68Ga-FAPI在乳腺癌诊断中的研究进展
Research Progress of 68Ga-FAPI in the Diagnosis of Breast Cancer
DOI: 10.12677/WJCR.2024.141004, PDF, HTML, XML, 下载: 102  浏览: 422  科研立项经费支持
作者: 邓贵斌:三峡大学第一临床医学院,宜昌市中心人民医院,湖北 宜昌;三峡大学基础医学院,湖北 宜昌;李义兴, 刘德慧*:三峡大学第一临床医学院,宜昌市中心人民医院,湖北 宜昌;沈小兰:三峡大学健康医学院,湖北 宜昌
关键词: 成纤维细胞活化蛋白抑制剂乳腺癌正电子发射计算机断层显像Fibroblast Activating Protein Inhibitor Breast Cancer PET/CT
摘要: 乳腺癌(Breast cancer, BC)是女性最常见的恶性肿瘤,又称为“粉红杀手”,在癌症相关妇女死亡原因中排第二。成纤维细胞活化蛋白(fibroblast activation protein, FAP),高度表达于肿瘤相关成纤维细胞中,近年来,基于喹啉设计的小分子FAP抑制剂(FAP inhibitor, FAPI)显示出优秀的FAP亲和力,在乳腺癌中摄取量较高。随着技术的发展,68Ga标记的FAPI在乳腺癌的诊断中得到了进一步的发展。本文就近年来68Ga-FAPI在乳腺癌中的临床研究和应用进展做简要综述,以提高其临床应用效益。
Abstract: Breast cancer (BC) is the most common malignancy in women, also known as the “Pink Killer”. BC is the second leading cause of cancer-related death in women. Fibroblast activation protein (FAP) is highly expressed in tumor-associated fibroblasts. Recently, small molecule FAP inhibitor (FAPI) based on quinoline design has shown an excellent affinity for FAP, high intake in breast cancer. With the development of technology, 68Ga-labeled FAPI (68Ga-FAPI) has been further developed in the diagnosis of breast cancer. In this review, the clinical research and application of 68Ga-FAPI in breast cancer were reviewed to improve the clinical benefit.
文章引用:邓贵斌, 李义兴, 沈小兰, 刘德慧. 68Ga-FAPI在乳腺癌诊断中的研究进展[J]. 世界肿瘤研究, 2024, 14(1): 20-26. https://doi.org/10.12677/WJCR.2024.141004

1. 引言

乳腺癌是我国女性最常见的恶性肿瘤,其发病率和死亡率在我国女性恶性肿瘤中分别占据第一位和第四位,成为危害女性身体健康的首要因素 [1] [2] [3] 。近年来,随着科技、医疗、生活水平的提高,乳腺癌的发病率和确诊率逐渐上升,2020年,全球报道了230万乳腺癌新发病例和68.5万乳腺癌死亡病例 [4] 。乳腺癌患者多为无意间发现乳房肿块,通常无疼痛,并无不适,患者常常容易忽视,耽误最佳治疗时期 [5] 。传统的乳腺癌成像技术包括X线、钼靶、乳腺超声、乳腺核磁共振。18F-FDG是目前最常用的PET/CT显像剂,在肿瘤的发现、诊断、鉴别等方面发挥了重要的作用 [6] 。成纤维细胞活化蛋白(FAP)是肿瘤相关成纤维细胞分泌的能够促进肿瘤生长和转移的蛋白质,高度表达于许多上皮性肿瘤相关成纤维细胞(cancer-associated fibroblasts, CFA),如乳腺癌、肝癌、直肠癌等 [7] [8] 。放射性核素68Ga标记的FAPI (68Ga-FAPI)是一种新型且具有应用前景的PET/CT显像剂,正常组织细胞或良性肿瘤中不表达或者低表达FAP,利用FAP抑制剂特异性的结合CFA表面的FAP,在PET/CT下进行显像,能够观察到肿瘤的位置、大小,广泛的应用于各种实体肿瘤的诊断 [9] 。68Ga-FAPI对乳腺癌肿瘤显像具有摄取率高、清除率快、灵敏度高、最大标准摄取值(SUVmax)及健康组织辐射暴露时间少等优点,使得其在乳腺癌显像、诊断中更具优势 [10] [11] [12] 。本文就68Ga-FAPI在原发性乳腺癌(primary breast cancer, PBC)和转移性乳腺癌(metastatic breast cancer, MBC)中的临床应用做一综述。

2. FAPI的定义

成纤维细胞活化蛋白(fibroblast activation protein, FAP)作为一种II型跨膜丝氨酸蛋白水解酶,在许多代谢中发挥着至关重要的作用 [13] 。有研究发现,FAP作为一种特异性的标记物,在肿瘤相关成纤维细胞中表达丰富,能够对肿瘤的生长、侵袭、转移起到重要的提示作用 [14] 。FAPI能够在正电子发射计算机断层显像(PET/CT)下对FAP进行显像,近年来,鉴于FAP在肿瘤探查方面的作用,FAP抑制剂(fibroblast activation protein inhibitor, FAPI)逐渐走上了临床,越来越多的肿瘤能够进行FAPI显像,并且能够弥补18F-FDG的不足,放射性核素标记的FAPI作为一种肿瘤靶向制剂,展现出了很强的临床应用潜能 [15] 。但是,68Ga标记的FAPI半衰期很短(半衰期t1/2为68 min),不能长时间的保存,一定程度上限制了68Ga-FAPI得到广泛的使用 [16] [17] 。

3. 原发性乳腺癌诊断的研究进展

3.1. 原发性乳腺癌传统诊断方式

乳腺癌是临床上比较常见的女性恶性肿瘤,2020年新发病例达42万,居女性恶性肿瘤发病率之首,乳腺X线检查、乳腺超声及乳腺MRI等是乳腺的传统影像学检查,通常加上乳腺活检能够确诊乳腺癌 [5] [18] 。但是,传统的影像学检查存在一些不足,比如乳腺X线,对于腺体丰富的女性,可能出现病变部位重叠 [19] ;超声对乳腺癌的诊断,其结果容易受到医生年资、技术等的影响 [20] ;乳腺MRI易出现假阳性 [21] [22] 等。随着科技的发展,PET/CT逐渐应用在了乳腺癌的诊断中。

3.2. PET/CT诊断原发性乳腺癌

3.2.1. 18F-FDG在原发性乳腺癌诊断中的应用

18F-FDG是目前临床上PET/CT最常用的放射性核素显像剂,18F-FDG PET/CT能够通过乳腺组织对放射性核素标记葡萄糖的摄取多少,对乳腺肿块的良恶性进行判断,目前,临床对于18F-FDG用于乳腺癌的检测还存在一定的争议 [23] [24] 。有研究发现,对于一些直径低于1 cm的乳腺癌肿瘤以及某些类型的乳腺恶性肿瘤(如原位导管癌、小叶癌等),18F-FDG PET/CT的敏感性较低,甚至18F-FDG检测结果会低于病理评估,因此,18F-FDG并不常规用于乳腺癌的早期检查 [25] 。

3.2.2. 68Ga-FAPI在原发性乳腺癌诊断中的应用

Table 1. Comparative study of 68Ga-FAPI and 18F-FDG in different publications

表1. 不同论著中68Ga-FAPI及18F-FDG的对比研究

Note: SUVmax: maximum standard uptake value; TBR: tumor background ratio; N: Not reported in the case report.

注:SUVmax:最大标准摄取值;TBR:肿瘤背景比;N:文献未报导。

68Ga-FAPI作为PET/CT显像中新兴的恶性肿瘤显像剂,在乳腺癌诊断中能够提供高分辨率的生物标志物显像,使早期诊断更加准确,在PET/CT显像中发挥着越来越重要的作用 [26] [27] 。在国内外对于68Ga-FAPI在乳腺癌应用的多项研究中,在注射显像剂30~60分钟后,利用PET/CT进行现象,通常能够观察到较高的68Ga-FAPI摄取 [28] 。Kömek, H、Elboga, U等人的研究中,68Ga-FAPI相比于18F-FDG能够在乳腺中发现更多的病灶,同时FAPI显像也能得到更高的SUVmax和靶本比(Target Background Ratio, TBR) [29] [30] [31] 。除了对于常见的乳腺肿瘤更敏感外,在Siwen Qiu的一则病例报道中,68Ga-FAPI发现了18F-FDG没能发现的双侧乳腺血管肉瘤 [32] 。关于肿瘤分期方面,Dendl的研究发现,相比于低级别的肿瘤,高级别肿瘤68GA-FAPI摄取更强 [33] ,但是在妇科肿瘤的混合人群(BC = 14),并没有得到统计学意义。BRCA1/2是乳腺癌发病的相关基因,Dendl在妇科肿瘤的混合研究中发现,BRCA1/2阳性患者(n = 6)的68Ga-FAPI吸收率高于该基因阴性患者 [33] ,但是受限于样本量,该统计学差异并不显著。68Ga-FAPI和18F-FDG在乳腺癌诊疗性能的对比研究(见表1),许多文献报道了68Ga-FAPI在SUVmax值上的显著优势。从乳腺癌的诊断学来看,68Ga-FAPI能够成为原发性乳腺癌的诊断试剂 [34] ,在乳腺癌的PET/CT成像中是一种很有前途的放射性试剂。但是,一些非肿瘤性的病变,也有可能导致68Ga-FAPI的摄取量增加,Xutingting等人发现,一位左侧乳腺癌的患者,其右侧副乳摄取量增加,但是最终的组织病理学显示副乳没有肿瘤恶性成分 [35] 。

综上所述,18F-FDG对于乳腺癌的早期诊断存在着一定的局限性,而68Ga-FAPI作为一种新型的显像剂,能够提高原发性乳腺癌的早期诊断的精准性,可以为18F-FDG PET/CT检查提供补充性的信息。

4. 转移性乳腺癌的诊断

4.1. 转移性乳腺癌病灶的定位

转移性乳腺癌是指乳腺癌癌细胞从乳腺原发病灶转移到身体的其他部位,乳腺癌常见的有淋巴结转移,血行转移等 [36] [37] ,可转移至骨、肺、脑等部位,骨是其常见的转移部位 [38] [39] [40] 。虽然常规影像学检查能够应用在转移性乳腺癌的检查中,但是对于一些隐匿性病灶的转移检出率极低 [41] ,Francesca Magnon等人的文献报道了一例极其罕见的乳腺癌胰腺转移,但是常规影像学的检查并没有提供任何指导性的意见 [42] 。SPECT/CT全身骨显像利用特定显像剂,对肿瘤的骨转移能够很好的显像 [43] ,但是,其特异性低,骨折、骨炎等可能会产生误诊,对于软组织转移不能提供很好的诊断。

4.2. 68Ga-FAPI在转移性乳腺癌诊断中的应用

乳腺癌转移可以随着血液转移至很多靶器官,有研究表明,早期乳腺癌很少能够转移至肝脏,然而在Qixin Wang的一则病例报道中,68Ga-FAPI PET/CT发现了早期乳腺癌在肝脏中的转移病灶,但是在18F-FDG PET/CT检查中病灶却没有得到显示 [44] 。此外,转移性乳腺癌的转移病灶可能会表现出与转移处原发病灶相同的影像学表现,这增加了常规影像学的判断难度 [37] 。18F-FDG PET/CT广泛应用在乳腺癌的原发病灶和转移诊断中,但是其原发病灶显像剂摄取水平低,转移病灶也可能由于腹腔脏器的蠕动,常常导致肠壁出现异质性摄取,相反,68Ga-FAPI作为新型的PET/CT显像剂,则能够降低肠壁蠕动带来的误差 [45] 。侵袭性导管癌(invasive lobular carcinoma, ILC)是乳腺癌的一种亚分型,是乳腺癌的第二常见亚型 [46] 。ILC独特的生物学和浸润性扩展导致常规成像很难评估其实际大小和转移性扩散 [47] ,这就导致了很多ILC转移病灶很难在18F-FDG PET/CT中显示出来,在一项34年包含56名转移性ILC患者的尸检研究中,很多68Ga-FAPI发现的转移性病灶并没有在18F-FDG PET/CT、全身骨扫描、CT等检查中发现 [48] 。有研究表明,在乳腺癌的转移病灶(如乳腺、淋巴结、肝脏、骨),尤其是在乳腺癌的早期转移病灶中,68Ga-FAPI的敏感性明显高于18F-FDG [47] [49] ,在ELBOGA的一项18F-FDG和68Ga-FAPI PET/CT对比显像研究中,68Ga-FAPI PET/CT往往能够获取到比18F-FDG PET/CT更多的病变 [25] 。Shan Zheng等人的对比研究中,68Ga-FAPI能够发现更多在18F-FDG中没有发现的病灶,并且在两者共同的病灶中,68Ga-FAPI PET/CT扫描所得到的SUVmax值明显的高于18F-FDGPET/CT所得到的(Qi: 68Ga-FAPI SUVmax = 48.9, 18F-FDG SUVmax = 4.3) [28] [50] 。

综上所述,在MBC的PET/CT检查中,68Ga-FAPI PET/CT的主要优势在于,敏感性高,能够发现更多的潜在病灶,甚至发现18F-FDG PET/CT不能够发现的病灶,并且能够提供更高的SUVmax值,对于临床诊断具有更好的指导意义。

5. 小结与展望

68Ga-FAPI作为一种新型的PET/CT显像剂,对于乳腺癌原发病灶和转移病灶的诊断能够提供更有价值的信息,相较于18F-FDG能够获得更高的SUVmax值和TBR值,尤其是能够发现更多的乳腺癌转移病灶。在临床应用中,能够作为PET/CT的补充性检查,能够发现更多的潜在病灶,在肿瘤学领域展现了特别强的诊断潜能。然而,68Ga-FAPI由于受限于其半衰期时间短,不能做长距离的运输,因而并未能够在临床得到普及。从现有文献数据来看,未来仍然需要进行大规模的临床研究,以此来确定FAPI的临床诊疗准确性。总之,68Ga-FAPI在乳腺癌的应用具有广阔的前景,未来还需要更多的研究来探索其潜在的应用价值。

基金项目

宜昌市科学技术局项目(A22-2-039)。

参考文献

NOTES

*第一作者。

#通讯作者。

参考文献

[1] 杨一风, 祁章璇, 聂生东. 基于多模态MRI与深度学习的乳腺病变良恶性鉴别[J]. 波谱学杂志, 2022, 39(4): 401-412.
[2] Weaver, O. and Leung, J.W.T. (2018) Biomarkers and Imaging of Breast Cancer. American Journal of Roentgenolog, 210, 271-278.
https://doi.org/10.2214/AJR.17.18708
[3] Yang, B., Ren, G., Song, E., et al. (2020) Current Status and Factors Influencing Surgical Options for Breast Cancer in China: A Nationwide Cross-Sectional Sur-vey of 110 Hospitals. Oncologist, 25, e1473-e1480.
https://doi.org/10.1634/theoncologist.2020-0001
[4] Hyuna, S. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[5] 乳腺癌诊疗指南(2022年版) [J]. 中国合理用药探索, 2022, 19(10): 1-26.
[6] 张富强, 李强, 杨辉. 氟-18脱氧葡萄糖正电子发射断层显像对乳腺良恶性病变的鉴别诊断价值[J]. 慢性病学杂志, 2022, 23(5): 788-90.
[7] Hamson, E.J., Keane, F.M., Tholen, S., et al. (2014) Understanding Fibroblast Activation Protein (FAP): Substrates, Activities, Expression and Targeting for Cancer Therapy. Proteomics—Clinical Applications, 8, 454-463.
https://doi.org/10.1002/prca.201300095
[8] Fitzgerald, A.A. and Weiner, L.M. (2020) The Role of Fibroblast Ac-tivation Protein in Health and Malignancy. Cancer and Metastasis Reviews, 39, 783-803.
https://doi.org/10.1007/s10555-020-09909-3
[9] 陈跃, 邱琳, 石洪成, 等. 68Ga-成纤维细胞激活蛋白抑制剂PET/CT显像指南[J]. 中国医学影像技术, 2022, 38(6): 801-806.
[10] Kömek, H., Can, C., Güzel, Y., et al. (2021) 68Ga-FAPI-04 PET/CT, a New Step in Breast Cancer Imaging: A Comparative Pilot Study with the 18F-FDG PET/CT. Annals of Nuclear Medicine, 35, 744-752.
https://doi.org/10.1007/s12149-021-01616-5
[11] Loktev, A., Lindner, T., Mier, W., et al. (2018) A Tu-mor-Imaging Method Targeting Cancer-Associated Fibroblasts. Journal of Nuclear Medicine, 59, 1423-1429.
https://doi.org/10.2967/jnumed.118.210435
[12] Eshet, Y., Tau, N., Levanon, K., et al. (2023) The Role of 68 Ga-FAPI PET/CT in Breast Cancer Response Assessment and Follow-Up. Clinical Nuclear Medicine, 48, 685-688.
https://doi.org/10.1097/RLU.0000000000004744
[13] 刘馨, 伍治平, 王熙才. 乳腺癌相关成纤维细胞与成纤维活化蛋白[J]. 肿瘤防治研究, 2013, 40(7): 717-719.
[14] 孙朝晖, 邹立伟, 杨凌. 成纤维细胞活化蛋白的研究进展[J]. 生物化学与生物物理进展, 2020, 47(1): 39-52.
[15] Chen, H., Zhao, L., Ruan, D., et al. (2021) Usefulness of [68Ga]Ga-DOTA-FAPI-04 PET/CT in Patients Presenting with Inconclusive [18F]FDG PET/CT Findings. European Journal of Nuclear Medicine and Molecular Imaging, 48, 73-86.
https://doi.org/10.1007/s00259-020-04940-6
[16] 叶雨萌, 周学素, 田启威, 等. 成纤维细胞活化蛋白抑制剂在肿瘤诊疗中的研究进展[J]. 上海师范大学学报(自然科学版), 2022, 51(4): 436-442.
[17] Xu, W., Meng, T., Shang, Q., et al. (2022) Uncommon Metastases from Occult Breast Cancer Revealed by 18F-FDG and 68Ga-FAPI PET/CT. Clinical Nuclear Medicine, 47, 751-753.
https://doi.org/10.1097/RLU.0000000000004193
[18] 《中国肿瘤临床》文章推荐: 乳腺癌前哨淋巴结活检规范化操作指南(2022精要版) [J]. 中国肿瘤临床, 2023, 50(1): 36.
[19] Shen, S., Zhou, Y., Xu, Y., et al. (2015) A Multi-Centre Randomised Trial Comparing Ultrasound vs Mammography for Screening Breast Cancer in High-Risk Chinese Women. British Journal of Cancer, 112, 998-1004.
https://doi.org/10.1038/bjc.2015.33
[20] 孙艺宁, 陈兰. 非肿块型乳腺病变超声诊断新进展[J]. 中国现代医生, 2023, 61(1): 134-137.
[21] Li, W., Newitt, D.C., Gibbs, J., et al. (2020) Predicting Breast Cancer Response to Neoad-juvant Treatment Using Multi-Feature MRI: Results from the I-SPY 2 TRIAL. NPJ Breast Cancer, 6, Article No. 63.
https://doi.org/10.1038/s41523-020-00203-7
[22] Liu, H., Chen, Y., Zhang, Y., et al. (2021) A Deep Learning Model Integrating Mammography and Clinical Factors Facilitates the Malignancy Prediction of BI-RADS 4 Microcalci-fications in Breast Cancer Screening. European Radiology, 31, 5902-5912.
https://doi.org/10.1007/s00330-020-07659-y
[23] Groheux, D. and Hindie, E. (2021) Breast Cancer: Initial Workup and Staging with FDG PET/CT. Clinical and Translational Imaging, 9, 221-231.
https://doi.org/10.1007/s40336-021-00426-z
[24] Backhaus, P., Burg, M.C., Roll, W., et al. (2022) Simultaneous FAPI PET/MRI Targeting the Fibroblast-Activation Protein for Breast Cancer. Radiology, 302, 39-47.
https://doi.org/10.1148/radiol.2021204677
[25] Elboga, U., Sahin, E., Kus, T., et al. (2021) Superiority of 68Ga-FAPI PET/CT Scan in Detecting Additional Lesions Compared to 18FDG PET/CT Scan in Breast Cancer. Annals of Nuclear Medicine, 35, 1321-1331.
https://doi.org/10.1007/s12149-021-01672-x
[26] Korol, P., Samokhin, A., Shcherbina, O.B. and Пономаренко, H.М. (2019) FAPI-PET/CT: A New Direction for Diagnostic Imaging In Nuclear Medicine. Radiation Diagnostics Ra-diation Therapy, 4, 48-54.
https://doi.org/10.37336/2707-0700-2019-4-5
[27] Dendl, K., Koerber, S.A., Watabe, T., et al. (2023) Current Sta-tus of Fibroblast Activation Protein Imaging in Gynecologic Malignancy and Breast Cancer. PET Clinics, 18, 345-351.
https://doi.org/10.1016/j.cpet.2023.03.005
[28] Zheng, S., Lin, J., Zhu, Y., et al. (2023) 68Ga-FAPI versus 18F-FDG PET/CT in Evaluating Newly Diagnosed Breast Cancer Patients: A Head-to-Head Comparative Study. Clinical Nuclear Medicine, 48, e104-e109.
https://doi.org/10.1097/RLU.0000000000004523
[29] Ballal, S., Yadav, M.P., Moon, E.S., et al. (2021) Biodis-tribution, Pharmacokinetics, Dosimetry of [68Ga]Ga-DOTA.SA.FAPi, and the Head-to-Head Comparison with [18F]F-FDG PET/CT in Patients with Various Cancers. European Journal of Nuclear Medicine and Molecular Imaging, 48, 1915-1931.
https://doi.org/10.1007/s00259-020-05132-y
[30] Elboga, U. (2021) Superiority of 68Ga-FAPI PET/CT Scan in Detecting Additional Lesions Compared to 18FDG PET/CT Scan in Breast Cancer. Annals of Nuclear Medicine, 35, 1321-1331.
https://doi.org/10.1007/s12149-021-01672-x
[31] Komek, H. (2021) 68Ga-FAPI-04 PET/CT, a New Step in Breast Cancer Imaging: A Comparative Pilot Study with the 18F-FDG PET/CT. Annals of Nu-clear Medicine, 35, 744-752.
https://doi.org/10.1007/s12149-021-01616-5
[32] Qiu, S., Zou, S., Cheng, S., et al. (2022) Positive FAPI PET/CT in a Bilateral Mammary Angiosarcoma Patient with Less Impressive FDG PET/CT Imag-es. Clinical Nuclear Medicine, 47, 648-650.
https://doi.org/10.1097/RLU.0000000000004089
[33] Dendl, K. (2021) 68Ga-FAPI-PET/CT in Patients with Var-ious Gynecological Malignancies. European Journal of Nuclear Medicine and Molecular Imaging, 48, 4089-4100.
https://doi.org/10.1007/s00259-021-05378-0
[34] Taralli, S., Lorusso, M., Perrone, E., et al. (2023) PET/CT with Fibroblast Activation Protein Inhibitors in Breast Cancer: Diagnostic and Theranostic Application—A Literature Review. Cancers, 15, Article 908.
https://doi.org/10.3390/cancers15030908
[35] Xu, T., Wang, W., Yang, C., et al. (2022) 68Ga-DOTA-FAPI-04 Uptake of Accessory Breast in a Patient with Breast Cancer. Clinical Nuclear Medicine, 47, 564-565.
https://doi.org/10.1097/RLU.0000000000004069
[36] Park, M., Kim, D., Ko, S., et al. (2022) Breast Cancer Me-tastasis: Mechanisms and Therapeutic Implications. International Journal of Molecular Sciences, 23, Article 6806.
https://doi.org/10.3390/ijms23126806
[37] Li, T., Jiang, X., Zhang, Z., et al. (2022) Case Report: 68Ga-FAPI PET/CT, a More Advantageous Detection Mean of Gastric, Peritoneal, and Ovarian Metastases from Breast Cancer. Frontiers in Oncology, 12, Article 1013066.
https://doi.org/10.3389/fonc.2022.1013066
[38] Sousaris, N., Mendelsohn, G. and Barr, R.G. (2013) Lung Cancer Metastatic to Breast: Case Report and Review of the Literature. Ultrasound Quarterly, 29, 205-209.
https://doi.org/10.1097/RUQ.0b013e3182a00fc4
[39] Hosonaga, M., Saya, H. and Arima, Y. (2020) Molecular and Cellular Mechanisms Underlying Brain Metastasis of Breast Cancer. Cancer and Metastasis Reviews, 39, 711-720.
https://doi.org/10.1007/s10555-020-09881-y
[40] Tahara, R.K., Brewer, T.M., Theriault, R.L. and Ueno, N.T. (2019) Bone Metastasis of Breast Cancer. In: Ahmad, A., Ed., Breast Cancer Metastasis and Drug Resistance, Springer, Cham, 105-129.
https://doi.org/10.1007/978-3-030-20301-6_7
[41] Lind, K., Borhani-Khomani, K., Okholm, M., et al. (2022) Rou-tine X-Ray of the Chest Is Not Justified in Staging of Patients with Primary Breast Cancer. Danish Medical Journal, 69, A06220380.
[42] Magnoni, F., Di Tonno, C., Accardo, G., et al. (2019) Breast Cancer with Rare Metastatic Manifesta-tion. Future Oncology, 15, 2437-2340.
https://doi.org/10.2217/fon-2019-0263
[43] Simanek, M. and Koranda, P. (2016) SPECT/CT Imaging in Breast Cancer—Current Status and Challenges. Biomedical papers of the Medical Faculty of the University Palacky, Olomouc, Czech Republic, 160, 474-483.
https://doi.org/10.5507/bp.2016.036
[44] Wang, Q., Tang, W., Cai, L. and Chen, Y. (2022) Non-18F-FDG-Avid Intrahepatic Metastasis of Breast Cancer Revealed by 68Ga-FAPI PET/CT. Clinical Nuclear Medicine, 47, 228-230.
https://doi.org/10.1097/RLU.0000000000003905
[45] Hathi, D.K. and Jones, E.F. (2019) 68Ga FAPI PET/CT: Tracer Uptake in 28 Different Kinds of Cancer. Radiology: Imaging Cancer, 1, e194003.
https://doi.org/10.1148/rycan.2019194003
[46] Laura, G. (2023) FDG and Non-FDG Radiopharmaceuticals for PET Imaging in Invasive Lobular Breast Carcinoma. Biomedicines, 11, Article 1350.
https://doi.org/10.3390/biomedicines11051350
[47] Eshet, Y., Tau, N., Apter, S., et al. (2023) The Role of 68Ga-FAPI PET/CT in Detection of Metastatic Lobular Breast Cancer. Clinical Nuclear Medicine, 48, 228-232.
https://doi.org/10.1097/RLU.0000000000004540
[48] Masatoshi, H. (2023) Non-Oncologic Incidental Uptake on FAPI PET/CT Imaging. The British Journal of Radiology, 96, Article ID: 20220463.
https://doi.org/10.1259/bjr.20220463
[49] Ding, F., Huang, C., Liang, C., et al. (2021) 68Ga-FAPI-04 vs. 18F-FDG in a Longitudinal Preclinical PET Imaging of Metastatic Breast Cancer. European Journal of Nuclear Medicine and Mo-lecular Imaging, 49, 290-300.
https://doi.org/10.1007/s00259-021-05442-9
[50] Shang, Q., Hao, B., Xu, W., et al. (2022) 68Ga-FAPI PET/CT Detected Non-FDG-Avid Bone Metastases in Breast Cancer. European Journal of Nuclear Medicine and Molecular Imaging, 49, 2096-2097.
https://doi.org/10.1007/s00259-021-05664-x