| [1] | Kazeminejad, Z., Marzi, M., Shiroudi, A., et al. (2022) Novel 1,2,4-Triazoles as Antifungal Agents. BioMed Re-search International, 2022, Article ID: 4584846. https://doi.org/10.1155/2022/4584846
 | 
                     
                                
                                    
                                        | [2] | 王悦. 三唑类杀菌剂的健康效应及毒理机制研究[D]: [博士学位论文]. 太原: 山西大学, 2023. | 
                     
                                
                                    
                                        | [3] | Martínez-Matías, N. and Rodríguez-Medina, J.R. (2018) Fundamental Concepts of Azole Compounds and Triazole Antifungals: A Beginner’s Review. Puerto Rico Health Sciences Journal, 37, 135-142. | 
                     
                                
                                    
                                        | [4] | 刘晓玲, 刘然, 邢立国, 等. 三唑类杀菌剂主要品种登记管理现状及健康安全评价[J]. 现代农药, 2023, 22(4): 44-50. | 
                     
                                
                                    
                                        | [5] | Guo, D., He, R., Su, W., et al. (2021) Stereochemistry of Chiral Pesticide Uniconazole and Enantioselective Metabolism in Rat Liver Microsomes. Pesti-cide Biochemistry and Physiology, 179, Article ID: 104964. https://doi.org/10.1016/j.pestbp.2021.104964
 | 
                     
                                
                                    
                                        | [6] | Monk, B.C., Sagatova, A.A., Hosseini, P., et al. (2020) Fungal Lanosterol 14alpha-Demethylase: A Target for Next-Gene- ration Antifungal Design. Biochimica et Bio-physica Acta—Proteins and Proteomics, 1868, Article ID: 140206. https://doi.org/10.1016/j.bbapap.2019.02.008
 | 
                     
                                
                                    
                                        | [7] | Liu, C., Fei, Q., Pan, N., et al. (2022) Design, Synthesis, and Antifungal Activity of Novel 1,2,4-Triazolo[4,3-c]trifle- oromethylpyrimidine Derivatives Bearing the Thioether Moiety. Frontiers in Chemistry, 10, Article ID: 939644. https://doi.org/10.3389/fchem.2022.939644
 | 
                     
                                
                                    
                                        | [8] | Guzel, E., Acar Cevik, U., Evren, A.E., et al. (2023) Syn-thesis of Benzimidazole-1,2,4-triazole Derivatives as Potential Antifungal Agents Targeting 14alpha-Demethylase. ACS Omega, 8, 4369-4384. https://doi.org/10.1021/acsomega.2c07755
 | 
                     
                                
                                    
                                        | [9] | Xu, R., Chen, K., Han, X., et al. (2023) Design and Synthesis of Antifungal Candidates Containing Triazole Scaffold from Natural Rosin against Valsa Mali for Crop Protection. Journal of Agricultural and Food Chemistry, 71, 9718-9727. https://doi.org/10.1021/acs.jafc.3c02002
 | 
                     
                                
                                    
                                        | [10] | Bielska, L., Hale, S.E. and Skulcova, L. (2021) A Review on the Stereospecific Fate and Effects of Chiral Conazole Fungicides. Science of the Total Environment, 750, Article ID: 141600. https://doi.org/10.1016/j.scitotenv.2020.141600
 | 
                     
                                
                                    
                                        | [11] | Ji, C., Song, Z., Tian, Z., et al. (2023) Enantioselectivity in the Toxicological Effects of Chiral Pesticides: A Review. Science of the Total Environment, 857, Article ID: 159656. https://doi.org/10.1016/j.scitotenv.2022.159656
 | 
                     
                                
                                    
                                        | [12] | 郭浩铭. 手性农药选择性生物活性与毒性效应研究进展[J]. 农药学学报, 2022, 24(5): 1108-1124. | 
                     
                                
                                    
                                        | [13] | Laine, A.L. (2023) Plant Disease Risk Is Modified by Multiple Global Change Drivers. Current Biology, 33, R574-R583. https://doi.org/10.1016/j.cub.2023.03.075
 | 
                     
                                
                                    
                                        | [14] | Mohammad-Razdari, A., Rousseau, D., Bakhshipour, A., et al. (2022) Recent Advances in E-Monitoring of Plant Diseases. Biosensors and Bioelectronics, 201, Article ID: 113953. https://doi.org/10.1016/j.bios.2021.113953
 | 
                     
                                
                                    
                                        | [15] | Bollmann-Giolai, A., Malone, J.G. and Arora, S. (2022) Di-versity, Detection and Exploitation: Linking Soil Fungi and Plant Disease. Current Opinion in Microbiology, 70, Article ID: 102199. https://doi.org/10.1016/j.mib.2022.102199
 | 
                     
                                
                                    
                                        | [16] | Li, L., Zhu, X.M., Zhang, Y.R., et al. (2022) Research on the Molecular Interaction Mechanism between Plants and Pathogenic Fungi. International Journal of Molecular Sciences, 23, Article No. 4658. https://doi.org/10.3390/ijms23094658
 | 
                     
                                
                                    
                                        | [17] | Steinberg, G. and Gurr, S.J. (2020) Fungi, Fungicide Discovery and Global Food Security. Fungal Genetics and Biology, 144, Article ID: 103476. https://doi.org/10.1016/j.fgb.2020.103476
 | 
                     
                                
                                    
                                        | [18] | 黄世文, 刘连盟, 赵可菡, 等. 三唑类杀菌剂对水稻药害机理及解决方案[J]. 植物保护, 2022, 48(4): 107-113. | 
                     
                                
                                    
                                        | [19] | Yin, Y., Miao, J., Shao, W., et al. (2023) Fungicide Re-sistance: Progress in Understanding Mechanism, Monitoring, and Management. Phytopathology, 113, 707-718. https://doi.org/10.1094/PHYTO-10-22-0370-KD
 | 
                     
                                
                                    
                                        | [20] | 潘夏艳, 朱凤, 周晨, 等. 2020-2021年江苏省稻曲病菌对三唑类杀菌剂的抗药性监测[J]. 江苏农业科学, 2023, 51(5): 134-138. | 
                     
                                
                                    
                                        | [21] | 史建荣王, 方中达. 三唑酮、三唑醇种子处理对小麦根围丝核菌群体数量的影响[J]. 江苏农业学报, 1991(2): 22-26. | 
                     
                                
                                    
                                        | [22] | Albers, C.N., Boll-mann, U.E., Badawi, N., et al. (2022) Leaching of 1,2,4-Triazole from Commercial Barley Seeds Coated with Tebuconazole and Prothioconazole. Chemosphere, 286, Article ID: 131819. https://doi.org/10.1016/j.chemosphere.2021.131819
 | 
                     
                                
                                    
                                        | [23] | 陈冬梅, 关俊杰, 张桂柯, 等. 农药的微生物降解研究现状[J]. 河南科技学院学报(自然科学版), 2020, 48(5): 39-46. | 
                     
                                
                                    
                                        | [24] | Bacmaga, M., Wyszkowska, J., Borowik, A., et al. (2022) Effects of Tebuconazole Application on Soil Microbiota and Enzymes. Molecules, 27, Article No. 7501. https://doi.org/10.3390/molecules27217501
 | 
                     
                                
                                    
                                        | [25] | Ahmad, S., Ahmad, H.W. and Bhatt, P. (2022) Mi-crobial Adaptation and Impact into the Pesticide’s Degradation. Archives of Microbiology, 204, Article No. 288. https://doi.org/10.1007/s00203-022-02899-6
 | 
                     
                                
                                    
                                        | [26] | 刘苗. 苯醚甲环唑高效降解菌株的筛选及降解机制研究[D]: [硕士学位论文]. 保定: 河北大学, 2022. | 
                     
                                
                                    
                                        | [27] | 张曦倩. 三唑酮降解菌株Enterobacter hormaechei TY18的转录组测序分析及降解基因rutB的克隆[D]: [硕士学位论文]. 晋中: 山西农业大学, 2022. | 
                     
                                
                                    
                                        | [28] | Huang, J., Li, M., Jin, F., et al. (2022) Isolation of Sphingomonas sp. AJ-1 and Its Enantioselective S-Methylation of the Triazole Fungicide Prothioconazole. Science of the Total Environment, 851, Article ID: 158220. https://doi.org/10.1016/j.scitotenv.2022.158220
 | 
                     
                                
                                    
                                        | [29] | Carena, L., Scozzaro, A., Romagnoli, M., et al. (2022) Phototransformation of the Fungicide Tebuconazole, and Its Predicted Fate in Sunlit Surface Freshwaters. Chemo-sphere, 303, Article ID: 134895. https://doi.org/10.1016/j.chemosphere.2022.134895
 | 
                     
                                
                                    
                                        | [30] | Man, Y., Stenrod, M., Wu, C., et al. (2021) Degra-dation of Difenoconazole in Water and Soil: Kinetics, Degradation Pathways, Transformation Products Identification and Ecotoxicity Assessment. Journal of Hazardous Materials, 418, Article ID: 126303. https://doi.org/10.1016/j.jhazmat.2021.126303
 | 
                     
                                
                                    
                                        | [31] | Wu, H., Cui, H., Fu, C., et al. (2024) Unveiling the Crucial Role of Soil Microorganisms in Carbon Cycling: A Review. Science of the Total Environment, 909, Article ID: 168627. https://doi.org/10.1016/j.scitotenv.2023.168627
 | 
                     
                                
                                    
                                        | [32] | Wang, R., Li, D., Deng, F., et al. (2024) Pro-duction of Artificial Humic Acid from Rice Straw for Fertilizer Production and Soil Improvement. Science of the Total Environment, 906, Article ID: 167548. https://doi.org/10.1016/j.scitotenv.2023.167548
 | 
                     
                                
                                    
                                        | [33] | Zhao, J., Xie, X., Jiang, Y., et al. (2024) Effects of Simulated Warming on soil Microbial Community Diversity and Composition Across Diverse Ecosystems. Science of the Total Environment, 911, Article ID: 168793. https://doi.org/10.1016/j.scitotenv.2023.168793
 | 
                     
                                
                                    
                                        | [34] | Fu, F., Li, Y., Zhang, B., et al. (2024) Differences in Soil Microbial Community Structure and Assembly Processes under Warming and Cooling Conditions in an Alpine Forest Ecosystem. Science of the Total Environment, 907, Article ID: 167809. https://doi.org/10.1016/j.scitotenv.2023.167809
 | 
                     
                                
                                    
                                        | [35] | Shu, X., Liu, W., Huang, H., et al. (2023) Meta-Analysis of Organic Fertilization Effects on Soil Bacterial Diversity and Community Composition in Agroecosystems. Plants, 12, Article No. 3801. https://doi.org/10.3390/plants12223801
 | 
                     
                                
                                    
                                        | [36] | 张书莹, 傅志强, 陈景文. 苯并三唑类紫外线稳定剂在斑马鱼体内的富集、生物转化和生理毒代动力学模型研究[C]//第四次全国计算毒理学学术会议暨国家自然科学基金委员会化学科学部学科战略研讨会. 西安: 人工智能与人类健康论文摘要集, 2021: 2. | 
                     
                                
                                    
                                        | [37] | Barbi, A., Goessens, T., Strubbe, D., et al. (2023) Widespread Triazole Pesticide Use Affects Infection Dynamics of a Global Amphibian Pathogen. Ecology Letters, 26, 313-322. https://doi.org/10.1111/ele.14154
 | 
                     
                                
                                    
                                        | [38] | 谢易文. 手性三唑类杀菌剂丙硫菌唑及其代谢物在水中的降解[D]: [硕士学位论文]. 合肥: 安徽农业大学, 2022. | 
                     
                                
                                    
                                        | [39] | Zhang, Z., Xie, Y., Ye, Y., et al. (2022) Toxification Metabolism and Treatment Strategy of the Chiral Triazole Fungicide Prothioconazole in Water. Journal of Hazardous Materials, 432, Article ID: 128650. https://doi.org/10.1016/j.jhazmat.2022.128650
 | 
                     
                                
                                    
                                        | [40] | 赵慧英, 王海燕. 土壤多功能性及其驱动因素研究进展[J]. 应用与环境生物学报, 2023: 1-12. | 
                     
                                
                                    
                                        | [41] | 赵志敏. 施用微生物菌肥对小麦和油菜种植的影响[D]: [硕士学位论文]. 西宁: 青海师范大学, 2023. | 
                     
                                
                                    
                                        | [42] | 朱文娟, 任月梅, 杨忠, 等. 谷子土壤微生物群落结构及功能预测分析[J]. 作物杂志, 2023(5): 170-178. | 
                     
                                
                                    
                                        | [43] | Roman, D.L., Voiculescu, D.I., Matica, M.A., et al. (2022) Assessment of the Effects of Triticonazole on Soil and Human Health. Molecules, 27, Article No. 6554. https://doi.org/10.3390/molecules27196554
 | 
                     
                                
                                    
                                        | [44] | Vasilchenko, A.V., Poshvina, D.V., Semenov, M.V., et al. (2023) Triazoles and Strobilurin Mixture Affects Soil Microbial Community and Incidences of Wheat Diseases. Plants (Basel), 12, Article No. 660. https://doi.org/10.3390/plants12030660
 | 
                     
                                
                                    
                                        | [45] | 薛鹏飞, 刘潇威, 赵刘清, 等. 手性三唑类杀菌剂氟环唑对土壤微生物的立体选择性影响[J]. 农业环境科学学报, 2022, 41(6): 1284-1295+1391. | 
                     
                                
                                    
                                        | [46] | Dong, B. (2024) A Comprehensive Review on Toxicological Mechanisms and Transformation Products of Tebuconazole: Insights on Pesticide Management. Science of the Total Environment, 908, Article ID: 168264. https://doi.org/10.1016/j.scitotenv.2023.168264
 | 
                     
                                
                                    
                                        | [47] | Bhagat, J., Singh, N., Nishimura, N., et al. (2021) A Comprehensive Review on Environmental Toxicity of Azole Compounds to Fish. Chemosphere, 262, Article ID: 128335. https://doi.org/10.1016/j.chemosphere.2020.128335
 | 
                     
                                
                                    
                                        | [48] | Qin, Y., Wang, X., Yan, X., et al. (2022) Developmental Toxicity of Fenbuconazole in Zebrafish: Effects on Mitochondrial Respiration and Locomotor Behavior. Toxicology, 470, Article ID: 153137. https://doi.org/10.1016/j.tox.2022.153137
 | 
                     
                                
                                    
                                        | [49] | Wu, Y., Yang, Q., Chen, M., et al. (2018) Fenbuconazole Exposure Impacts the Development of Zebrafish Embryos. Ecotoxicology and Environmental Safety, 158, 293-299. https://doi.org/10.1016/j.ecoenv.2018.04.048
 | 
                     
                                
                                    
                                        | [50] | Zhang, Y., Guo, J., Chen, Y., et al. (2021) Embryonic Exposure to Fenbuconazole Inhibits Gametogenesis in Adult Zebrafish by Targeting Gonads Not Brain. Ecotoxi-cology and Environmental Safety, 228, Article ID: 112967. https://doi.org/10.1016/j.ecoenv.2021.112967
 | 
                     
                                
                                    
                                        | [51] | Gottardi, M. and Cedergreen, N. (2019) The Synergistic Potential of Azole Fungicides Does Not Directly Correlate to the Inhibition of Cytochrome P450 Activity in Aquatic Invertebrates. Aquatic Toxicology, 207, 187-196. https://doi.org/10.1016/j.aquatox.2018.12.010
 | 
                     
                                
                                    
                                        | [52] | Liu, R., Deng, Y., Zhang, W., et al. (2019) Enantioselective Mechanism of Toxic Effects of Triticonazole against Chlorella pyrenoidosa. Ecotoxicology and Environmental Safety, 185, Article ID: 109691. https://doi.org/10.1016/j.ecoenv.2019.109691
 | 
                     
                                
                                    
                                        | [53] | Liu, C., Feng, Q., Yang, J., et al. (2018) Catalytic Produc-tion of Levulinic Acid and Ethyl Levulinate from Uniconazole-Induced Duckweed (Lemna minor). Bioresource Technology, 255, 50-57. https://doi.org/10.1016/j.biortech.2018.01.087
 | 
                     
                                
                                    
                                        | [54] | Shahid, M., Khan, M.S. and Singh, U.B. (2023) Pesti-cide-Tolerant Microbial Consortia: Potential Candidates for Remediation/Clean-Up of Pesticide-Contaminated Ag-ricultural Soil. Environmental Research, 236, Article ID: 116724. https://doi.org/10.1016/j.envres.2023.116724
 |