QBNs-时空非齐次开放量子游荡的量子信道表示
Quantum Channel Representation ofQBNs-Space-Time InhomogeneousOpen Quantum Walk
DOI: 10.12677/PM.2024.141026, PDF, 下载: 42  浏览: 66 
作者: 于媛媛*, 张丽霞:西北师范大学,数学与统计学院,甘肃 兰州
关键词: 量子 Bernoulli 噪声开放量子游荡时空非齐次量子信道Quantum Bernoulli Noises Open Quantum Walk Space-Time Inhomogeneous Quantum Channel
摘要: 量子 Bernoulli 噪声(QBNs) 是 Bernoulli 泛函空间和作用于其上的涅灭、增生算子族,满足一 种等时的典则反交换关系。 本文基于量子 Bernoulli 噪声方法,考虑了一维时空非齐次开放量子 游荡,通过时空非齐次性的 coin 算子对序列引入 Kraus 算子系并进行了相关研究,利用 Kraus 算子系给出该游荡的量子信道表示并讨论其性质。
Abstract: Quantum Bernoulli noises are a family of annihilation and creation operators acting on Bernoulli functionals, which satisfy a canonical anti-commutation relation in equal time. In this paper, based on the quantum Bernoulli noises method, we consider one- dimensional space-time inhomogeneous open quantum walk. The Kraus operators system is introduced and investigated by means of space-time inhomogeneous coin operator pairs. We give the quantum channel representation of the model by using the Kraus operator system and discuss its properties.
文章引用:于媛媛, 张丽霞. QBNs-时空非齐次开放量子游荡的量子信道表示[J]. 理论数学, 2024, 14(1): 241-252. https://doi.org/10.12677/PM.2024.141026

参考文献

[1] Attal, S., Petruccione, F., Sabot, C., et al. (2012) Open Quantum Random Walks. Journal of Statistical Physics, 147, 832-852.
https://doi.org/10.1007/s10955-012-0491-0
[2] Ko, C.K., Konno, N., Segawa, E., et al. (2019) Central Limit Theorems for Open Quantum Random Walks on the Crystal Lattices. Journal of Statistical Physics, 176, 710-735.
https://doi.org/10.1007/s10955-019-02318-z
[3] Sinayskiy, I. and Petruccione, F. (2019) Open Quantum Walks: A Mini Review of the Field and Recent Developments. The European Physical Journal Special Topics, 227, 1869-1883.
https://doi.org/10.1140/epjst/e2018-800119-5
[4] Konno, N. and Yoo, H.J. (2013) Limit Theorems for Open Quantum Random Walks. Journal of Statistical Physics, 150, 299-319.
https://doi.org/10.1007/s10955-012-0668-6
[5] Xiong, S. and Yang, W.S. (2013) Open Quantum Random Walks with Decoherence on Coins with n Degrees of Freedom. Journal of Statistical Physics, 152, 473-492.
https://doi.org/10.1007/s10955-013-0772-2
[6] Dhahri, A., Ko, C.K. and Yoo, H.J. (2019) Quantum Markov Chains Associated with Open Quantum Random Walks. Journal of Statistical Physics, 176, 1272-1295.
https://doi.org/10.1007/s10955-019-02342-z
[7] Dhahri, A. and Mukhamedov, F. (2019) Open Quantum Random Walks and Quantum Markov Chains. Functional Analysis and Its Applications, 53, 137-142.
https://doi.org/10.1134/S0016266319020084
[8] Wang, C.S., Chai, H.F. and Lu, Y.C. (2010) Discrete-Time Quantum Bernoulli Noises. Math- ematical Physics, 51, Article 053528.
https://doi.org/10.1063/1.3431028
[9] Wang, C.S., Wang C., Ren, S.L., et al. (2018) Open Quantum Random Walk in Terms of Quantum Bernoulli Noise. Quantum Information Processing, 17, Article No. 46.
https://doi.org/10.1007/s11128-018-1820-2
[10] 于媛媛, 王才士, 范楠. 基于量子Bernoulli噪声的一维时空非齐次开放量子游荡[J]. 吉林大学学 报理学版, 2024, 62(1): 20-0028.
[11] Nielsen, M.A. and Chuang, I.L. (2000) Quantum Computation and Quantum Information. Cambridge University Press, Cambridge.
[12] Ohya, M. and Petz, D. (1993) Quantum Entropy and Its Use. Sprinder-Verlag, Berlin.
https://doi.org/10.1007/978-3-642-57997-4 D