黄韧带骨化危险因素研究进展
Research Progress on Risk Factors of Ossification of Ligamentum Flavum
DOI: 10.12677/ACM.2024.141241, PDF, HTML, XML, 下载: 41  浏览: 78  科研立项经费支持
作者: 齐 睿*, 屈孝东, 陈段明宇, 常彦海#:西安医学院研工部,陕西 西安;陕西省人民医院骨科,陕西 西安
关键词: 黄韧带骨化致病机制Osx炎症骨质疏松症Ossification of Ligamentum Flavum Pathogenesis Osx Inflammation Osteoporosis
摘要: 黄韧带骨化(ossification of the ligamentum flavum, OLF)是导致胸腰椎椎管狭窄的重要病因,以往由胸腰椎黄韧带骨化所致胸腰椎椎管狭窄的病例并不多见。然而,随着中国居民健康意识及影像学技术的发展,黄韧带骨化所致椎管狭窄的病例越来越多的被发现。黄韧带骨化可合并硬脊膜粘连,因而增加相关手术风险及术后并发症的可能。梳理阐明黄韧带骨化的危险因素,对认识此种疾病并拓展新的诊疗思路至关重要,故本文对韧带骨化的高危因素进行综述。
Abstract: Ossification of the ligamentum flavum is an important cause of thoracolumbar spinal stenosis. In the past, the cases of thoracolumbar spinal stenosis caused by ossification of the ligamentum flavum were rare. However, with the development of Chinese residents’ health awareness and imaging technology, more and more cases of spinal stenosis caused by ossification of the ligamentum flavum have been found. Ossification of the ligamentum flavum can be associated with dural adhesions, thus increasing the risk of surgery and the possibility of postoperative complications. It is very im-portant to clarify the risk factors of ligamentum flavum ossification for understanding this disease and developing new diagnosis and treatment ideas, so this paper summarizes the high risk factors of ligamentum flavum ossification.
文章引用:齐睿, 屈孝东, 陈段明宇, 常彦海. 黄韧带骨化危险因素研究进展[J]. 临床医学进展, 2024, 14(1): 1684-1688. https://doi.org/10.12677/ACM.2024.141241

1. 引言

OLF属于脊柱韧带病理性异位骨化性疾病,颈椎、胸椎和腰椎均可发生,其中最常发生在胸椎,尤其是以下胸段最为常见(T9~T12),且胸段脊髓受压的危害最大,疾病的预后最差 [1] 。目前,国内外有关于OLF发病率的流行病学统计尚不多见,但有数据表明,在中国南方汉族人口中的发病率约为3.8% [2] [3] [4] 。后路椎板切除椎管减压术是常规治疗OLF所致的椎管狭窄症的方法;然而,由于黄韧带骨化病灶常其与硬脊膜粘连,在分离椎板时易造成脑脊液漏,故手术过程具有挑战性 [1] [5] ,并且有较多高风险的围手术期并发症 [6] [7] 。因此,寻找与胸椎OLF相关的危险因素有助于提高对该疾病的发病机制的认识,进而拓展新的诊疗方向。本文将逐一对这些危险因素进行阐述。

2. 常见危险因素

2.1. 遗传

Runx2是参与成骨细胞骨化过程所的关键因子。Runx2可调节成骨细胞骨化,促进骨组织生成和重建,同时促进多能干细胞向软骨细胞分化。基因分型显示Runx2中两个位点RS1321075和RS12333172在OLF患者和对照组之间存在差异,其中一个单倍型位点被证明与OLF的发病率存在联系 [8] 。Osterix是成骨细胞分化和骨硬化的重要转录因子。骨髓蛋白基因Bsp是骨和牙齿的矿化过程中起重要作用的一种蛋白质。研究人员发现,Osx的缺失会导致Bsp表达的消失,通过实验,研究人员发现过表达Osx可以激活Bsp的表达,从而揭示了Osx对Bsp基因的直接调控作用 [9] 。Notch是介导细胞信号转导的受体蛋白,影响成骨细胞增殖、分化和骨化 [10] Runx2和Osterix的表达在黄韧带细胞成骨分化过程中以与Notch 2的方式相似,将Notch 2敲低和过表达影响其表达水平。Notch信号在OLF中起重要作用,Notch可能通过与Runx 2和Osterix相互作用影响黄韧带细胞的成骨分化 [11] 。值得一提的是,通过全基因组分析,Osterix被证实和骨折疏松这一种以骨丢失的代谢性疾病有关 [12] ,验证此两种疾病的相关性或许会为认识黄韧带骨化的发病机制提供新的思路。 [13] [14]

2.2. 代谢紊乱

因此,弥漫性特发性骨肥厚、佩吉特病、氟中毒、腺癌转移、低磷血症维生素D抵抗性佝偻病、羟磷灰石和钙代谢紊乱可能导致OLF [15] [16] 。有研究表明骨骼氟含量超标可引起OLF [17] 。Kumar H等人的实验发现氟化物可能通过刺激已发生退变的黄韧带细胞向成骨细胞分化、成熟,而且在诱导黄韧带退变基础上进一步骨化 [18] [19] 。

2.3. 机械应力

Yin Zhao [20] 等研究发现对大鼠黄韧带施加周期性张应力可诱发OLF,持续时间越长,成骨作用越明显。CD 44、骨形态发生蛋白2 (BMP-2)、整合素b3、I型胶原蛋白1 (COL 1)、骨桥蛋白(OPN)、侏儒相关转录因子2 (RUNX-2)和血管内皮生长因子(VEGF)的蛋白和mRNA表达成骨相关分子在3个实验组中的表达均增加,即成骨相关分子的上调和协同作用可能参与了张应力诱导的OLF。Kim等 [21] 研究脊髓von-Mises应力和横截面积对脊髓压迫的不同程度和形状的影响,发现当脊髓横截面积减少30%~40%或压缩4 mm发生形变时,会出现脊髓症状。虽然关于机械应力的研究相对较多,但仍无法解释所有病例的致病机制,在欧美、非洲等地关于机械应力导致OLF的报道较少。胸椎的运动受到限制。推测的机制如下。当张力增加时,黄韧带中的BMP-2、TGF-β和SOX升高。然后,成纤维细胞分化成成软骨细胞和成骨细胞,最后向韧带骨化发展 [22] 。它在东亚更频繁地发展的原因之一被认为是由于这些地区人群习惯上更频繁地采取蹲位 [23] [24] 。但是脊柱局部应力的异常所造成的影响对解释OLF致病机制有其局限性。

2.4. 炎症

在最近的研究中,炎症在新骨形成过程中所起到的作用越来越被学者们所重视。在骨折发生后,机体会激活TNF-α炎症信号通路,TNF-α介导软骨细胞凋亡和控制破骨细胞对软骨内组织重塑的促吸收细胞因子的表达。虽然TNF-α受体消融后的动物其骨骼并没有明显的发育改变,但结果说明了TNF-α功能在促进创伤后骨折修复中起主要作用,并表明骨骼组织发育和出生后修复的过程部分由不同的机制控制。此过程对骨组织的重建至关重要。 [25] [26] Zhao Yongzhao等认为,高全身免疫炎症指数和体重指数是胸椎黄韧带骨化症的独立危险因素

2.5. 年龄、性别、BMI

有研究表明,年龄、是否吸烟、患者BMI指数是TOLF发生的临床危险因素,吸烟可能影响OLF的病情进展及严重程度,而BMI指数过高可能会诱导新发OLF,这一点在胸椎的OLF中尤其重要,年龄被证明是是TOLF的危险因素,但在女性患者组中的统计学结果表明其不能作为女性OLF患者的独立危险因素 [27] [28] [29] 。

3. 总结

综上所述,对于OLF的致病机制及相关危险因素,近年来国内外学者们做了很多的探索,也提出诸多关于OLF致病机制的假设,如本文所提到的代谢紊乱、机械应力、年龄、性别、BMI等,故OLF很可能是由多因素参与共同导致的。最值得关注的是,有研究表明TNF-α通路在OLF中参与骨化过程,而对此过程的进一步研究可能进一步解释OLF的病因,进而更加充分地认识此疾病以拓宽诊疗思路及研发新的药物。

基金项目

陕西省社发项目(2023-YBSF-607);陕西省人民医院领军人才支持项目(2022LJ-07)。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Barnett, G.H., Hardy, R.W., Little, J.R., Bay, J.W. and Sypert, G.W. (1987) Thoracic Spinal Canal Stenosis. Journal of Neurosurgery, 66, 338-344.
https://doi.org/10.3171/jns.1987.66.3.0338
[2] Lang, N., Yuan, H.S., Wang, H.L., et al. (2013) Epidemiological Survey of Ossification of the Ligamentum Flavum in Thoracic Spine: CT Imaging Observa-tion of 993 Cases. European Spine Journal, 22, 857-862.
https://doi.org/10.1007/s00586-012-2492-8
[3] Hur, H., Lee, J.K., Lee, J.H., et al. (2009) Thoracic Myelopathy Caused by Ossification of the Ligamentum Flavum. Journal of Korean Neurosurgical Society, 46, 189-194.
https://doi.org/10.3340/jkns.2009.46.3.189
[4] Guo, J.J., Luk, K.D., Karppinen, J., et al. (2010) Prevalence, Dis-tribution, and Morphology of Ossification of the Ligamentum Flavum: A Population Study of One Thousand Seven Hundred Thirty-Six Magnetic Resonance Imaging Scans. Spine, 35, 51-56.
https://doi.org/10.1097/BRS.0b013e3181b3f779
[5] Park, B.-C., Min, W.-K., et al. (2007) Surgical Outcome of Thoracic Myelopathy Secondary to Ossification of Ligamentum Flavum. Joint Bone Spine, 74, 600-605.
https://doi.org/10.1016/j.jbspin.2007.01.033
[6] Sun, C., Chen, Z., Chen, G., et al. (2022) “A New “De-Tension”-Guided Surgical Strategy for Multilevel Ossification of Posterior Longitudinal Ligament in Thoracic Spine: A Prospective Observational Study with at Least 3-Year Follow-Up. The Spine Journal, 22, 1388-1398.
https://doi.org/10.1016/j.spinee.2022.03.007
[7] Wang, L., Wang, H., Chen, Z., Sun, C. and Li, W. (2021) Surgi-cal Strategy for Non-Continuous Thoracic Spinal Stenosis: One- or Two-Stage Surgery? International Orthopaedics, 45, 1871-1880.
https://doi.org/10.1007/s00264-020-04913-2
[8] Liu, Y., Zhao, Y., Chen, Y., et al. (2010) RUNX2 Polymor-phisms Associated with OPLL and OLF in the Han Population. Clinical Orthopaedics and Related Research, 468, 3333-3341.
https://doi.org/10.1007/s11999-010-1511-5
[9] Ramazzotti, G., Fiume, R., Chiarini, F., Campana, G., Ratti, S., Billi, A.M., et al. (2019) Phospholipase C-β1 Interacts with Cyclin E in Adipose-Derived Stem Cells Osteo-genic Differentiation. Advances in Biological Regulation, 71, 1-9.
https://doi.org/10.1016/j.jbior.2018.11.001
[10] Qu, X., Chen, Z., Fan, D., et al. (2016) Notch Signaling Pathways in Human Thoracic Ossification of the Ligamentum Flavum. Journal of Orthopaedic Research, 34, 1481-1491.
https://doi.org/10.1002/jor.23303
[11] Lin, G.L. and Hankenson, K.D. (2011) Integration of BMP, Wnt, and Notch Signaling Pathways in Osteoblast Differentiation. Journal of Cellular Biochemistry, 112, 3491-3501.
https://doi.org/10.1002/jcb.23287
[12] Zhang, C. (2012) Molecular Mechanisms of Osteoblast-Specific transcrip-tion Factor Osterix Effect on Bone Formation. Journal of Peking University (Health Sciences), 44, 659-665.
[13] 王哲, 王全平. 氟化物对人体胸椎黄韧带骨化的细胞学行为特性的影响及相关实验研究[D]: [博士学位论文]. 西安: 第四军医大学, 2002.
[14] Li, F., Chen, Q. and Xu, K. (2006) Surgical Treatment of 40 Patients with Thoracic Ossifica-tion of the Ligamentum Flavum. Journal of Neurosurgery: Spine, 4, 191-197.
https://doi.org/10.3171/spi.2006.4.3.191
[15] Tsukamoto, N., Maeda, T., Miura, H., et al. (2006) Repetitive Tensile Stress to Rat Caudal Vertebrae Inducing Cartilage Formation in the Spinal Ligaments: A Possible Role of Mechanical Stress in the Development of Ossification of the Spinal Ligaments. Journal of Neurosurgery: Spine, 5, 234-242.
https://doi.org/10.3171/spi.2006.5.3.234
[16] Zhang, C., Chen, Z., Meng, X., Li, M., Zhang, L. and Huang, A. (2017) The Involvement and Possible Mechanism of Pro-Inflammatory Tumor Necrosis Factor Alpha (TNF-α) in Tho-racic Ossification of the Ligamentum Flavum. PLOS ONE, 12, e0178986.
https://doi.org/10.1371/journal.pone.0178986
[17] Yang, Y., Huang, Y., Zhang, L., et al. (2016) Transcriptional Regulation of Bone Sialoprotein Gene Expression by Osx. Biochemical and Biophysical Research Communications, 476, 574-579.
https://doi.org/10.1016/j.bbrc.2016.05.164
[18] Yayama, T., Uchida, K., Kobayashi, S., et al. (2007) Thoracic Ossification of the Human Ligamentum Flavum: Histopathological and Immunohistochemical Findings around the Ossified Lesion. Journal of Neurosurgery: Spine, 7, 184-193.
https://doi.org/10.3171/SPI-07/08/184
[19] Misawa, H., Ohtsuka, K., Nakata, K. and Kinoshita, H. (1994) Embry-ological Study of the Spinal Ligaments in Human Fetuses. Journal of Spinal Disorders, 7, 495-498.
https://doi.org/10.1097/00002517-199412000-00005
[20] Shenoi, R.M., Duong, T.T., Brega, K.E. and Gaido, L.B. (1997) Ossification of the Ligamentum Flavum Causing Thoracic Myelopathy: A Case Report. American Journal of Physical Medicine & Rehabilitation, 76, 68-72.
https://doi.org/10.1097/00002060-199701000-00014
[21] Zhao, Y., Yuan, B., Cheng, L., Zhou, S., Tang, Y., et al. (2021) Cyclic Tensile Stress to Rat Thoracolumbar Ligamentum Flavum Inducing the Ossification of Ligamentum Fla-vum: An in Vivo Experimental Study. Spine, 46, 1129-1138.
https://doi.org/10.1097/BRS.0000000000004087
[22] Kim, Y.H., Khuyagbaatar, B. and Kim, K. (2013) Biome-chanical Effects of Spinal Cord Compression Due to Ossification of Posterior Longitudinal Ligament and Ligamentum Flavum: A Finite Element Analysis. Medical Engineering & Physics, 35, 1266-1271.
https://doi.org/10.1016/j.medengphy.2013.01.006
[23] Schmidt-Bleek, K., Petersen, A., Dienelt, A., et al. (2014) Initiation and Early Control of Tissue Regeneration—Bone Healing as a Model System for Tissue Regeneration. Expert Opinion on Biological Therapy, 14, 247-259.
https://doi.org/10.1517/14712598.2014.857653
[24] Gerstenfeld, L.C., Cho, T.J., Kon, T., et al. (2003) Impaired Fracture Healing in the Absence of TNF-Alpha Signaling: The Role of TNF-Alpha in Endochondral Cartilage Resorption. Journal of Bone and Mineral Research, 18, 1584-1592.
https://doi.org/10.1359/jbmr.2003.18.9.1584
[25] Zhang, H., Deng, N., Zhang, L., Zhang, L. and Wang, C. (2022) Clinical Risk Factors for Thoracic Ossification of the Ligamentum Flavum: A Cross-Sectional Study Based on Spinal Thoracic Three-Dimensional Computerized Tomography. Risk management and Healthcare Policy, 15, 1065-1072.
https://doi.org/10.2147/RMHP.S361730
[26] Tang, C.Y.K., Cheung, K.M.C., Samartzis, D. and Cheung, J.P.Y. (2021) The Natural History of Ossification of Yellow Ligament of the Thoracic Spine on MRI: A Population-Based Co-hort Study. Global Spine Journal, 11, 321-330.
https://doi.org/10.1177/2192568220903766
[27] Liang, H., Liu, G., Lu, S., et al. (2019) Epidemiology of Ossifica-tion of the Spinal Ligaments and Associated Factors in the Chinese Population: A Cross-Sectional Study of 2000 Con-secutive Individuals. BMC Musculoskeletal Disorders, 20, Article No. 253.
https://doi.org/10.1186/s12891-019-2569-1
[28] Ren, L., Hu, H., Sun, X., Li, F., Zhou, J.J. and Wang, Y.M. (2013) The Roles of Inflammatory Cytokines in the Pathogenesis of Ossification of Ligamentum Flavum. American Journal of Translational Research, 5, 582-585.
[29] Kumar, H., Boban, M. and Tiwari, M. (2009) Skeletal Fluorosis Causing High Cervical Myelopathy. Journal of Clinical Neuroscience, 16, 828-830.
https://doi.org/10.1016/j.jocn.2008.08.028