi.org/10.18632/oncotarget.20095
[4] Santaniello, A., Napolitano, F., Servetto, A., et al. (2019) Tumour Microenvironment and Immune Evasion in EGFR Addicted NSCLC: Hurdles and Possibilities. Cancers (Basel), 11, 1419.
https://doi.org/10.3390/cancers11101419
[5] 刘丽萍, 刘苓霜. 程序性死亡蛋白1/程序性死亡蛋白配体1抑制剂在表皮生长因子受体突变晚期肺癌中的应用进展[J]. 中华肿瘤防治杂志, 2023, 30(1): 54-60.
[6] Jiang, L., Guo, F., Liu, X., et al. (2019) Continuous Targeted Kinase Inhibitors Treatment Induces Upregu-lation of PD-L1 in Resistant NSCLC. Scientific Reports, 9, Article No. 3705.
https://doi.org/10.1038/s41598-018-38068-3
[7] Ntzifa, A., Strati, A., Kallergi, G., Kotsakis, A., Georgoulias, V. and Lianidou, E. (2021) Gene Expression in Circulating Tumor Cells Reveals a Dynamic Role of EMT and PD-L1 dur-ing Osimertinib Treatment in NSCLC Patients. Scientific Reports, 11, Article No. 2313.
https://doi.org/10.1038/s41598-021-82068-9
[8] Peng, S., Wang, R., Zhang, X., et al. (2019) EGFR-TKI Re-sistance Promotes Immune Escape in Lung Cancer via Increased PD-L1 Expression. Molecular Cancer, 18, Article No. 165.
https://doi.org/10.1186/s12943-019-1073-4
[9] Chen, N., Fang, W., Zhan, J., et al. (2015) Upregulation of PD-L1 by EGFR Activation Mediates the Immune Escape in EGFR-Driven NSCLC: Implication for Optional Immune Targeted Therapy for NSCLC Patients with EGFR Mutation. Journal of Thoracic Oncology, 10, 910-923.
https://doi.org/10.1097/JTO.0000000000000500
[10] Osipov, A., Saung, M.T., Zheng, L. and Murphy, A.G. (2019) Small Molecule Immunomodulation: The Tumor Microenvironment and Overcoming Immune Escape. Journal for ImmunoTherapy of Cancer, 7, 224.
https://doi.org/10.1186/s40425-019-0667-0
[11] Altorki, N.K., Markowitz, G.J., Gao, D., et al. (2019) The Lung Microenvironment: An Important Regulator of Tumour Growth and Metastasis. Nature Reviews Cancer, 19, 9-31.
https://doi.org/10.1038/s41568-018-0081-9
[12] 郑玉军, 姜巍, 李晶, 代璐璐, 陈东妍, 李颜君, 黄磊, 王明吉. 免疫检查点抑制剂在EGFR突变型晚期非小细胞肺癌中的应用[J]. 中国肺癌杂志, 2022, 25(9): 671-677.
[13] Yang, L., He, Y.T., Dong, S., et al. (2022) Single-Cell Transcriptome Analysis Revealed a Suppressive Tumor Immune Microenvironment in EGFR Mutant Lung Adenocarcinoma. Journal for ImmunoTherapy of Cancer, 10, e003534.
https://doi.org/10.1136/jitc-2021-003534
[14] Tuminello, S., Veluswamy, R., Lieberman-Cribbin, W., Gnjatic, S., Petralia, F., Wang, P., Flores, R. and Taioli, E. (2019) Prognostic Value of Immune Cells in the Tumor Mi-croenvironment of Early-Stage Lung Cancer: A Meta-Analysis. Oncotarget, 10, 7142-7155.
https://doi.org/10.18632/oncotarget.27392
[15] Sugiyama, E., Togashi, Y., Takeuchi, Y., et al. (2020) Blockade of EGFR Improves Responsiveness to PD-1 Blockade in EGFR-Mutated Non-Small Cell Lung Cancer. Science Immunol-ogy, 5, eaav3937.
https://doi.org/10.1126/sciimmunol.aav3937
[16] Lin, A., Wei, T., Meng, H., Luo, P. and Zhang, J. (2019) Role of the Dynamic Tumor Microenvironment in Controversies Regarding Immune Checkpoint Inhibitors for the Treatment of Non-Small Cell Lung Cancer (NSCLC) with EGFR Mutations. Molecular Cancer, 18, Article No. 139.
https://doi.org/10.1186/s12943-019-1062-7
[17] Madeddu, C., Donisi, C., Liscia, N., Lai, E., Scartozzi, M. and Macciò, A. (2022) EGFR-Mutated Non-Small Cell Lung Cancer and Resistance to Immunotherapy: Role of the Tumor Microenvironment. International Journal of Molecular Sciences, 23, Article 6489.
https://doi.org/10.3390/ijms23126489
[18] Matsumoto, Y., Sawa, K., Fukui, M., et al. (2019) Impact of Tumor Microenvironment on the Efficacy of Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors in Patients with EGFR-Mutant Non-Small Cell Lung Cancer. Cancer Science, 110, 3244-3254.
https://doi.org/10.1111/cas.14156
[19] Isomoto, K., Haratani, K., Hayashi, H., et al. (2020) Impact of EGFR-TKI Treatment on the Tumor Immune Microenvironment in EGFR Mutation-Positive Non-Small Cell Lung Cancer. Clinical Cancer Research, 26, 2037-2046.
https://doi.org/10.1158/1078-0432.CCR-19-2027
[20] Jia, Y., Li, X., Jiang, T., et al. (2019) EGFR-Targeted Therapy Alters the Tumor Microenvironment in EGFR-Driven Lung Tumors: Implications for Combination Therapies. International Journal of Cancer, 145, 1432-1444.
https://doi.org/10.1002/ijc.32191
[21] Liu, L., Wang, C., Li, S., Bai, H. and Wang, J. (2021) Tumor Immune Mi-croenvironment in Epidermal Growth Factor Receptor-Mutated Non-Small Cell Lung Cancer before and after Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Treatment: A Narrative Review. Translational Lung Cancer Research, 10, 3823-3839.
https://doi.org/10.21037/tlcr-21-572
[22] Liu, S., Wu, F., Li, X., et al. (2021) Patients with Short PFS to EGFR-TKIs Predicted Better Response to Subsequent Anti-PD-1/PD-L1 Based Immunotherapy in EGFR Common Mutation NSCLC. Frontiers in Oncology, 11, Article 639947.
https://doi.org/10.3389/fonc.2021.639947
[23] Akbay, E.A., Koyama, S., Carretero, J., et al. (2013) Activation of the PD-1 Pathway Contributes to Immune Escape in EGFR-Driven Lung Tumors. Cancer Discovery, 3, 1355-1363.
https://doi.org/10.1158/2159-8290.CD-13-0310
[24] Azuma, K., Ota, K., Kawahara, A., et al. (2014) Association of PD-L1 Overexpression with Activating EGFR Mutations in Surgically Resected Nonsmall-Cell Lung Cancer. Annals of Oncology, 25, 1935-1940.
https://doi.org/10.1093/annonc/mdu242
[25] 石岩, 吕望, 汪路明, 等. 肺癌驱动基因与PD-1/PD-L1信号通路相互作用在非小细胞肺癌发生发展中的研究进展[J]. 中国肺癌杂志, 2017, 20(11): 781-786.
[26] Lu, J., Li, J., Lin, Z., et al. (2023) Reprogramming of TAMs via the STAT3/CD47-SIRPα Axis Promotes Acquired Resistance to EGFR-TKIs in Lung Cancer. Cancer Letters, 564, Article ID: 216205.
https://doi.org/10.1016/j.canlet.2023.216205
[27] Li, X., Lian, Z., Wang, S., Xing, L. and Yu, J. (2018) Interac-tions between EGFR and PD-1/PD-L1 Pathway: Implications for Treatment of NSCLC. Cancer Letters, 418, 1-9.
https://doi.org/10.1016/j.canlet.2018.01.005
[28] Lastwika, K.J., Wilson III., W., Li, Q.K., et al. (2016) Control of PD-L1 Expression by Oncogenic Activation of the AKT-mTOR Pathway in Non-Small Cell Lung Cancer. Cancer Research, 76, 227-238.
https://doi.org/10.1158/0008-5472.CAN-14-3362
[29] Abdelhamed, S., Ogura, K., Yokoyama, S., Saiki, I. and Hayakawa, Y. (2016) AKT-STAT3 Pathway as a Downstream Target of EGFR Signaling to Regulate PD-L1 Expression on NSCLC Cells. Journal of Cancer, 7, 1579-1586.
https://doi.org/10.7150/jca.14713
[30] Zhang, N., Zeng, Y., Du, W., et al. (2016) The EGFR Pathway Is Involved in the Regulation of PD-L1 Expression via the IL-6/JAK/STAT3 Signaling Pathway in EGFR-Mutated Non-Small Cell Lung Cancer. International Journal of Oncology, 49, 1360-1368.
https://doi.org/10.3892/ijo.2016.3632
[31] Concha-Benavente, F., Srivastava, R.M., Trivedi, S., et al. (2016) Iden-tification of the Cell-Intrinsic and -Extrinsic Pathways Downstream of EGFR and IFNγ That Induce PD-L1 Expression in Head and Neck Cancer. Cancer Research, 76, 1031-1043.
https://doi.org/10.1158/0008-5472.CAN-15-2001
[32] Rangachari, D., VanderLaan, P.A., Shea, M., et al. (2017) Correlation between Classic Driver Oncogene Mutations in EGFR, ALK, or ROS1 and 22C3-PD-L1 ≥ 50% Expression in Lung Adenocarcinoma. Journal of Thoracic Oncology, 12, 878-883.
https://doi.org/10.1016/j.jtho.2016.12.026
[33] Gainor, J.F., Shaw, A.T., Sequist, L.V., et al. (2016) EGFR Muta-tions and ALK Rearrangements Are Associated with Low Response Rates to PD-1 Pathway Blockade in Non-Small Cell Lung Cancer: A Retrospective Analysis. Clinical Cancer Research, 22, 4585-4593.
https://doi.org/10.1158/1078-0432.CCR-15-3101
[34] Dong, Z.Y., Zhang, J.T., Liu, S.Y., et al. (2017) EGFR Mutation Correlates with Uninflamed Phenotype and Weak Immunogenicity, Causing Impaired Response to PD-1 Blockade in Non-Small Cell Lung Cancer. Oncoimmunology, 6, e1356145.
https://doi.org/10.1080/2162402X.2017.1356145
[35] D’Incecco, A., Andreozzi, M., Ludovini, V., et al. (2015) PD-1 and PD-L1 Expression in Molecularly Selected Non-Small-Cell Lung Cancer Patients. British Journal of Cancer, 112, 95-102.
https://doi.org/10.1038/bjc.2014.555
[36] Lin, C., Chen, X., Li, M., et al. (2015) Programmed Death-Ligand 1 Expression Predicts Tyrosine Kinase Inhibitor Response and Better Prognosis in a Cohort of Patients with Epidermal Growth Factor Receptor Mutation-Positive Lung Adenocarcinoma. Clinical Lung Cancer, 16, E25-E35.
https://doi.org/10.1016/j.cllc.2015.02.002
[37] Kim, T., Cha, Y.J. and Chang, Y.S. (2020) Correlation of PD-L1 Expression Tested by 22C3 and SP263 in Non-Small Cell Lung Cancer and Its Prognostic Effect on EGFR Muta-tion-Positive Lung Adenocarcinoma. Tuberculosis and Respiratory Diseases, 83, 51-60.
https://doi.org/10.4046/trd.2019.0026
[38] Tang, Y., Fang, W., Zhang, Y., et al. (2015) The Association between PD-L1 and EGFR Status and the Prognostic Value of PD-L1 in Advanced Non-Small Cell Lung Cancer Patients Treated with EGFR-TKIs. Oncotarget, 6, 14209- 14219.
https://doi.org/10.18632/oncotarget.3694
[39] Chang, C.Y., Lai, Y.C., Wei, Y.F., Chen, C.Y. and Chang, S.C. (2021) PD-L1 Expression and Outcome in Patients with Metastatic Non-Small Cell Lung Cancer and EGFR Mutations Receiving EGFR-TKI as Frontline Treatment. OncoTargets and Therapy, 14, 2301-2309.
https://doi.org/10.2147/OTT.S290445
[40] Yoon, B.W., Chang, B. and Lee, S.H. (2020) High PD-L1 Expression Is Associated with Unfavorable Clinical Outcome in EGFR-Mutated Lung Adenocarcinomas Treated with Targeted Therapy. OncoTargets and Therapy, 13, 8273-8285.
https://doi.org/10.2147/OTT.S271011
[41] Hsu, P.C., Wang, C.W., Kuo, S.C., et al. (2020)The Co-Expression of Programmed Death-Ligand 1 (PD-L1) in Untreated EGFR-Mutated Metastatic Lung Adenocarcinoma. Biomedicines, 8, Article 36.
https://doi.org/10.3390/biomedicines8020036
[42] Yoneshima, Y., Ijichi, K., Anai, S., et al. (2018) PD-L1 Expres-sion in Lung Adenocarcinoma Harboring EGFR Mutations or ALK Rearrangements. Lung Cancer, 118, 36-40.
https://doi.org/10.1016/j.lungcan.2018.01.024
[43] Su, S., Dong, Z.Y., Xie, Z., et al. (2018) Strong Programmed Death Ligand 1 Expression Predicts Poor Response and De Novo Resistance to EGFR Tyrosine Kinase Inhibitors among NSCLC Patients with EGFR Mutation. Journal of Thoracic Oncology, 13, 1668-1675.
https://doi.org/10.1016/j.jtho.2018.07.016
[44] Yang, C.Y., Liao, W.Y., Ho, C.C., et al. (2020) Association be-tween Programmed Death-Ligand 1 Expression, Immune Microenvironments, and Clinical Outcomes in Epidermal Growth Factor Receptor Mutant Lung Adenocarcinoma patients Treated with Tyrosine Kinase Inhibitors. European Journal of Cancer, 124, 110-122.
https://doi.org/10.1016/j.ejca.2019.10.019