极化促进光催化剂电荷分离的最新进展
Recent Progress in Charge Separation of Photocatalysts Facilitated by Polarization
DOI: 10.12677/HJCET.2024.141007, PDF, 下载: 53  浏览: 88  科研立项经费支持
作者: 马明广:兰州城市学院兰州城市学院化学工程学院,甘肃 兰州化学工程学院,甘肃 兰州;魏云霞*, 魏慧娟, 刘 芳:兰州城市学院化学工程学院,甘肃 兰州
关键词: 电荷分离光催化表面化学Charge Separation Photocatalysis Surface Chemistry
摘要: 近年来,极化已被证明是一种促进光催化材料电荷分离的有效策略。本文介绍了不同的极化类型促进光催化剂体相和表面电荷分离的最新进展,总结了相关极化机制及应用,并对极化的产生和加强进行了讨论。该综述旨在深入认识极化促进光催化材料电荷运用的行为机制,进而为高性能光催化材料的开发提供新的参考。
Abstract: In recent years, polarization has been shown to be an effective strategy for promoting surface charge separation in photocatalytic materials. The recent progress of different polarization types in promoting surface charge separation of photocatalysts is reviewed. The related polarization mechanisms and applications are summarized. The generation and enhancement of polarization are discussed. The purpose of this review is to deeply understand the behavior mechanism of polarization promoting charge utilization of photocatalytic materials, so as to provide a new reference for the development of high-performance photocatalytic materials.
文章引用:马明广, 魏云霞, 魏慧娟, 刘芳. 极化促进光催化剂电荷分离的最新进展[J]. 化学工程与技术, 2024, 14(1): 54-63. https://doi.org/10.12677/HJCET.2024.141007

参考文献

[1] Zhou, Q.X., Guo, Y. and Zhu, Y.F. (2023) Photocatalytic Sacrificial H2 Evolution Dominated by Mi-cropore-Confined Exciton Transfer in Hydrogen-Bonded Organic Frameworks. Nature Catalysis, 6, 574-584.
https://doi.org/10.1038/s41929-023-00972-x
[2] Zhang, Y.N., Pan, C.S., Bian, G.M., et al. (2023) H2O2 Generation from O2 and H2O on a Near-Infrared Absorbing Porphyrin Supramolecular Photocatalyst. Nature Energy, 8, 361-371.
https://doi.org/10.1038/s41560-023-01218-7
[3] Butler, A., Schulz, J. and Argyropoulos, C. (2022) Tunable Directional Filter for Mid-Infrared Optical Transmission Switching. Optics Express, 22, 39716-39724.
https://doi.org/10.1364/OE.474728
[4] Nguyen, S.D., Yeon, J., Kim, S.H., et al. (2011) BiO(IO3): A New Polar Iodate That Exhibits an Aurivillius-Type (Bi2O2)2+ Layer and a Large SHG Response. Journal of the American Chemical Society, 133, 12422-12425.
https://doi.org/10.1021/ja205456b
[5] Pan, X., Yang, X., Yu, M., et al. (2023) 2D MXenes Polar Catalysts for Multi-Renewable Energy Harvesting Applications. Nature Communications, 14, Article No. 4183.
https://doi.org/10.1038/s41467-023-39791-w
[6] Chen, F., Huang, H.W., Ye, L.Q., et al. (2018) Thick-ness-Dependent Facet Junction Control of Layered BiOIO3 Single Crystals for Highly Efficient CO2 Photoreduction. Advaned Functional Materials, 28, Article ID: 1804284.
https://doi.org/10.1002/adfm.201804284
[7] Liu, C., Zhang, G., Zhang, K., et al. (2018) Facile Dispersion of Nanosized NiFeP for Highly Effective Catalysis of Oxygen Evolution Reaction. ACS Sustainable Chemistry & En-gineering, 6, 7206-7211.
https://doi.org/10.1021/acssuschemeng.8b00471
[8] Fan, X.Y., Lai, K.R., Wang, L.C., et al. (2015) Efficient Photocatalytic Dechlorination of Chlorophenols over a Nonlinear Optical Material Na3VO2B6O11 under UV-Visible Light Irradiation. Journal of Materials Chemistry A, 3, 12179-12187.
https://doi.org/10.1039/C5TA01814E
[9] Sun, W., Wang, F., Hou, S.Y., et al. (2017) Zn/MnO2 Battery Chemistry with H+ and Zn2+ Coinsertion. Journal of the American Chemical Society, 29, 9775-9778.
https://doi.org/10.1021/jacs.7b04471
[10] He, Zhang, Y.H., Huang, H.W., et al. (2014) Direct Hydrolysis Preparation for Novel Bi-Based Oxysalts Photocatalyst Bi6O5(OH)3(NO3)5∙3H2O with High Photocatalytic Activity. Inorganic Chemistry Communications, 40, 55-58.
https://doi.org/10.1016/j.inoche.2013.11.030
[11] Lou, Z.Z., Huang, B.B., Wang, Z.Y., et al. (2014) Ag6Si2O7: A Silicate Photocatalyst for the Visible Region. Chemistry of Materials, 26, 3873-3875.
https://doi.org/10.1021/cm500657n
[12] Lou, Z.Z., Wang, P., Huang, B.B., et al. (2017) Enhancing Charge Separation in Photocatalysts with Internal Polar Electric Fields. ChemPhotoChem, 1, 136-147.
https://doi.org/10.1002/cptc.201600057
[13] Xue, X., Zang, W., Deng, P., et al. (2015) Piezo-Potential En-hanced Photocatalytic Degradation of Organic Dye Using ZnO Nanowires. Nano Energy, 13, 414-422.
https://doi.org/10.1016/j.nanoen.2015.02.029
[14] Chang, J.H. and Lin, H.N. (2014) Exploitation of Piezoe-lectricity for Enhancing Photocatalytic Activity of ZnO Nanowires. Materials Letters, 132, 134-137.
https://doi.org/10.1016/j.matlet.2014.06.066
[15] Yang, H. (2021) A Short Review on Heterojunction Photo-catalysts: Carrier Transfer Behavior and Photocatalytic Mechanisms. Materials Research Bulletin, 142, Article ID: 111406.
https://doi.org/10.1016/j.materresbull.2021.111406
[16] Wang, Y.T. and Chang, K.S. (2016) Pie-zopotential-Induced Schottky Behavior of Zn1−xSnO3 Nanowire Arrays and Piezophotocatalytic Applications. Journal of the American Ceramic Society, 99, 2593-2600.
https://doi.org/10.1111/jace.14264
[17] Cui, Y., Briscoe, J., Dunn, S., et al. (2013) Effect of Ferroelectricity on Solar-Light-Driven Photocatalytic Activity of BaTiO3—Influence on the Carrier Separation and Stern Layer For-mation. Chemistry of Materials, 25, 4215-4223.
https://doi.org/10.1021/cm402092f
[18] Tu, S.C., Zhang, Y.H., Reshak, A.H., et al. (2019) Ferroelectric Po-larization Promoted Bulk Charge Separation for Highly Efficient CO2 Photoreduction of SrBi4Ti4O15. Nano Energy, 56, 840-850.
https://doi.org/10.1016/j.nanoen.2018.12.016
[19] Lian, Q., Liu, W., Ma, D., et al. (2023) Precisely Orientating Atomic Array in One-Dimension Tellurium Microneedles Enhances Intrinsic Piezoelectricity for an Efficient Pie-zo-Catalytic Sterilization. ACS Applied Nano Materials, 17, 8755-8766.
https://doi.org/10.1021/acsnano.3c02044
[20] Wu, J., Qin, N. and Bao, D.H. (2018) Effective Enhancement of Piezocatalytic Activity of BaTiO3 Nanowires under Ultrasonic Vibration. Nano Energy, 45, 44-51.
https://doi.org/10.1016/j.nanoen.2017.12.034
[21] Hong, D., Zang, W., Guo, X., et al. (2016) High Pie-zo-Photocatalytic Efficiency of CuS/ZnO Nanowires Using both Solar and Mechanical Energy for Degrading Or-ganic Dye. JACS Applied Materials & Interfaces, 8, 21302-21314.
https://doi.org/10.1021/acsami.6b05252
[22] Deng, J.S, Li, S.M., Zhou, Y.Y., et al. (2018) Enhancing the Microwave Absorption Properties of Amorphous CoO Nanosheet-Coated Co (Hexagonal and Cubic Phases) through Interfacial Polarizations. Journal of Colloid and Interface Science, 509, 406-413.
https://doi.org/10.1016/j.jcis.2017.09.029
[23] Rafiq, A., Ikram, M., Ali, S., et al. (2021) Photocatalytic Deg-radation of Dyes Using Semiconductor Photocatalysts to Clean Industrial Water Pollution. Journal of Industrial and Engineering Chemistry, 97, 111-128.
https://doi.org/10.1016/j.jiec.2021.02.017
[24] Yang, Liu, J., Li, Z., et al. (2014) Engineering of P450pyr Hydroxylase for the Highly Regio- and Enantioselective Subterminal Hydroxylation of Alkanes. Angewandte Chemie, 12, 3120-3124.
https://doi.org/10.1002/anie.201311091
[25] Yu, Y., Yan, W., Wang, X.F., et al. (2018) Surface Engineering for Extremely Enhanced Charge Separation and Photocatalytic Hydrogen Evolution on g-C3N4. Advanced Materials, 30, Article ID: 1705060.
https://doi.org/10.1002/adma.201705060
[26] Rui, Wang, Z.Y., Sun, K.H., et al. (2017) CO2 Hydrogenation to Methanol over Pd/In2O3: Effects of Pd and Oxygen Vacancy. Applied Catalysis B: Environmental, 218, 60-67.
https://doi.org/10.1016/j.apcatb.2017.06.069
[27] Yu, S.X., Li, J.Y., Zhang, Y.H., et al. (2018) Local Spatial Charge Separation and Proton Activation Induced by Surface Hydroxylation Promoting Photocatalytic Hydrogen Evolution of Polymeric Carbon Nitride. Nano Energy, 50, 383-392.
https://doi.org/10.1016/j.nanoen.2018.05.053
[28] Feng, Y.W., Li, H., Ling, L.L., et al. (2018) Enhanced Photocatalytic Degradation Performance by Fluid-Induced Piezoelectric Field. Environmental Science & Technology, 52, 7842-7848.
https://doi.org/10.1021/acs.est.8b00946
[29] Wang, L., Liu, S., Wang, Z., et al. (2016) Piezo-tronic Effect Enhanced Photocatalysis in Strained Anisotropic ZnO/TiO₂ Nanoplatelets via Thermal Stress. ACS Nano, 10, 2636-2643.
https://doi.org/10.1021/acsnano.5b07678
[30] Othman, A., Dumitrescu, E., Andreescu, D., et al. (2018) Nanoporous Sorbents for the Removal and Recovery of Phosphorus from Eutrophic Waters: Sus-tainability Challenges and Solutions. ACS Sustainable Chemistry & Engineering, 6, 12542-12561.
https://doi.org/10.1021/acssuschemeng.8b01809
[31] Huang, H.W., Tu, S.C., Du, X., et al. (2018) Ferroelec-tric Spontaneous Polarization Steering Charge Carriers Migration for Promoting Photocatalysis and Molecular Ox-ygen Activation. Journal of Colloid and Interface Science, 509, 113-122.
https://doi.org/10.1016/j.jcis.2017.09.005
[32] Wu, F., Yu, Y.H., Yang, H., et al. (2017) Simultaneous En-hancement of Charge Separation and Hole Transportation in a TiO2-SrTiO3 Core-Shell Nanowire Photoelectro-chemical System. Advanced Materials, 29, Article ID: 1701432.
https://doi.org/10.1002/adma.201701432
[33] Li, W., Wang, F., Li, M., et al. (2018) Polarization-Dependent Epitaxial Growth and Photocatalytic Performance of Ferroelectric Oxide Heterostructures. Nano Energy, 45, 304-310.
https://doi.org/10.1002/adma.201701432