脓毒症相关性急性肾损伤的研究进展
Research Progress of Sepsis-Associated Acute Kidney Injury
DOI: 10.12677/ACM.2024.141115, PDF, HTML, XML, 下载: 78  浏览: 158 
作者: 白小丽, 陈婷婷:新疆医科大学研究生院,新疆 乌鲁木齐;列才华*:中国人民解放军新疆军区总医院肾内科,新疆 乌鲁木齐
关键词: 脓毒症急性肾损伤机制生物标志物炎性指标Sepsis Acute Kidney Injury Mechanisms Biomarkers Inflammatory Markers
摘要: 脓毒症相关性急性肾损伤(SA-AKI)是危重患者的常见并发症,其发病率和死亡率极高,难以预防SA-AKI。因此,早期识别是提供支持性治疗和防治肾脏进一步损害的关键,本文阐述了SA-AKI的发病机制和新型生物标志物的应用,以外周血炎性指标为重点做一综述。
Abstract: Sepsis-associated acute kidney injury (SA-AKI) is a common complication in critically ill patients with high morbidity and mortality. It is difficult to prevent SA-AKI. Therefore, early identification is the key to provide supportive treatment and prevent further kidney damage. This article describes the pathogenesis of SA-AKI and the application of new biomarkers, with a focus on peripheral blood inflammatory markers.
文章引用:白小丽, 陈婷婷, 列才华. 脓毒症相关性急性肾损伤的研究进展[J]. 临床医学进展, 2024, 14(1): 820-828. https://doi.org/10.12677/ACM.2024.141115

1. 引言

脓毒症是一种危及生命的临床综合征,其特征是机体对感染的失调反应引起的器官功能障碍 [1] ,在全球范围内给患者带来了沉重的经济负担 [2] 。急性肾损伤(acute kidney injury, AKI)以肾小球滤过率下降为主,临床表现为血肌酐上升和尿量的减少。脓毒症相关性急性肾损伤(sepsis associated with acute kidney injury, SA-AKI)是危重症的常见并发症,并且增加了并发慢性并发症的危险,具有高死亡率 [3] 。作为个体综合征,脓毒症和AKI两者相互影响,脓毒症是导致AKI的最常见原因,但任何因素引起的AKI均与脓毒症的高危险有关 [4] 。

研究表明,AKI进展到SA-AKI的中位时间为2.6天(1.5~4.7),其中80%在AKI后7天内发生脓毒症,97%在AKI后2周内发生脓毒症。SA-AKI发生的危险因素包括进入ICU院前手术、男性、24小时内疾病严重程度评分较高、白细胞减少和留置中央静脉管;相比单纯AKI患者,SA-AKI患者的死亡风险高达8倍以上(5.1% vs 0.6%) [5] ,并且在危重患者AKI发展过程中,几乎所有肾外器官都受到影响,这一过程代表了潜在的危险因素(如休克、全身性炎症等)对多器官系统的影响,另一种解释认为可能与脏器之间的交互作用有关 [6] 。而且SA-AKI发病机制并不等同于简单的急性肾小管坏死,微循环紊乱、炎症及肾小管上皮细胞代谢重编在脓毒症进展中交互作用也可能是其机制 [4] 。全球每年约1900万例脓毒症,将有高达1100万患者发展为SA-AKI [7] 。此外,高等 [8] 研究指出持续性SA-AKI发病率、病死率较短暂性SA-AKI明显增高。在脓毒症患者中,持续性SA-AKI与短期和长期死亡率独立相关,由于脓毒症破坏了血管完整性以及持续的炎症可能导致AKI持续存在 [9] 。因此早期识别SA-AKI尤为重要,本文阐述了SA-AKI的发病机制和新型生物标志物的应用,就外周血炎性指标做一综述。

2. SA-AKI的发病机制

2.1. 微循环功能障碍

近年来,脓毒症相关器官功能障碍的最新进展使我们对SA-AKI病理生理有更深的认识 [10] 。一般认为SA-AKI的发病机制为肾血流量下降、肾小管上皮细胞凋亡或急性肾小管坏死,这一理论源于AKI的各种原因(如脓毒症、大手术、心衰、低血量等)均与低灌注及休克相关 [11] ,肾缺血性损害导致大量细胞凋亡。然而,越来越清楚的是,肾缺血再灌注损伤不再是SA-AKI的唯一机制,SA-AKI也可以出现于无肾脏低灌注及血液动力紊乱的临床症状中 [12] ,以及存在正常或增加的肾总血流量的情况下 [13] 。James等 [14] 研究表示,在50例脓毒症休克患者和10例健康志愿者中,采用超声造影评估肾皮质血流灌注,相比健康志愿者,重度SA-AKI (KDIGO 3期) (37/50)超声造影提示,平均传递时间延长(10.2 vs 5.5 s, p < 0.05)、灌注指数降低(485 vs 1758 au, p < 0.05),但心脏指数、肾血流量或肾阻力指数均无差异,肾皮质灌注不足是发展为SA-AKI的重要因素,然而不是由肾大血管血流量或心输出量减少引起的。另外,Nakano D等指出 [15] ,SA-AKI高动力通常表现为肾血流量增加,肾小球滤过率下降,这可能是在出球血管舒张,入球和入球小动脉直径的比值增加,从而增加了肾血流量。Shuhei K等 [10] 研究结果显示,脓毒症导致肾小管周围毛细血管血红蛋白氧饱和度急剧降低,随之肾细胞ATP下降。脓毒症改变了微血管循环,导致肾组织缺氧和生物能量受损,因为微血管功能障碍是不均匀的,与斑块状白质停滞有关,并伴有氧代谢率的变化 [16] 。因此,有多种因素导致微循环紊乱,即内皮损伤、植物神经紊乱、糖萼脱落及凝血瀑布反应,增加白细胞和血小板滚动以及粘附,血液流速减慢,形成微血栓流向炎症和水肿组织扩散减少,最终导致内皮渗漏 [17] 。

2.2. 炎症级联

脓毒症发生时,病原体相关分子模式(pathogen-associated molecular patterns, PAMP)和损伤相关分子模式(damage-associated molecular patterns, DAMPs)等炎症介导分子被释放到血液中,并与免疫细胞表面的T细胞样受体(Toll-like receptor, TLRs)等受体结合,该反应随后启动一系列信号级联,产生和释放促炎细胞因子。此外,肾小管上皮细胞也表达TLR,尤其是TLR-2和TLR-4。因此,一旦PAMP或DAMPs经过肾小球滤过,相类似的途径将被激活,导致氧化应激增加、活性氧产生和线粒体损伤 [18] ,其中受体蛋白3 (the cytoplasmic NOD-like receptor protein 3, NLRP3)炎性小体是SA-AKI炎症级联反应中的关键炎性因子,NLRP3炎性小体激活细胞凋亡蛋白酶-1 (caspase-1),促进白细胞介素(Interleukin, IL) IL-1b和IL-18的成熟,从而加剧炎症 [19] [20] 。在脓毒症小鼠模型中,敲除NLRP3可降低肾脏中caspase-1a和IL-1b/IL-18的水平,减轻肾损伤 [21] 。相反,在顺铂诱导的AKI模型中未观察到NLRP3敲除的保护作用 [22] ,这表明在肾损伤发展过程中NLRP3炎性体的激活可能与环境有关。

最近的研究表明 [20] ,细胞能量代谢,特别是ATP代谢,是调节NLRP3炎性体的关键,Pannexin-1是一种转运ATP和其他小分子的跨膜通道,其抑制阻止了NLRP3炎症小体的激活,抑制Pannexin-1的表达会降低NLRP3炎性体的激活和促凋亡蛋白,这有助于SA-AKI小管上皮细胞炎症细胞因子的产生和凋亡。综上所述,NLRP3炎性小体在脓毒症激活先天免疫的炎症级联反应中起着核心作用,可被视为SA-AKI治疗干预的重要靶点。

2.3. 代谢重编程与线粒体功能紊乱

SA-AKI的代谢重编程对预后有重要影响,代谢重编程是细胞的一种防御机制,有利于保护细胞和器官更好地修复组织,进一步促进脏器功能恢复,但机制尚未完全清楚。线粒体作为能量产生的关键参与者,在SA-AKI的病理生理机制中起着重要作用。在生理状态下,近端小管细胞通过有氧呼吸产生ATP。然而,在脓毒症早期,细胞通过糖酵解产生ATP,有氧糖酵解可以为器官功能提供足够的能量,以避免细胞死亡,同时也可能量重新分配到包括大分子合成在内的关键过程。此外,这可以减少氧化磷酸化过程中活性氧产生引起的线粒体损伤,晚期是抗炎分解代谢阶段,肾小管细胞恢复氧化磷酸化供能 [23] 。在脓毒症期间,动力蛋白相关蛋白上调加强了线粒体断裂,去除近端小管动力蛋白相关蛋白1可减轻肾缺血再灌注损伤、炎症和程序性细胞死亡,并促进上皮恢复,而损伤动力蛋白相关蛋白1可保留线粒体结构并降低氧化应激 [24] 。此外,Visitchanakun P等 [25] 研究指出,环鸟苷单磷酸–腺苷单磷酸缺乏的脓毒症小鼠引起AKI的严重程度较轻,这是由于脂多糖和血清游离DNA协同作用致使线粒体功能障碍和炎症反应。总之,线粒体稳态紊乱相关的代谢重编程是SA-AKI发生发展的一个关键环节,针对线粒体功能的策略可能在SA-AKI治疗方面具有不错的前景。

3. SA-AKI的新型生物标志物

3.1. Dickkopf-3

目前,已经确定并提出了许多AKI血清和尿液生物标志物。具体来说,Dickkopf-3 (DKK3)是一种来自肾小管上皮细胞的应激诱导糖蛋白,可以在体外激活或抑制Wnt/β-catenin通路,取决于细胞环境。Schunk S J等 [26] 研究表明,通过抑制DKK3的表达激活Wnt/βcatenin通路可抑制凋亡,从而改善缺血再灌注诱导大鼠AKI和细胞AKI模型,同时DKK3通过Wnt/β-catenin通路参与细胞分化、增殖、凋亡等细胞过程,介导多种疾病的发病机制。作为预测AKI和持续性肾功能障碍的生物标志物,对AKI的风险评估和预测有潜在作用 [27] 。此外,Seibert F S等研究表明指出 [28] ,心脏手术前尿DKK3浓度升高与住院期间AKI风险增加、出院和长期随访时肾功能下降相关。进一步,尿DKK3与AKI、SA-AKI以及儿科重症监护病房患儿高死亡率密切相关 [29] 。但尿DKK3对造影剂所致的AKI诊断作用是有限 [30] ,尿DKK3对其他类型AKI的诊断价值仍需要进一步探讨。

3.2. 骨桥蛋白(Osteopontin, OPN)

OPN是一种在炎症中广泛表达及上调的细胞因子,具有精氨酸–甘氨酸–天冬氨酸细胞结合序列,通过这个序列,它与多种细胞表面受体相互作用。分泌的OPN结合αvβ3整合素受体,随后诱导磷酸肌醇-3激酶/akt依赖性NF-kB活化,而且它参与了巨噬细胞和T细胞在炎症部位的招募和浸润,其阻断以及抑制肾小球和小管间质炎症细胞募集 [31] 。在正常的肾脏中,OPN主要分布在髓袢和远端小管,肾脏损伤后,肾小管和肾小球不同部位的表达均显著增高 [32] 。OPN被视为更具有普遍性的肾小管损害指标,在低氧环境中,OPN还可参与减少细胞凋亡、适应性修复和减少NO合成酶等路径对肾小管有一定的保护作用 [33] 。有研究结果发现 [34] ,OPN水平与脓毒症和肾损伤恢复密切相关,并且在AKI 3期显著增高,与序贯器官功能评分(The Sequential Organ Function Assessment, SOFA)呈正相关。骨桥蛋白与AKI之间关系的研究较少,因此需要更多前瞻性研究进一步来证实。

3.3. Tamm-Horsfall蛋白(Tamm-Horsfall Protein, THP)

THP一种具有免疫调节特性的肾源性蛋白,位于肾小管上皮细胞,是健康人尿液中含量最多的蛋白,主要分泌到泌尿道,发挥抗结石、抗感染和免疫调节功能,但也有少量分泌到血液中。肾脏通过释放THP,增强单核细胞吞噬功能来调节脓毒症的免疫反应。THP除了具有肾脏调节功能外,对机体免疫功能也有一定的影响作用,血清THP与普通人群中老年人亚临床炎症的多种生物标志物(如TNF-a、IL-6、IL-22、IL-1RA等)呈负相关,与女性抗炎生物标志物和男性促炎生物标志物的负相关趋势更强 [35] 。相反,在脓毒症患者中,循环THP的变化与危重症呈正相关,系统性THP可能是防治脓毒症的有效手段 [36] 。经评估了血清和尿THP作为生物标志物的作用。越来越多的证据表明 [37] [38] ,尿液或血清中THP升高与急、慢性肾病、肾病进展、心血管疾病及死亡率均有显著相关性。在不同病因的慢性肾脏疾病中,尿THP水平显著下降,并与肾小球滤过率的变化密切相关,血清中THP的存在,可归因于髓袢升段基底外侧上皮细胞渗漏,该血清THP水平与肾功能和组织学严重程度密切相关,表明其作为一种潜在的、可用于评估肾脏病的严重性的生物标志物 [39] 。

3.4. 胰岛素样生长因子结合蛋白-7 (Insulin-Like Growth Factor-Binding Protein-7, IGFBP-7) 和组织金属蛋白酶-2抑制剂(Tissue Inhibitor of Metalloprotease-2, TIMP-2)

IGFBP-7和TIMP-2是细胞周期阻滞因子,在细胞应激或损伤期间,可抑制细胞周期蛋白依赖的蛋白激酶复合物,参与细胞周期阻滞的G1期。近年来,很多研究关注于肾小管细胞在发生损伤前如何处理应激,在压力下,小管细胞通过细胞周期阻滞作为一种保护措施。然而,肾小管细胞在急性损伤期间,持续的细胞周期阻滞可能导致不适应修复以及最终导致纤维化 [40] 。IGFBP-7 × TIMP-2在脓毒症和心脏手术后人群中的临床应用已被进一步研究 [41] 。有研究表明TIMP-2 × IGFBP-7 > 0.3,对中重度AKI的敏感性为92%,但特异性仅为46%,这表明在非重症监护病房的低风险住院人群中的预测价值甚至更低,将临界值提高到2.0,对中度或重度AKI的特异性提高到95%,但敏感性下降到37% [42] 。基于不同TIMP-2 × IGFBP-7临界值的风险分层,预防严重AKI的干预措施在临床试验中进行评估结果并不一致,可能是由于所检查的患者群体不同 [43] 。关于TIMP-2 × IGFBP-7在AKI中的应用还需进一步研究。

4. 外周血炎性标志物

临床上常用近7天内血清肌酐(Serum creatinine, SCr)水平比基线值增加>1.5倍或GFR下降>25%诊断为AKI,Scr和尿量对SA-AKI诊断尤为重要,但由于其独特的峰值期和应激下肾小管分泌增强,SCr似乎不再是AKI的敏感标志物。同时尿量也容易到肾脏以外各种因素的影响,即循环血容量、尿道梗阻、利尿剂的应用等。此外,许多新兴技术和方法,包括机器学习和一系列新型生物标志物,已被用于SA-AKI的早期预警与诊断中,然而,其实际有效性还有待于更大范围的外在证实及临床前试验验证,并且对于医疗资源匮乏的偏远地区更是遥不可及。外周血炎性指标即中性粒细胞与淋巴细胞和血小板的比值(The ratio of neutrophils to lymphocytes and platelets, N/LP)、血小板与淋巴细胞的比值(The ratio of platelets to lymphocytes, PLR)、单核细胞与淋巴细胞的比值(The ratio of monocytes to lymphocytes, MLR)来源于全血细胞,可能是有价值的指标,价格便宜、操作简单,有研究指出 [44] ,初始N/LP水平升高与SA-AKI严重程度密切相关,在老年人、男性、脓毒症休克以及身体不佳者中,N/LP增高更显著,此外,高水平N/LP诊断脓毒症患者发生SA-AKI的敏感性高于SCr。MLR可作为SA-AKI独立危险因素,与SA-AKI发生率呈正相关 [45] ,血小板参与脓毒症的病理生理途径,并在器官功能障碍中发挥关键作用,可见,外周血炎性指标N/LP、PLR、MLR在SA-AKI中的重要性。

4.1. N/LP

SA-AKI病理生理机制尚未完全清楚,但这一复杂的过程似乎以血流动力学改变、微循环功能障碍、小管细胞损伤、炎症、凝血障碍和对损伤的适应性反应的相互作用为主,肾内和全身炎症在SA-AKI的病理生理及相关的多器官功能障碍中尤为重要。N/LP是一种低成本的指标,用于反映机体的炎症状态,Cakir G B等研究首次发现 [46] ,N/LP比率可用于预测COVID-19患者收住重症监护病房、机械通气和院内死亡风险相关。有研究指出 [47] ,高水平N/LP比率与SA-AKI患者的住院死亡率独立相关,N/LP小于14,对SA-AKI生存率有一定的预测作用,这可能与SA-AKI全身性炎症在多器官衰竭的发展和长期预后有关。N/L比率被描述为重要的炎性指标,对SA-AKI进展的具有指导意义。Huang [48] 等也证实了入院时的N/LP与严重脓毒症和脓毒性休克患者的死亡率密切相关。因此,N/LP比率可作为炎症和预后的一个间接和敏感的预测指标。

4.2. PLR

脓毒症发生时,内皮细胞受损,炎症-凝血反应可诱导血小板活化,激活的血小板可加重凝血障碍和全身炎症反应,而免疫抑制常常导致淋巴细胞减少,其阻止了微生物的清除,并容易导致严重感染,而严重感染是脓毒症相关死亡的主要原因 [49] 。PLR作为广泛应用临床的炎性标志物,PLR升高与乳腺癌患者的不良预后及较高的淋巴结转移、TNM分期和远处转移风险相关 [50] 。Lee E K等研究指出 [51] ,早期PLR越高、发病时间越早、病程越长,视力预后越差,而且全身炎症因子可能是Behçet葡萄膜炎视力预后的重要指标。进一步Wang G等研究结果显示 [52] ,脓毒症非幸存者的PLR显著高于脓毒症幸存者。此外,Shimoyama Y等研究表明 [53] ,PLR可预测脓毒性亚临床AKI向SA-AKI进展,其曲线下面积为0.67,敏感性和特异性分别为71%和62%,有助于预防和管理脓毒性亚临床AKI向SA-AKI发生发展。

4.3. MLR

MLR是单核细胞与淋巴细胞的比值,单核细胞参与了先天免疫和适应性免疫、炎症和组织重塑作用。缺血再灌注和炎症AKI发生的核心,其导致肾小管上皮细胞、血管内皮细胞和白细胞功能紊乱、肾脏免疫稳态失衡,继而肾实质细胞凋亡,最终致使AKI的进展。MLR与机体炎症反应密切相关,MLR升高与造影剂诱导的AKI预后有预测价值 [54] 。进一步,因为炎性反应的活化和抑制是危重症发展的关键,炎性反应也与危重患者的预后和并发症密切相关,高水平MLR与危重患者30天死亡率和不良事件呈正相关 [55] 。此外,研究结果表明 [45] ,MLR与C反应蛋白和降钙素原呈正相关,初始MLR和中性粒细胞与淋巴细胞的比值(The ratio of neutrophils to lymphocytes, NLR)可作为AKI发生的独立危险因素,MLR预测AKI的能力优于NLR,但两者在预测院内死亡率方面没有明显优势。

5. 总结

SA-AKI是危重患者常见的并发症,死亡率极高,其发病机制复杂且尚未完善明确,若进一步了解,可以为预防或逆转SA-AKI的特异性治疗打开大门。目前,对于SA-AKI的早期识别出现了一些新型生物标志物,但上述生物标志物尚未完全用于临床,不具有推广意义。而外周血炎性标志物在机体炎性反应中有着重要作用,已有文献证明对危重症有着不错的预测价值,来源于全血,检测简单、价格便宜,在SA-AKI预后评价方面具有良好前景,同时兼顾医疗资源缺乏的偏远医院,有望为临床医师对SA-AKI的早期判断提供一种重要的手段。

NOTES

*通讯作者。

参考文献

[1] Seymour, C.W., Liu, V.X., Iwashyna, T.J., et al. (2016) Assessment of Clinical Criteria for Sepsis for the Third Interna-tional Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315, 762-774.
https://doi.org/10.1001/jama.2016.0288
[2] Bouchard, J., Acharya, A., Cerda, J., et al. (2015) A Prospective In-ternational Multicenter Study of AKI in the Intensive Care Unit. Clinical Journal of the American Society of Nephrology, 10, 1324-1331.
https://doi.org/10.2215/CJN.04360514
[3] Zarbock, A., Nadim, M.K., Pickkers, P., et al. (2023) Sep-sis-Associated Acute Kidney Injury: Consensus Report of the 28th Acute Disease Quality Initiative Workgroup. Nature Reviews. Nephrology, 19, 401-417.
https://doi.org/10.1038/s41581-023-00683-3
[4] Manrique-Caballero, C.L., Del Rio-Pertuz, G. and Gomez, H. (2021) Sepsis-Associated Acute Kidney Injury. Critical Care Clinics, 37, 279-301.
https://doi.org/10.1016/j.ccc.2020.11.010
[5] Formeck, C.L., Feldman, R., Althouse, A.D., et al. (2023) Risk and Timing of De Novo Sepsis in Critically Ill Children after Acute Kidney Injury. Kidney360, 4, 308-315.
https://doi.org/10.34067/KID.0005082022
[6] Pickkers, P., Darmon, M., Hoste, E., et al. (2021) Acute Kidney Injury in the Critically Ill an Updated Review on Pathophysiology and Management. Intensive Care Medicine, 47, 835-850.
https://doi.org/10.1007/s00134-021-06454-7
[7] Adhikari, N.K., Fowler, R.A., Bhagwanjee, S., et al. (2010) Critical Care and the Global Burden of Critical Illness in Adults. The Lancet, 376, 1339-1346.
https://doi.org/10.1016/S0140-6736(10)60446-1
[8] 高益锐, 李强, 曾瑞峰, 等. 脓毒症相关性急性肾损伤的临床特点分析196例回顾性分析[J]. 中华急诊医学杂志, 2022, 31(10): 1368-1372.
[9] Uhel, F., Peters-Sengers, H., Falahi, F., et al. (2020) Mortality and Host Response Aberrations Associated with Transient and Persistent Acute Kidney Injury in Critically Ill Patients with Sepsis: A Prospective Cohort Study. Intensive care Medicine, 46, 1576-1589.
https://doi.org/10.1007/s00134-020-06119-x
[10] Kuwabara, S., Goggins, E. and Okusa, M.D. (2022) The Patho-physiology of Sepsis-Associated AKI. Clinical Journal of the American Society of Nephrology, 17, 1050-1069.
https://doi.org/10.1016/j.cqn.2016.04.005
[11] Pickkers, P., Darmon, M., Hoste, E., et al. (2021) Acute Kidney Injury in the Critically Ill: An Updated Review on Pathophysiology and Managementpam. Intensive Care Medicine, 47, 835-850.
https://doi.org/10.1007/s00134-021-06454-7
[12] Murugan, R., Karajala-Subramanyam, V., Lee, M., et al. (2010) Acute Kidney Injury in Non-Severe Pneumonia Is Associated with an Increased Immune Response and Lower Survival. Kidney International, 77, 527-535.
https://doi.org/10.1038/ki.2009.502
[13] Byrne, L., Obonyo, N.G., Diab, S., et al. (2018) An Ovine Model of Hy-perdynamic Endotoxemia and Vital Organ Metabolism. Shock (Augusta, Ga.), 49, 99-107.
https://doi.org/10.1097/SHK.0000000000000904
[14] Watchorn, J., Huang, D., Bramham, K., et al. (2022) De-creased Renal Cortical Perfusion, Independent of Changes in Renal Blood Flow and Sublingual Microcirculatory Im-pairment Is Associated with the Severity of Acute Kidney Injury in Patients with Septic Shock. Critical Care, 26, Article No. 261.
https://doi.org/10.1186/s13054-022-04134-6
[15] Nakano, D. (2020) Septic Acute Kidney Injury: A Re-view of Basic Research. Clinical and Experimental Nephrology, 24, 1091-1102.
https://doi.org/10.1007/s10157-020-01951-3
[16] Sun, N., Zheng, S., Rosin, D.L., et al. (2021) Development of a Photoacoustic Microscopy Technique to Assess Peritubular Capillary Function and Oxygen Metabolism in the Mouse Kidney. Kidney International, 100, 613-620.
https://doi.org/10.1016/j.kint.2021.06.018
[17] Molema, G., Zijlstra, J.G., van Meurs, M., et al. (2022) Renal Mi-crovascular Endothelial Cell Responses in Sepsis-Induced Acute Kidney Injury. Nature Reviews Nephrology, 18, 95-112.
https://doi.org/10.1038/s41581-021-00489-1
[18] Ludes, P.O., de Roquetaillade, C., Chousterman, B.G., et al. (2021) Role of Damage-Associated Molecular Patterns in Septic Acute Kidney Injury, from Injury to Recovery. Fron-tiers in Immunology, 12, Article ID: 606622.
https://doi.org/10.3389/fimmu.2021.606622
[19] Gao, Y., Dai, X., Li, Y., et al. (2020) Role of Parkin-Mediated Mitophagy in the Protective Effect of Polydatin in Sepsis-Induced Acute Kidney Injury. Journal of Translational Medi-cine, 18, Article No. 114.
https://doi.org/10.1186/s12967-020-02283-2
[20] Huang, G., Bao, J., Shao, X., et al. (2020) Inhibiting Pannexin-1 Alleviates Sepsis-Induced Acute Kidney Injury via Decreasing NLRP3 Inflammasome Activation and Cell Apoptosis. Life Sciences (1973), 254, 117710-117791.
https://doi.org/10.1016/j.lfs.2020.117791
[21] Cao, Y., Fei, D., Chen, M., et al. (2015) Role of the Nucleo-tide-Binding Domain-Like Receptor Protein 3 Inflammasome in Acute Kidney Injury. FEBS Journal, 282, 3799-3807.
https://doi.org/10.1111/febs.13379
[22] Kim, H., Lee, D.W., Ravichandran, K., et al. (2013) NLRP3 Inflam-masome Knockout Mice Are Protected against Ischemic but Not Cisplatin-Induced Acute Kidney Injury. The Journal of Pharmacology and Experimental Therapeutics, 346, 465-472.
https://doi.org/10.1124/jpet.113.205732
[23] Toro, J., Manrique-Caballero, C.L. and Gómez, H. (2021) Metabolic Reprogramming and Host Tolerance: A Novel Concept to Understand Sepsis-Associated AKI. Journal of Clinical Medicine, 10, Article No. 4184.
https://doi.org/10.3390/jcm10184184
[24] Perry, H.M., Huang, L., Wilson, R.J., et al. (2018) Dynamin-Related Protein 1 Deficiency Promotes Recovery from AKI-PMC. Journal of the American Society of Nephrology, 29, 194-206.
https://doi.org/10.1681/ASN.2017060659
[25] Visitchanakun, P., Kaewduangduen, W., Chareonsappakit, A., et al. (2021) Interference on Cytosolic DNA Activation Attenuates Sepsis Severity: Experiments on Cyclic GMP-AMP Syn-thase (cGAS) Deficient Mice. International Journal of Molecular Sciences, 22, Article No. 11450.
https://doi.org/10.3390/ijms222111450
[26] Schunk, S.J., Floege, J., Fliser, D., et al. (2021) WNT-beta-Catenin Signalling—A Versatile Player in Kidney Injury and Repair. Nature Reviews Nephrology, 17, 172-184.
https://doi.org/10.1038/s41581-020-00343-w
[27] Roscigno, G., Quintavalle, C., Biondi-Zoccai, G., et al. (2021) Urinary Dickkopf-3 and Contrast-Associated Kidney Damage. Journal of the American College of Cardiology, 77, 2667-2676.
https://doi.org/10.1016/j.jacc.2021.03.330
[28] Seibert, F.S., Heringhaus, A., Pagonas, N., et al. (2021) Dickkopf-3 in the Prediction of Contrast Media Induced Acute Kidney Injury. Journal of Nephrology, 34, 821-828.
https://doi.org/10.1007/s40620-020-00910-1
[29] Hu, J., Zhou, Y., Huang, H., et al. (2023) Prediction of Urinary Dickkopf-3 for AKI, Sepsis-Associated AKI, and PICU Mortality in Children. Pediatric Research, 93, Article No. 1651.
https://doi.org/10.1038/s41390-022-02269-4
[30] Xing, H., Jiang, Z., Wu, Y., et al. (2023) The Role of Urinary Dickkopf-3 in the Prediction of Acute Kidney Injury: A Systematic Review Meta-Analysis. International Urology and Nephrology, 55, 3175-3188.
https://doi.org/10.1007/s11255-023-03593-2
[31] Panzer, U., Thaiss, F., Zahner, G., et al. (2001) Monocyte Chemoat-Tractant Protein-1 and Osteopontin Differentially Regulate Mono-Cytes Recruitment in Experimental Glomeru-lonephritis. Kidney International, 59, 1762-1769.
https://doi.org/10.1046/j.1523-1755.2001.0590051762.x
[32] Khamissi, F.Z., Ning, L., Kefaloyianni, E., et al. (2022) Identification of Kidney Injury Released Circulating Osteopontin as Causal Agent of Respiratory Failure. Science Advances, 8, m5900.
https://doi.org/10.1126/sciadv.abm5900
[33] Wen, Y. and Parikh, C.R. (2021) Current Con-cepts and Advances in Biomarkers of Acute Kidney Injury. Critical Reviews in Clinical Laboratory Sciences, 58, 354-368.
https://doi.org/10.1080/10408363.2021.1879000
[34] Varalakshmi, B., Kiranmyai, V.S., Aparna, B., et al. (2020) Plasma Osteopontin Levels in Patients with Acute Kidney Injury Requiring Dialysis: A Study in a Tertiary Care Institute in South India. International Urology and Nephrology, 52, 917-921.
https://doi.org/10.1007/s11255-020-02417-x
[35] Then, C., Herder, C., Then, H., et al. (2021) Serum Uromodulin Is Inversely Associated with Biomarkers of Subclinical Inflammation in the Population-Based KORA F4 Study. Clinical Kidney Journal, 14, 1618-1625.
https://doi.org/10.1093/ckj/sfaa165
[36] LaFavers, K.A., Hage, C.A., Gaur, V., et al. (2022) The Kidney Protects against Sepsis by Producing Systemic Uromodulin. American Journal of Physiology-Renal Physiology, 323, F212-F226.
https://doi.org/10.1152/ajprenal.00146.2022
[37] Steubl, D., Schneider, M.P., Meiselbach, H., et al. (2020) Asso-ciation of Serum Uromodulin with Death, Cardiovascular Events, and Kidney Failure in CKD. Clinical Journal of the American Society of Nephrology, 15, 616-624.
https://doi.org/10.2215/CJN.11780919
[38] Bullen, A.L., Katz, R., Lee, A.K., et al. (2019) The SPRINT Trial Suggests That Markers of Tubule Cell Function in the Urine Associate with Risk of Subsequent Acute Kidney Injury While Injury Markers Elevate after the Injury. Kidney International, 96, 470-479.
https://doi.org/10.1016/j.kint.2019.03.024
[39] Thielemans, R., Speeckaert, R., Delrue, C., et al. (2023) Unveiling the Hidden Power of Uromodulin: A Promising Potential Biomarker for Kidney Diseases. Diagnostics (Basel), 13, Arti-cle No. 3077.
https://doi.org/10.3390/diagnostics13193077
[40] Yang, L., Besschetnova, T.Y., Brooks, C.R., et al. (2010) Epi-thelial Cell Cycle arrest in G2/M Mediates Kidney Fibrosis after Injury. Nature Medicine, 16, 535-543.
https://doi.org/10.1038/nm.2144
[41] Esmeijer, K., Schoe, A., Ruhaak, L.R., et al. (2021) The Predictive Value of TIMP-2 and IGFBP7 for Kidney Failure and 30-Day Mortality after Electivee Cardiac Surgery. Scientific Reports, 11, Article No. 1071.
https://doi.org/10.1038/s41598-020-80196-2
[42] Bihorac, A., Chawla, L.S., Heung, M., et al. (2014) Validation of Cell-Cycle Arrest Biomarkers for Acute Kidney Injury Using Clinical Adjudication. American Journal of Respiratory and Critical Care Medicine, 189, 932-939.
https://doi.org/10.1164/rccm.201401-0077OC
[43] Schanz, M., Wasser, C., Allgaeuer, S., et al. (2019) Urinary [TIMP-2]∙[IGFBP7]-Guided Randomized Controlled Intervention Trial to Prevent Acute Kidney Injury in the Emergency Department. Nephrology Dialysis Transplantation, 34, 1902-1909.
https://doi.org/10.1093/ndt/gfy186
[44] Xiao, W., Lu, Z., Liu, Y., et al. (2022) Influence of the Initial Neutrophils to Lymphocytes and Platelets Ratio on the Incidence and Severity of Sepsis Associated Acute Kidney. Frontiers in Immunology, 13, Article ID: 925494.
https://doi.org/10.3389/fimmu.2022.925494
[45] Jiang, F., Lei, J., Xiang, J., et al. (2022) Mono-cyte-to-Lymphocyte Ratio: A Potential Novel Predictor for Acute Kidney Injury in the Intensive Care Unit. Renal Failure, 44, 1004-1011.
https://doi.org/10.1080/0886022X.2022.2079521
[46] Cakir, G.B., Hayiroglu, M., Senocak, D., et al. (2021) Evaluation of N/LP Ratio as a Predictor of Disease Progression and Mortality in COVID-19 Patients Admitted to the Intensive Care Unit. Medeniyet Medical Journal, 36, 241-248.
[47] Gameiro, J., Fonseca, J.A., Jorge, S., et al. (2020) Neutrophil, Lymphocyte and Platelet Ratio as a Predictor of Mortality in Septic-Acute Kidney Injury Patients. Ne-frologia (England Ed), 40, 461-468.
https://doi.org/10.1016/j.nefroe.2020.09.001
[48] Hwang, S.Y., Shin, T.G., Jo, I.J., et al. (2017) Neutro-phil-to-Lymphocyte Ratio as a Prognostic Marker in Critically-Ill Septic Patients. The American Journal of Emergency Medicine, 35, 234-239.
https://doi.org/10.1016/j.ajem.2016.10.055
[49] Thorup, C.V., Christensen, S. and Hvas, A.M. (2020) Immature Platelets as a Predictor of Disease Severity and Mortality in Sepsis and Septic Shock: A Systematic Review. Seminars in Thrombosis and Hemostasis, 46, 320-327.
https://doi.org/10.1055/s-0039-3400256
[50] Gong, Z., Xin, R., Li, L., et al. (2022) Platelet-to-Lymphocyte Ratio Associated with the Clinicopathological Features and Prognostic Value of Breast Cancer: A Meta-Analysis. The Interna-tional Journal of Biological Markers, 37, 339-348.
https://doi.org/10.1177/03936155221118098
[51] Lee, E.K., Lee, S.Y., Kim, B.H., et al. (2022) Visual Prognostic Value of Neutrophil-to-Lymphocyte Ratio and Plate-let-to-Lymphocyte Ratio in Behcet Uveitis. Retina, 42, 1189-1198.
https://doi.org/10.1097/IAE.0000000000003417
[52] Wang, G., Mivefroshan, A., Yaghoobpoor, S., et al. (2022) Prognostic Value of Platelet to Lymphocyte Ratio in Sepsis: A Systematic Review and Meta-Analysis. BioMed Research International, 2022, Article ID: 9056363.
https://doi.org/10.1155/2022/9056363
[53] Shimoyama, Y., Umegaki, O., Kadono, N., et al. (2022) Presepsin and Platelet to Lymphocyte Ratio Predict the Progression of Septic Subclinical Acute Kidney Injury to Septic Acute Kidney Injury: A Pilot Study. BMC Research Notes, 15, Article No. 212.
https://doi.org/10.1186/s13104-022-06103-2
[54] Yang, Z., Qiao, Y., Wang, D., et al. (2023) Association between Inflammatory Biomarkers and Contrast-Induced Acute Kidney Injury in ACS Patients Undergoing Percutaneous Coro-nary Intervention: A Cross-Sectional Study. Angiology.
https://doi.org/10.1177/00033197231185445
[55] 李艳秀, 刘云, 周春雷, 等. 单核细胞淋巴细胞比值作为重症患者30天死亡及不良事件预测指标的相关研究[J]. 中华危重病急救医学, 2021, 33(5): 582-586.