磁悬浮冷坩埚技术在特种金属功能材料制备中的应用
Preparation of Metallic Functional Materials in Electromagnetic Levitation Cold Crucible Technique
DOI: 10.12677/MS.2012.23020, PDF, HTML, XML, 下载: 4,064  浏览: 13,583 
作者: 马朝晖*, 谭天亚*:辽宁大学物理学院;严清峰*, 李 强*:清华大学化学系
关键词: 磁悬浮冷坩埚合金熔炼晶体生长Electromagnetic Levitation Cold Crucible; Alloy Synthesis; Crystal Growth
摘要: 磁悬浮冷坩埚技术以其无污染、高熔炼温度等特点在制备特种金属功能材料领域有广泛的应用。本文介绍了磁悬浮冷坩埚技术的原理和发展历程,重点讨论了该技术在特种功能合金熔炼和晶体生长方面的应用,分析了该技术未来在其它材料制备领域应用的可行性。
Abstract: As a novel technology, electromagnetic levitation cold crucible technique gets more and more popular in high melting alloys synthesis, high purity materials purification and even single crystal growth for its non-contamina- tion and high temperature resistance performances. In this paper, an overview of the principle and development of this technique was given. Current researches on synthesis and crystal growth of metallic functional materials were summa- rized. And its prospective applications in materials preparations were also discussed.
文章引用:马朝晖, 谭天亚, 严清峰, 李强. 磁悬浮冷坩埚技术在特种金属功能材料制备中的应用[J]. 材料科学, 2012, 2(3): 110-116. http://dx.doi.org/10.12677/MS.2012.23020

参考文献

[1] 孙大亮, 陈焕矗, 宋永远. 冷舟冷坩埚技术及其在单晶生长中的应用[J]. 人工晶体学报, 1990, 19(2): 172-176.
[2] W. V. Bolton, O. Feuerlein. The tantalum lamp. Elektrotechnische Zeitschrift, 1905, 26: 105-109.
[3] D. O. Muck. Verfahren und vrrichtung zum schmelzen, isbeson- dere vn litern u. dgl. Durch Elektrische Induktionsstroeme. Ger- man Patent, DE422004(C), 1925.
[4] E. C. Okress, D. M. Wroughton. Electromagnetic levitation of solid and molten metals. Journal of Applied Physics, 1952, 23(5): 545-552.
[5] Q. Li, Y. L. Zhang and R. Z. Yuan. Magnetic levitation cold crucible technique for pulling rare earth-iron monocrystal-avoid corrosion and pollution of crucible by molten material and provides high purity of product. Chinese Patent: CN1060318-A, 1992.
[6] F. U. Bruckner, K. Schwerdtfeger. Single-crystal growth with the Czochralski method involving rotational electromagnetic stirring of the melt. Journal of Crystal Growth, 1994, 139(3-4): 351-356.
[7] E. Fromm, H. Jehn. Electromagnetic forces and power absorp- tion in levitation melting. British Journal of Applied Physics, 1965, 16(5): 653-663.
[8] L. M. Holmes. Stability of magnetic levitation. Journal of Applied Physics, 1978, 49(6): 3102-3109.
[9] A. D. Sneyd, H. K. Moffatt. Fluid dynamical aspects of the levitation-melting process. Journal of Fluid Mechanics, 1982, 117(1): 45-70.
[10] A. Bratz, I. Egry. Surface oscillations of electromagnetically levitated viscous metal droplets. Journal of Fluid Mechanics, 1995, 298: 341-359.
[11] I. Egry, A. Diefenbach, W. Dreier and J. Piller. Containerless processing in space-thermophysical property measurements us- ing electromagnetic levitation. International Journal of Thermo- physics, 2001, 22(2): 569-578.
[12] D. M. Herlach, R. F. Cochrane, I. Egry, et al. Containerless proc- essing in the study of metallic melts and their solidification. In- ternational Materials Reviews, 1993, 8(6): 273-347.
[13] G. Lohofer. Force and torque of an electromagnetically levitated metal sphere. Quarterly of Applied Mathematics, 1993, 15(3): 495-581.
[14] D. A. Hukin. Crucibles. US Patent: US3702368 (A), 1972.
[15] 韩至成. 电磁冶金技术及装备[M]. 北京: 冶金工业出版社2008: 368-384.
[16] 邓康, 任忠鸣, 陈坚强等. 冷坩埚磁悬浮熔炼的电磁场分析[J]. 计算物理, 2000, 17(6): 659-663.
[17] 黄劲松, 刘彬, 张伟等. 铸造TiAl合金微观组织的演变[J]. 中国有色金属学报, 2008, 18(4): 643-650.
[18] A. Morita, H. Fukui, H. Tadano, et al. Alloying titanium and tantalum by cold crucible levitation melting (CCLM) furnace.Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2000, 280(1): 208-213.
[19] D. M. Gordin, E. Delvat, R. Chelariu, et al. Characterization of Ti-Ta alloys synthesized by cold crucible levitation melting. Advanced Engineering Materials, 2008, 10(8): 714-719.
[20] S. Voss, F. Stein, M. Palm, et al. Synthesis of defect-free sin- gle-phase bars of high-melting laves phases through modified cold crucible levitation melting. Materials Science and Engi- neering. Structural Materials Properties Microstructure and Proc- essing, 2010, 527(29-30): 7848-7853.
[21] K. Matsugi, T. Endo, Y. B. Choi, et al. Alloy design of Ti alloys using ubiquitous elloying elements and characteristics of their levitation-melted alloys. Materials Transactions, 2010, 51(4): 740- 748.
[22] K. Matsugi, H. Mamiya, Y. B. Choi, et al. Melting and solidifi- cation of TiNi alloys by cold crucible levitation method and evaluation of their characteristics. International Journal of Cast Metals Research, 2008, 21(1-4): 156-161.
[23] 周增林, 宋月清, 崔舜等. Nd 替代La 对La-Mg-Ni 系A2B7型贮氢电极合金性能的影响[J]. 中国有色金属学报, 2007, 17(1): 45-52.
[24] 李学军, 崔舜, 周增林等. La0.5Mg0.5(Ni1−xCox)2.28(x = 0.0 - 0.2)储氢合金的相结构和电化学性能[J]. 中国稀土学报, 2009, 27(4): 533-538.
[25] 覃铭, 熊凯, 蓝志强等. La0.7Pr0.15Nd0.05Mg0.3Ni3.3−xCo0.2Al0.1 (Co0.75Mn0.25)x(x = 0.0, 0.2, 0.4, 0.6)的电化学性能研究[J]. 中国稀土学报, 2011, 29(3): 351-359.
[26] 李强. 立方相大尺寸Tb-Dy-Fe超磁致伸缩单晶的制备研究与应用探索[D]. 武汉工业大学, 1993.
[27] 孙大亮, 蒋民华, 陈焕矗等. 冷坩埚技术研制新磁性Nd2Fe14B单晶体[J]. 科学通报, 1987, 14: 1071-1073.
[28] S. B. Palmer, D. A. Hukin and C. Isci. Elastic and magnetic- properties of a single-crystal Gd-40percent Y alloy. Journal of Physics F-Metal Physics, 1977, 7(11): 2381-2392.
[29] 赵青, 张茂才, 邵东朗等. TbxDy1-xFe1.9 合金不同晶体方向的磁致伸缩应变[J]. 功能材料, 1999, 30(2): 41-43.
[30] 张一玲, 李强, 叶菁等. 磁悬浮冷坩埚晶体生长技术研究[J]. 材料科学与工程学报, 2000, 18(z1): 400-402.
[31] Q. Li, Y. L. Zhang, R. Z. Yuan, et al. Growth of Tb0.27Dy0.73Fe2 magnetostrictive single crystals. Journal of Crystal Growth, 1993, 128(1-4): 1092-1094.
[32] G. H. Wu, X. G. Zhao, J. H. Wang, et al. <111> Oriented and twin-free single crystals of Terfenol-D grown by Czochralski method with cold crucible. Progress in Natural Science, 1995, 5(6): 115-119.
[33] J. L. Chen, S. X. Gao, W. H. Wang, et al. Single crystals of Tb0.3Dy0.7Fe2 grown by Czochralski method with cold crucible. Journal of Crystal Growth, 2002, 236(1-3): 305-310.
[34] 陈京兰, 王文洪, 余晨辉等. Heusler合金Ni52Mn24Ga24单晶生长和相变特性[J]. 人工晶体学报, 2000, S1: 25.
[35] Y. T. Cui, W. L. Wang, K. J. Liao, et al. Field-controlled shape memory effect and temperature stability of the magnetic-field- induced strain in Ni52Mn16.4Fe8Ga23.6 single crystal. Rare Metal Materials and Engineering, 2005, 34(2): 266-270.
[36] Y. T. Cui, Y. Ma, C. Y. Kong, et al. Large spontaneous shape memory and magnetic-field induced strain in Ni51Mn25.5Ga23.5 single crystal. Physica Status Solidi a-Applications and Materi- als Science, 2006, 203(10): 2532-2537.
[37] 武亮, 张健, 吴振兴等. Ni46Mn35Ga19单晶中磁转变和马氏体相变的物理表征及形状记忆效应[J]. 重庆师范大学学报, 2009, 26(4): 94-97
[38] 宋锋兵, 张一玲, 李强等. 改善NiAl基高温形状记忆合金性能的初步探索[A]. 2000年材料科学与工程新进展(上)——2000年中国材料研讨会论文集[C]. 北京: 冶金工业出版社, 2000: 164-167.
[39] 宋锋兵, 李强, 张一玲等. 提拉法制备马氏体NiAl合金的研究[J]. 武汉理工大学学报, 2001, 23(6): 14-17.
[40] 宋锋兵, 李强, 张一玲等. NiAl高温形状记忆合金的组分分析[J]. 材料科学与工艺, 2001, 9(43): 334-336.
[41] Y. L. Zhang, Q. Li, J. Ye, et al. Growth of NiAl shape memory alloy single crystals. Progress in Crystal Growth and Characterization of Materials, 2000, 40(1-4): 309-314.