抗体–药物偶联物在HER2阳性乳腺癌治疗中的研究进展
Research Progress of Antibody-Drug Conjugates in the Treatment of HER2-Positive Breast Cancer
DOI: 10.12677/ACM.2024.141256, PDF, HTML, XML, 下载: 54  浏览: 102 
作者: 古丽斯热·阿不都克里木, 赵 兵*:新疆医科大学附属肿瘤医院,新疆 乌鲁木齐
关键词: 乳腺癌HER2阳性抗体–药物偶联物Breast Cancer HER2-Positive Antibody-Drug Conjugate
摘要: 乳腺癌已成为女性中最常见的癌症,也是全球女性癌症性相关死亡的第二大病因。HER2阳性乳腺癌的主要特征是HER2过表达,也被认为是第二具侵袭性的亚型。为了获得最大的抗肿瘤活性,使更多的HER2乳腺癌患者受益,研究者们将抗体和细胞毒性药物结合在一起形成抗体–药物偶联物。抗体–药物偶联物(ADC)正在彻底改变癌症治疗,增加了另一种重要的系统治疗新类别。ADC是一种特殊设计的治疗方法,它通过定向的抗体药物传递和释放细胞毒性化疗有效载荷来靶向表达特定癌症抗原的细胞。本文将重点介绍几种用于乳腺癌治疗的ADC的研究进展,并讨论它们所带来的机遇和挑战。
Abstract: Breast cancer has become the most common cancer among women and the second leading cause of cancer-related deaths among women worldwide. HER2-positive breast cancer is characterized pri-marily by HER2 overexpression, which is also considered to be the second most aggressive subtype. To achieve maximum antitumor activity and benefit more HER2 breast cancer patients, the re-searchers combined the antibody with the cytotoxic drug to form an antibody-drug conjugate. An-tibody-drug conjugate (ADC) are revolutionizing cancer therapy, adding another important new class of systemic therapies. ADC is a specially designed therapy that targets cells expressing specific cancer antigens through targeted antibody drug delivery and the release of cytotoxic chemotherapy payloads. This article will highlight the research advances in several ADCs for the treatment of breast cancer and discuss the opportunities and challenges they present.
文章引用:古丽斯热·阿不都克里木, 赵兵. 抗体–药物偶联物在HER2阳性乳腺癌治疗中的研究进展[J]. 临床医学进展, 2024, 14(1): 1801-1807. https://doi.org/10.12677/ACM.2024.141256

1. 引言

乳腺癌已成为女性中最常见的癌症,也是全球女性癌症性相关死亡的第二大病因 [1] 。乳腺癌是一种异质性疾病,根据细胞表面受体的表达可分为四种分子亚型:Luminal A、Luminal B、人表皮生长因子受体2 (HER2)阳性和三阴性乳腺癌(TNBC);每一种乳腺癌亚型都有不同的特征、流行病学、对治疗的反应和预后 [2] [3] 。其中,大约20%的乳腺癌患者过度表达酪氨酸蛋白激酶erbB-2受体,也被称为人表皮生长因子受体2或HER2 [4] 。HER2阳性乳腺癌的主要特征是HER2过表达,也被认为是第二具侵袭性的亚型 [5] 。HER2在乳腺癌、胃癌、食管癌、头颈部肿瘤和妇科肿瘤中高表达 [6] 。据研究表明,HER2阳性乳腺癌的患者预后较差,无病生存期和总生存期明显缩短 [7] ,约15%~24%的HER2阳性乳腺癌患者在治疗结束后会发生转移,3%~10%的人会出现新发转移 [8] [9] 。肿瘤细胞通过HER2与其他酪氨酸激酶受体二聚化,随后激活几种信号通路PI3K-AKT和RAS-MAPK,从而导致细胞增殖和存活 [10] 。因此,HER2阳性乳腺癌(HER2 + BC)呈现出一种致癌驱动因素,为研究人员提供了特异性靶向HER2的机会。也成为了HER2阳性乳腺癌治疗干预和管理以及靶向治疗发展的最佳靶点。早在20世纪90年代中期,一种人源化单克隆抗体曲妥珠单抗被开发出来,直接结合HER2蛋白阻止下游信号传导 [11] 。由于HER2阳性乳腺癌患者的绝佳反应,曲妥珠单抗于1998年获得FDA批准,用于治疗HER2阳性乳腺癌的辅助一线治疗。曲妥珠单抗的开发仍然是HER2阳性乳腺癌治疗中最重要的进展之一,并极大地影响了HER2阳性乳腺癌患者的治疗方式。随后,多种HER2靶向药物,包括单抗帕妥珠和小分子抑制剂,如拉帕替尼和纳拉替尼,后来都被批准用于治疗HER2阳性乳腺癌 [12] ;2020年圣安东尼奥乳腺癌研讨会报告了NALA试验的进一步研究结果:对基线时无症状且稳定的晚期乳腺癌疾病患者(neratinib组和lapatinib组分别为总患者的16.3%和51例和50例)进行了一项后分析,证实了纳拉替尼在无进展生存期方面的积极趋势(7.8个月vs 5.5个月) [13] 。尽管靶向HER2的药物为乳腺癌治疗引来了新时代,但仍有5.8%~8.6%的HER2阳性患者由于获得性抗HER2单抗耐药而复发 [14] 。为了克服这种治疗耐药性并获得最大的抗肿瘤活性,研究者们将抗体和细胞毒性药物结合在一起形成抗体–药物偶联物(ADC)。ADC类药物结合了化疗和单克隆抗体的优点,既能促进抗体介导作用,又能促进细胞毒载荷,构成了精确到达肿瘤的能力,并具有更高的肿瘤杀伤毒性 [15] 。

2. 抗肿瘤机制

抗体–药物偶联物(ADC)由单克隆抗体与细胞毒性药物连接组成,目的是选择性递送化疗药物。鉴于抗体的特异性,这些治疗方法寻求通过最小化脱靶毒性来扩大传统化疗之外的治疗窗口。这种机制可以使靶细胞的效力比传统的全身化疗提高100到1000倍 [16] 。此外,与传统化疗相比,ADC所赋予的特异性是允许使用更有效的细胞毒性药物。ADC有三个组成部分:靶向肿瘤相关抗原的抗体、连接物和细胞毒性有效载荷。理想的靶标是在肿瘤细胞中发现的,但在非恶性细胞中因限制脱靶毒性发现的较少 [15] 。连接物生物化学的变化允许连接物可以是可切割的或不可切割的,可切割的连接物根据肿瘤特异性因素(如pH或酶变化)释放其有效载荷。可切割的连接物可以更有效地传递细胞毒性载荷,而不可切割的连接物可能更具有特异性,但需要额外的载荷释放机制,如溶酶体降解等影响载荷结构的因素 [17] 。

ADC的确切作用机制尚未完全明确,可能与单克隆抗体、连接物和有效载荷与肿瘤细胞和微环境的相互作用有关。ADC单克隆抗体与癌细胞表面的HER2结合,通过调节HER2 (PI3K-AKT-mTOR和RAS-MAPK通路)发出的信号,并通过fc介导的效应物功能发挥抗肿瘤活性。此后,ADC-HER2复合体被内化在网格蛋白包裹的早期内体中,并被转运到溶酶体中。在溶酶体内部,具有可切割连接体的ADC将释放有效载荷,而具有不可切割连接体的ADC将分解ADC并释放连接体–有效载荷复合物。随后,载荷通过其在靶细胞内的经典作用机制引发抗肿瘤活性 [18] 。根据连接物和有效载荷的组合,有效载荷可以在ADC内部化之前或之后在细胞外空间内释放。在这两种情况下,有效载荷都可以在邻近细胞中发挥其活性,这些细胞可能表达HER2,也可能不表达HER2。这种更广泛的药物递送到肿瘤细胞,被称为旁观者效应,提高了ADC在异质性和/或低HER2表达的癌症中的活性 [15] 。

3. ADC类药物研究进展

ADC类药物的发展过程漫长而复杂,从提出ADC设计到首个ADC获批的时间长达100多年 [19] 。ADC开创了靶向治疗的新纪元,极大地改善了乳腺癌患者的预后。两种抗HER2的ADC,阿多曲妥珠单抗emtansine (T-DM1)和fam-曲妥珠单抗deruxtecan-nxki (T-DXd)被批准作为HER2阳性乳腺癌患者的辅助治疗和挽救治疗 [20] 。迄今为止,一些正在进行的临床试验评估了ADC治疗乳腺癌和其他实体肿瘤的疗效,体现了ADC作为有希望的癌症治疗方案的整体潜力 [21] 。下文对ADC用于HER2阳性乳腺癌治疗的现状进行了综述。

3.1. T-DM1

T-DM1属于第二代抗HER2 ADC,是第一个被批准用于治疗HER2阳性乳腺癌患者的ADC [22] 。T-DM1是基于曲妥珠单抗,以细胞毒性微管抑制剂为有效负载,通过硫醚不可切割的连接体;在接受二线及以上治疗的HER2阳性乳腺癌患者中,与标准疗法相比,显著改善了无进展生存期(PFS)和总生存期(OS)。在III期试验TH3RESA中,606名经过大量预处理(中位线数为4线)的患者被随机分配接受T-DM1 (n = 404)或医生选择的治疗(n = 198) [23] 。尽管对照组中有47%的患者在进展时接受了T-DM1,但实验组的中位OS明显更长[22.7个月与15.8个月;风险比(HR):0.68,95%置信区间(CI):0.54~0.85]。在III期EMILIA试验中,T-DM1与拉帕替尼加卡培他滨(当时最常用的二线疗法)在991名既往接受过曲妥珠单抗和紫杉烷类药物治疗的HER2阳性乳腺癌患者中进行了比较:T-DM1优于标准疗法,显著改善客观缓解率(ORR,43.6% vs 30.8%)、中位无进展生存期(PFS,9.6 vs 6.4个月;HR:0.65,95% CI:0.55~0.77)和总生存期(OS,29.9 vs 25.9个月;HR:0.75,95% CI:0.64~0.88) [24] 。考虑到美坦辛的有效载荷,T-DM1最常见的不良事件(AEs)是血小板减少(3级,14%)和肝脏毒性(3级,5%)。依靠转移环境中的阳性结果,T-DM1被测试为HER2阳性BC新辅助化疗后残留侵袭性病灶患者的辅助治疗。Katherine的试验表明,与佐剂曲妥珠单抗相比,T-DM1可将复发风险减半 [25] 。

3.2. T-DXd

最近,另一种抗HER2 ADC曲妥珠单抗-deruxtecan (T-DXd)使转移性乳腺癌的治疗发生了革命性的变化。T-DXd由一个可切割的四肽接头和exatecan的有效负载衍生物组成,exatecan是一种喜树碱类似物,它抑制拓扑异构酶I,导致DNA断裂。使FDA于2019年12月加速批准的第二阶段单组Destination-Breast 01研究中,进一步证实,T-DXd对HER2阳性和HER2低表达(免疫组织化学1+或2+,原位杂交阴性结果)的患者比标准治疗更有效 [26] 。在转移性HER2阳性BC中比较T-DXd和T-DM1的关键3期Destination-Breast 03试验随机选择了524名以前接受紫杉烷和曲妥珠单抗治疗的患者。T-DXd的中位PFS是T-DM1的4倍(28.8个月vs 6.8个月;HR为0.33,95% CI为0.26~0.43)。在中位随访28.4个月(范围为0.0~46.9个月)时,两组均未达到中位OS,但差异显著(HR为0.64,95% CI为0.47~0.87) [27] 。此外,Destination-Breast 02期研究在HER2阳性的转移性乳腺癌患者中比较了T-DXd和医生选择的治疗方法,证实了T-DXd在以后的治疗中也有更好的疗效,与标准治疗的6.9个月相比,T-DXd的中位PFS为17.8个月(HR:0.36,95% CI:0.28~0.45)。

根据T-DXd旁观者效应的临床前证据和第一阶段的初步数据,第三阶段Destination-Breast 04试验评估了T-DXd在接受一或两个化疗方案的HER2低转移BC患者中的疗效。共有557名患者随机接受T-DXd或医生选择的化疗。在激素受体(HR)阳性患者(n = 494)中,T-DXd改善了中位PFS (10.1个月vs 5.4个月;HR:0.51,95% CI:0.40~0.64)和OS (23.9 vs 17.5个月;HR:0.64,95% CI:0.48~0.86)。这些益处也见于HR阴性的BC患者,中位PFS为(9.9 vs 5.1个月;HR:0.50,95% CI:0.40~0.63),OS为(23.4 vs 16.8个月;HR:0.64,95% CI:0.49~0.84),但受限于58名患者的生存分析 [20] 。有趣的是,T-DXd在HER2阴性的BC患者中也表现出活性,这在II期DAISY研究中得到了证明,在该研究中,转移性BC患者根据HER2的表达被分为三组接受T-DXd治疗。在进入HER2高表达队列(免疫组织化学[IHC]3+或IHC2+/ISH+)的患者中,ORR为69.1%,中位PFS为11.1个月。HER2低表达组(IHC1+或IHC2+/ISH−肿瘤)患者的ORR为33.3%,中位PFS为6.7个月。在HER2不表达的队列中(IHC 0),ORR为30.6%中位PFS为4.2个月 [28] 。总体而言,T-DXd的安全性总体上可控,其中血液学、低度胃肠道不良反应最为常见。肺间质毒性(ILD)是最受关注的AE。在9个I期和II期T-DXd单一治疗的综合分析中,ILD的总发生率为15.4%,大多数为低级别,77.4%为1级或2级,少数病例为致死性(5级,2.2%)。可能与ILD风险增加相关的因素有:年龄65岁、T-DXd剂量6.4 mg/kg、血氧饱和度95%、中/重度肾功能不全、肺部合并症的存在以及首次诊断的时间 [29] 。尽管ILD的发病机制仍不清楚且仍在研究中,但T-DXd被肺泡巨噬细胞靶向摄取可能是关键机制。

3.3. SYD985

Vic-trastuzumab duocarmazine (SYD985)由通过可裂解接头连接到曲妥珠单抗的DNA烷化剂有效负载组成 [30] 。在一项I期试验中,SYD985在接受过多次治疗的HER2阳性BC患者中显示出显著的临床活性,并获得了FDA快速通道,之后,SYD985与III期TULIP试验中的标准治疗相比具有优势。该研究通过增加中位无进展生存期(7.0个月与4.9个月;HR:0.64,95% CI:0.49~0.84)并显示OS获益趋势(HR:0.83,95% CI:0.62~1.09)达到了主要终点 [31] 。最常见的治疗中出现的AE是眼部毒性,76%的患者出现不同程度的结膜炎和角膜炎,12.2%和5.6%的患者出现3级或更高级别的角膜炎和结膜炎。正在评估不同的缓解措施,例如预防性使用眼药水。

3.4. RC48

DisitamabVedotin (RC48)由一种针对HER2的新型人源化单克隆抗体赫妥珠单抗(hertuzumab)和单甲基auristatin E (MMAE)有效负载组成,其特点是对HER2具有更高的亲和力和更有效的ADCC [32] ,以及通过可裂解接头缀合的单甲基auristatin E (MMAE)有效负载。在剂量递增的C001CANCERI期试验中,RC48在不同HER2表达水平的患者中显示出活性。在HER2阳性亚组中,RC48:1.5、2.0和2.5 mg/kg剂量的ORR分别为22.2%、42.9%和40.0%,中位PFS分别为4.0、5.7和6.3个月。在HER2低表达亚组中,ORR和中位PFS分别为39.6%和5.7个月,分别用RC48:2.0 mg/kg [33] 。该化合物还获得中国国家药品监督管理局(NMPA)有条件批准用于治疗HER2阳性局部晚期或转移性胃癌患者以及转移性尿路上皮癌患者。

3.5. ARX788

ARX788是一种基于非天然氨基酸的位点特异性缀合技术的ADC,因此呈现出高度的同质性。它由人源化HER2抗体与微管蛋白抑制剂amberstatin (AS269)组合而成。在一项仅招募HER2阳性BC患者的I期试验中,ORR为65.5%,中位PFS为17.0个月 [34] 。最常见的3~4级AE是眼部AE (5.7%)和肺炎(4.3%)。正在进行的2期ACE-Breast-03 (NCT04829604)研究正在评估ARX788在对T-DM1、T-DXd和/或含tucatinib方案耐药的转移性HER2阳性BC患者中的活性和安全性。

4. ADC药物的毒副反应

ADC的副作用可能来自肿瘤抗原特异性抗体或其细胞毒性载荷。迄今为止的试验显示,与曲妥珠单抗治疗相比,以曲妥珠单抗为基础的ADC具有相似的可逆性心肌病风险,但均低于2%~3% [27] ;理想情况下,由于抗体需要内在化到细胞内,连接分子必须在释放细胞毒性有效载荷之前被切割或降解,因此细胞毒性有效载荷产生的系统副作用将被最小化。使用ADC如SG和T-DXd已被证明是可耐受的,副作用可控,严重发热性中性粒细胞减少症、贫血、恶心和腹泻的发生率均在10%以内 [35] 。尽管如此,在ASCENT和DESTINY-Breast-03试验中,25%的患者要求减少剂量,粒细胞集落刺激因子的使用率很高,且早期停药率在5%~15%之间 [36] 。此外,T-DXd也与药物诱导的间质性肺间质(ILD)的风险相关(为15%),需要密切监测和早期干预 [20] 。虽然严重 ≥ 3级肺炎的发生率较低,但这种不良副作用值得关注,特别是T-DXd联合免疫检查点抑制剂治疗、放疗或进一步探索辅助治疗中 [37] 。对于老年患者和合并多种疾病的患者,ADC治疗的安全性、耐受性和最佳药物剂量有待进一步研究。还需要长期的安全数据来评估潜在的不可逆毒性,如继发性恶性肿瘤的风险。目前,在大量治疗前的乳腺癌患者中,生活质量评分似乎优于细胞毒性化疗。尽管如此,评估ADC作为辅助治疗和一线转移治疗的临床试验中的生活质量研究将是必要的。我们对ADC治疗的晚期效应的了解也很有限,这需要更多的随访和数据来评估。

5. 结语与展望

ADC的出现使肿瘤治疗取得了重大突破。经过三代的发展,FDA批准的ADC及其在临床试验中的良好疗效越来越受到人们的关注。对于乳腺癌,T-DM1、T-DXd等ADC给晚期转移性肿瘤患者带来了希望。新型ADC药物和靶点正在探索中,以求进一步精确地消灭癌细胞,但仍有许多挑战阻碍着其成功。例如ADC的不良反应、HER2靶向ADC的疗效取决于HER2的表达水平、药物疗效等等;为了克服这些挑战,需要全面了解ADC的不良反应机制、药代动力学和耐药性,对ADC的发展和探索仍有必要。识别和验证新的抗原和抗体,设计具有最佳毒性的有效载荷,设计平衡稳定性和有效载荷释放的连接子,在优化ADC领域似乎具有重要意义。总而言之,鉴于在这一领域的持续努力,未来靶向癌症治疗的ADC是值得期待的。

NOTES

*通讯作者。

参考文献

[1] Siegel, R.L., Miller, K.D., Fuchs, H.E., et al. (2022) Cancer Statistics, 2022. CA: A Cancer Journal for Clinicians, 72, 7-33.
https://doi.org/10.3322/caac.21708
[2] Perou, C.M., Sorlie, T., Eisen, M.B., et al. (2000) Molecular Por-traits of Human Breast Tumours. Nature, 406, 747-752.
https://doi.org/10.1038/35021093
[3] Johnson, K.S., Conant, E.F. and Soo, M.S. (2021) Molecular Subtypes of Breast Cancer: A Review for Breast Radiologists. Journal of Breast Imaging, 3, 12-24.
https://doi.org/10.1093/jbi/wbaa110
[4] Wolff, A.C., Hammond, M.E.H., Allison, K.H., et al. (2018) Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update. Journal of Clinical Oncology, 36, 2105-2122.
[5] Al-thoubaity, F.K. (2020) Molecular Classification of Breast Cancer: A Retrospective Cohort Study. Annals of Medicine and Surgery, 49, 44-48.
https://doi.org/10.1016/j.amsu.2019.11.021
[6] 金振硕, 王海燕. 通过JAK通路促进乳腺癌的免疫治疗[J]. 中国免疫学杂志, 2019, 35(23): 2942-2945.
[7] Ravdin, P.M. and Chamness, G.C. (1995) The c-erbB-2 Proto-Oncogene as a Prognostic and Predictive Marker in Breast Cancer: A Para-digm for the Development of Other Macromolecular Markers—A Review. Gene, 159, 19-27.
https://doi.org/10.1016/0378-1119(94)00866-Q
[8] Bredin, P., Walshe, J.M. and Denduluri, N. (2020) Systemic Therapy for Metastatic HER2-Positive Breast Cancer. Seminars in Oncology, 47, 259-269.
https://doi.org/10.1053/j.seminoncol.2020.07.008
[9] Zhang, L., Li, Z.J., Zhang, J., et al. (2020) De Novo Meta-static Breast Cancer: Subgroup Analysis of Molecular Subtypes and Prognosis. Oncology Letters, 19, 2884-2894.
https://doi.org/10.3892/ol.2020.11359
[10] Moasser, M.M. (2007) The Oncogene HER2: Its Signaling and Trans-forming Functions and Its Role in Human Cancer Pathogenesis. Oncogene, 26, 6469-6487.
https://doi.org/10.1038/sj.onc.1210477
[11] Singh, H., Walker, A.J., Amiri-Kordestani, L., et al. (2018) US Food and Drug Administration Approval: Neratinib for the Extended Adjuvant Treatment of Early-Stage HER2-Positive Breast Cancer. Clinical Cancer Research, 24, 3486-3491.
https://doi.org/10.1158/1078-0432.CCR-17-3628
[12] Howie, L.J., Scher, N.S., Amiri-Kordestani, L., et al. (2019) FDA Approval Summary: Pertuzumab for Adjuvant Treatment of HER2-Positive Early Breast Cancer. Clinical Cancer Research, 25, 2949-2955.
https://doi.org/10.1158/1078-0432.CCR-18-3003
[13] Saura, C., Oliveira, M., Feng, Y.H., et al. (2020) Neratinib plus Capecitabine versus Lapatinib plus Capecitabine in HER2-Positive Metastatic Breast Cancer Previously Treated with ≥2 HER2-Directed Regimens: Phase III NALA Trial. Journal of Clinical Oncology, 38, 3138-3149.
https://doi.org/10.1200/JCO.20.00147
[14] Chumsri, S., Li, Z., Serie, D.J., et al. (2019) Incidence of Late Relapses in Patients with HER2-Positive Breast Cancer Receiving Adjuvant Trastuzumab: Combined Analysis of NCCTG N9831 (Alliance) and NRG Oncology/NSABP B-31. Journal of Clinical Oncology, 37, 3425-3435.
https://doi.org/10.1200/JCO.19.00443
[15] Drago, J.Z., Modi, S. and Chandarlapaty, S. (2021) Unlocking the Po-tential of Antibody-Drug Conjugates for Cancer Therapy. Nature Reviews Clinical Oncology, 18, 327-344.
https://doi.org/10.1038/s41571-021-00470-8
[16] Nagayama, A., Ellisen, L.W., Chabner, B., et al. (2017) Anti-body-Drug Conjugates for the Treatment of Solid Tumors: Clinical Experience and Latest Developments. Targeted On-cology, 12, 719-739.
https://doi.org/10.1007/s11523-017-0535-0
[17] Jain, N., Smith, S.W., Ghone, S., et al. (2015) Current ADC Linker Chemistry. Pharmaceutical Research, 32, 3526-3540.
https://doi.org/10.1007/s11095-015-1657-7
[18] Beck, A., Goetsch, L., Dumontet, C., et al. (2017) Strategies and Challenges for the Next Generation of Antibody Drug Conjugates. Nature Reviews Drug Discovery, 16, 315-337.
https://doi.org/10.1038/nrd.2016.268
[19] Norsworthy, K.J., Ko, C.W., Lee, J.E., et al. (2018) FDA Approval Summary: Mylotarg for Treatment of Patients with Relapsed or Refractory CD33-Positive Acute Myeloid Leukemia. Oncologist, 23, 1103-1108.
https://doi.org/10.1634/theoncologist.2017-0604
[20] Modi, S., Jacot, W., Yamashita, T., et al. (2022) Trastuzumab Deruxtecan in Previously Treated HER2-Low Advanced Breast Cancer. New England Journal of Medicine, 387, 9-20.
https://doi.org/10.1056/NEJMoa2203690
[21] Hafeez, U., Parakh, S., Gan, H.K., et al. (2020) Antibody-Drug Conjugates for Cancer Therapy. Molecules, 25, Article No. 33.
https://doi.org/10.3390/molecules25204764
[22] Burris, H.A., Rugo, H.S., Vukelja, S.J., et al. (2011) Phase II Study of the Antibody Drug Conjugate Trastuzumab-DM1 for the Treatment of Human Epidermal Growth Factor Re-ceptor 2 (HER2)-Positive Breast Cancer after Prior HER2-Directed Therapy. Journal of Clinical Oncology, 29, 398-405.
https://doi.org/10.1200/JCO.2010.29.5865
[23] Krop, I.E., Kim, S.B., Martin, A.G., et al. (2017) Trastuzumab Emtansine versus Treatment of Physician’s Choice in Patients with Previously Treated HER2-Positive Metastatic Breast Cancer (TH3RESA): Final Overall Survival Results from a Randomised Open-Label Phase 3 Trial. The Lancet Oncolo-gy, 18, 743-754.
https://doi.org/10.1016/S1470-2045(17)30313-3
[24] Cardoso, F., Paluch-Shimon, S., Senkus, E., et al. (2020) 5th ESO-ESMO International Consensus Guidelines for Advanced Breast Cancer (ABC 5). Annals of Oncology, 31, 1623-1649.
https://doi.org/10.1016/j.annonc.2020.09.010
[25] Von Minckwitz, G., Huang, C.S., Mano, M.S., et al. (2019) Trastuzumab Emtansine for Residual Invasive HER2-Positive Breast Cancer. New England Journal of Medi-cine, 380, 617-628.
https://doi.org/10.1056/NEJMoa1814017
[26] Modi, S., Saura, C., Yamashita, T., et al. (2020) Trastuzumab Deruxtecan in Previously Treated HER2-Positive Breast Cancer. New England Journal of Medicine, 382, 610-621.
https://doi.org/10.1056/NEJMoa1914510
[27] Hurvitz, S.A., Hegg, R., Chung, W.P., et al. (2023) Trastuzumab Deruxtecan versus Trastuzumab Emtansine in Patients with HER2-Positive Metastatic Breast Cancer: Up-dated Results from DESTINY-Breast03, a Randomised, Open-Label, Phase 3 Trial. The Lancet, 401, 105-117.
https://doi.org/10.1016/S0140-6736(22)02420-5
[28] Diéras, V., Deluche, E., Lusque, A., et al. (2022) Trastuzumab Deruxtecan (T-DXd) for Advanced Breast Cancer Patients (ABC), Regardless HER2 Status: A Phase II Study with Biomarkers Analysis (DAISY). Cancer Research, 82, PD8-02.
https://doi.org/10.1158/1538-7445.SABCS21-PD8-02
[29] Powell, C.A., Modi, S., Iwata, H., et al. (2022) Pooled Analysis of Drug-Related Interstitial Lung Disease and/or Pneumonitis in Nine Trastuzumab Deruxtecan Monotherapy Studies. ESMO Open, 7, Article ID: 100554.
https://doi.org/10.1016/j.esmoop.2022.100554
[30] Banerji, U., van Herpen, C.M.L., Saura, C., et al. (2019) Trastuzumab Duocarmazine in Locally Advanced and Metastatic Solid Tumours and HER2-Expressing Breast Cancer: A Phase 1 Dose-Escalation and Dose-Expansion Study. The Lancet Oncology, 20, 1124-1135.
https://doi.org/10.1016/S1470-2045(19)30328-6
[31] Manich, C.S., O’Shaughnessy, J., Aftimos, P.G., et al. (2021) Primary Outcome of the Phase III SYD985.002/TULIP Trial Comparing Vic-Trastuzumab Duocarmazine to Physician’s Choice Treatment in Patients with Pre-Treated HER2-Positive Locally Advanced or Metastatic Breast Cancer. Annals of Oncology, 32, S1288.
https://doi.org/10.1016/j.annonc.2021.08.2088
[32] Li, H.W., Yu, C., Jiang, J., et al. (2016) An Anti-HER2 Anti-body Conjugated with Monomethyl Auristatin E Is Highly Effective in HER2-Positive Human Gastric Cancer. Cancer Biology & Therapy, 17, 346-354.
https://doi.org/10.1080/15384047.2016.1139248
[33] Wang, J.Y., Liu, Y.J., Zhang, Q.Y., et al. (2021) RC48-ADC, a HER2-Targeting Antibody-Drug Conjugate, in Patients with HER2-Positive and HER2-Low Expressing Advanced or Metastatic Breast Cancer: A Pooled Analysis of Two Studies. Journal of Clinical Oncology, 39, Article No. 1022.
https://doi.org/10.1200/JCO.2021.39.15_suppl.1022
[34] Zhang, J., Ji, D.M., Shen, W.A., et al. (2022) Phase I Trial of a Novel Anti-HER2 Antibody-Drug Conjugate, ARX788, for the Treatment of HER2-Positive Metastatic Breast Cancer. Clinical Cancer Research, 28, 4212-4221.
https://doi.org/10.1158/1078-0432.CCR-22-0456
[35] Cortés, J., Kim, S.B., Chung, W.P., et al. (2022) Trastuzumab Deruxtecan versus Trastuzumab Emtansine for Breast Cancer. New England Journal of Medicine, 386, 1143-1154.
https://doi.org/10.1056/NEJMoa2115022
[36] Bardia, A., Hurvitz, S.A., Rugo, H.S., et al. (2021) A Plain Language Summary of the ASCENT Study: Sacituzumab Govitecan for Metastatic Triple-Negative Breast Cancer. Future Oncology, 17, 3911-3924.
https://doi.org/10.2217/fon-2021-0868
[37] Kolberg, H.C., Andre, F., Hamilton, E., et al. (2022) Trastuzumab Deruxtecan (T-DXd) Combinations in Patients with HER2-Positive Advanced or Metastatic Breast Cancer: A Phase 1b/2, Open-Label, Multicenter, Dose-Finding and Dose-Expansion Study (DESTINY-Breast07). Oncology Research and Treatment, 45, 32-32.