RGO@CoNd-LDH复合材料的制备与电化学性能
Preparation and Electrochemical Properties of the RGO@CoNd-LDH Composites
DOI: 10.12677/HJCET.2024.141008, PDF, 下载: 62  浏览: 133  科研立项经费支持
作者: 张 磊*, 王 静#:安徽理工大学材料科学与工程学院,安徽 淮南;徐立新, 李育飞:浙江工业大学平湖新材料研究院,浙江 平湖
关键词: 石墨烯超级电容器双金属氢氧化物比电容电极材料Graphene Supercapacitor Dicetetallic Hydroxides Specific Capacitance Electrode Material
摘要: 通过简单易操作的水热法来制备石墨烯(RGO)/钴钕双金属氢氧化物纳米复合材料,探究钕金属、钴金属和钴钕双金属与RGO的最佳性能,并且通过不断改变钴钕双金属中钴钕之间的摩尔比,来获得形貌微调可控的物质,使钴钕相互之间发挥最有利的优势。有效地解决了过渡金属化合物的导电率差、比表面积低、活性物质易团聚等问题。利用扫描电镜、透射电镜、红外、XRD、XPS、EDS能谱点扫、电化学测试等测试对复合电极材料进行分析。结果表明RGO@CoNd呈现珊瑚状结构,包覆在石墨烯表面。RGO@CoNd其在1 A/g的电流密度时比电容为1054 F/g,与RGO/CoNd4、RGO/Co2Nd3、RGO/Co3Nd2、RGO/Co4Nd相比,RGO/CoNd的比电容分别增加了66.6%、67.4%、47.9%、115%。在10 A/g电流密度下4000次充放电循环后比电容保持率为93.9%,具有良好的循环稳定性。结果表明,RGO/CoNd复合材料是很有前途的超级电容器电极材料。
Abstract: Graphene (RGO)/CoNd bimetallic hydroxide nanocomposites were prepared by a simple and easy-to-operate hydrothermal method to explore the optimal properties of Nd metal, cobalt metal, and cobalt-Nd bimetallic with RGO, and to obtain morphology fine-tuned and controllable substances by constantly changing the molar ratio between cobalt and Nd in the cobalt-Nd bimetallic, so as to enable cobalt and Nd to exert the most advantageous advantages over each other. The problems of poor electrical conductivity, low specific surface area and easy agglomeration of active substances in transition metal compounds are effectively solved. The composite electrode materials were analyzed using tests such as scanning electron microscopy, transmission electron microscopy, infrared, XRD, XPS, EDS energy spectrum spot scanning, and electrochemical tests. The results show that RGO@CoNd presents a coral-like structure, which is encapsulated on the surface of graphene. The specific capacitance of RGO@CoNd whose specific capacitance is 1054 F/g at a current density of 1 A/g is increased by 66.6% compared with that of RGO/CoNd4, RGO/Co2Nd3, RGO/Co3Nd2, and RGO/Co4Nd, respectively, 67.4%, 47.9%, and 115%, respectively. The specific capacitance retention rate was 93.9% after 4000 charge/discharge cycles at 10 A/g current density, which showed good cycling stability. The results show that RGO/CoNd composites are promising electrode materials for supercapacitors.
文章引用:张磊, 王静, 徐立新, 李育飞. RGO@CoNd-LDH复合材料的制备与电化学性能[J]. 化学工程与技术, 2024, 14(1): 64-81. https://doi.org/10.12677/HJCET.2024.141008

参考文献

[1] Wang, G., Zhang, L. and Zhang, J. (2012) A Review of Electrode Materials for Electrochemical Supercapacitors. Chemical Society Reviews, 41, 797-828.
https://doi.org/10.1039/C1CS15060J
[2] Scibioh, M.A. and Viswanathan, B. (2020) Supercapacitor: An Introduction. In: Scibioh, M.A. and Viswanathan, B., Eds., Materials for Supercapacitor Applications, Elsevier, Amsterdam, 1-13.
https://doi.org/10.1016/B978-0-12-819858-2.00001-9
[3] 程友良, 丁瑞, 毛绍宽, 等. 不同铂碳比下PEMFC梯度阴极催化层性能数值模拟[J/OL]. 太阳能学报: 1-8.
https://doi.org/10.19912/j.0254-0096.tynxb.2023-1173, 2024-01-27.
[4] Kim, E., Kim, S., Choi, Y.M., et al. (2020) Ultrathin Hematite on Mesoporous WO3 from Atomic Layer Deposition for Minimal Charge Recombi-nation. ACS Sustainable Chemistry & Engineering, 8, 11358-11367.
https://doi.org/10.1021/acssuschemeng.0c03579
[5] González, A., Goikolea, E., Barrena, J.A., et al. (2016) Review on Supercapacitors: Technologies and Materials. Renewable and Sustainable Energy Reviews, 58, 1189-1206.
https://doi.org/10.1016/j.rser.2015.12.249
[6] Najib, S. and Erdem, E. (2019) Current Progress Achieved in Novel Materials for Supercapacitor Electrodes: Mini Review. Nanoscale Advances, 1, 2817-2827.
https://doi.org/10.1039/C9NA00345B
[7] Xin, L. and Wei, B. (2012) Supercapacitors Based on Nanostruc-tured Carbon. Nano Energy, 2, 159-173.
https://doi.org/10.1016/j.nanoen.2012.09.008
[8] Huang, Y., Yang, H., Xiong, T., et al. (2019) Adsorption Energy Engineering of Nickel Oxide Hybrid Nanosheets for High Areal Capacity Flexible Lithium-Ion Batteries. Energy Storage Materials, 25, 41-51.
https://doi.org/10.1016/j.ensm.2019.11.001
[9] Xiong, T., Su, H., Yang, F., et al. (2020) Harmonizing Self-Supportive VN/MoS2 Pseudocapacitance Core-Shell Electrodes for Boosting the Areal Capacity of Lithium Storage. Materials Today Energy, 17, Article ID: 100461.
https://doi.org/10.1016/j.mtener.2020.100461
[10] Dai, J., Fu, K., Palanisamy, R., et al. (2017) A Solid State Energy Storage Device with Supercapacitor—Battery Hybrid Design. Journal of Materials Chemistry A, 5, 15266-15272.
https://doi.org/10.1039/C7TA02638B
[11] Dubal, D.P., Ayyad, O., Ruiz, V., et al. (2015) Hy-brid Energy Storage: The Merging of Battery and Supercapacitor Chemistries. Chemical Society Reviews, 44, 1777-1790.
https://doi.org/10.1039/C4CS00266K
[12] 石文明, 刘意华, 吕湘连, 等. 超级电容器材料及应用研究进展[J]. 微纳电子技术, 2022, 59(11): 1105-1118.
[13] Zhu, Q., Zhao, D., Cheng, M., Zhou, J., Owusu, K.A., Mai, L. and Yu, Y. (2019) A New View of Supercapacitors: Integrated Supercapacitors. Advanced Energy Materials, 9, 1901081.
https://doi.org/10.1002/aenm.201901081
[14] Li, K.S., Lu, X.Y., Zhang, Y., et al. (2020) Bi3TaO7/Ti3C2 Heterojunctions for Enhanced Photocatalytic Removal of Water-Borne Contaminants. Envi-ronmental Research, 185, Article ID: 109409.
[15] Peigney, A., Laurent, C., Flahaut, E., et al. (2001) Specific Surface Area of Carbon Nanotubes and Bundles of Carbon Nanotubes. Carbon, 39, 507-514.
https://doi.org/10.1016/S0008-6223(00)00155-X
[16] Bosca, A., Pedros, J., Martinez, J., et al. (2015) Method for Extracting Relevant Electrical Parameters from Graphene Field-Effect Transistors Using a Physical Model. Journal of Applied Physics, 117, Article ID: 044504.
https://doi.org/10.1063/1.4906972
[17] Chen, S., Sun, Z.M. and Feng, L. (2016) Strain Engineering of Gra-phene: A Review. Nanoscale, 8, 3207-3217.
https://doi.org/10.1039/C5NR07755A
[18] Liu, Y., Wen, S.Y. and Shi, W.D. (2018) Co3S4 Nanoneedles Decorated on NiCo2O4 Nanosheets for High-Performance Asymmetric Supercapacitors. Materials Letters, 214, 194-197.
https://doi.org/10.1016/j.matlet.2017.12.014
[19] Li, L., Peng, S., Cheah, Y., et al. (2013) Electro-spun Porous NiCo2O4 Nanotubes as Advanced Electrodes for Electrochemical Capacitors. Chemistry: A European Journal, 19, 5892-5898.
https://doi.org/10.1002/chem.201204153
[20] Zhang, H., Li, H., Wang, H., et al. (2015) NiCo2O4/N-Doped Graphene as an Advanced Electrocatalyst for Oxygen Reduction Reaction. Journal of Power Sources, 280, 640-648.
https://doi.org/10.1016/j.jpowsour.2015.01.147
[21] Yuan, C., Li, J., Hou, L., et al. (2012) Ultrathin Mesoporous NiCo2O4 Nanosheets Supported on Ni Foamas Advanced Electrodes for Su-percapacitors. Advanced Functional Materials, 22, 4592-4597.
https://doi.org/10.1002/adfm.201200994
[22] Lei, Y., Li, J., Wang, Y., et al. (2014) Rapid Micro-wave-Assisted Green Synthesis of 3D Hierarchical Flower-Shaped NiCo2O4 Microsphere for High-Performance Supercapacitor. ACS Applied Materials and Interfaces, 6, 1773-1780.
https://doi.org/10.1021/am404765y
[23] Wang, Y., Hu, X., Li, W., et al. (2020) Preparation of Boron Nitrogen Co-Doped Carbon Quantum Dots for Rapid Detection of Cr(VI). Spectrochimica Acta Part A: Molecular and Bi-omolecular Spectroscopy, 243, Article ID: 118807.
https://doi.org/10.1016/j.saa.2020.118807
[24] Wang, Y., et al. (2015) Facile Microwave-Assisted Solid-Phase Synthesis of Highly Fluorescent Nitrogen-Sulfur-Codoped Carbon Quantum Dots for Cellular Imaging Applications. Chemistry: A European Journal, 21, 13004-13011.
https://doi.org/10.1002/chem.201501723
[25] Sahu, S., Behera, B., Maiti, T.K., et al. (2012) Simple One-Step Synthesis of Highly Luminescent Carbon Dots from Orange Juice: Application as Excellent Bio-Imaging Agents. Chemical Communications, 48, 8835-8837.
https://doi.org/10.1039/c2cc33796g
[26] Mehta, V.N., Jha, S. and Kailasa, S.K. (2014) One-Pot Green Syn-thesis of Carbon Dots by Using Saccharum officinarum Juice for Fluorescent Imaging of Bacteria (Escherichia coli) and Yeast (Saccharomyces cerevisiae) Cells. Materials Science & Engineering C, 38, 20-27.
https://doi.org/10.1016/j.msec.2014.01.038
[27] Zhang, Z., Hao, J., Zhang, J., et al. (2012) Protein as the Source for Synthesizing Fluorescent Carbon Dots by a One-Pot Hydrothermal Route. RSC Advances, 2, 8599-8601.
https://doi.org/10.1039/c2ra21217j
[28] Tang, Q., Zhu, W., He, B., et al. (2017) Rapid Conversion from Carbohydrates to Large-Scale Carbon Quantum Dots for All-Weather Solar Cells. ACS Nano, 11, 1540-1547.
https://doi.org/10.1021/acsnano.6b06867
[29] Fan, G., Wang, H., Xiang, X., et al. (2013) Co-Al Mixed Metal Oxides/Carbon Nanotubes Nanocomposite Prepared via a Precursor Route and Enhanced Catalytic Property. Journal of Solid State Chemistry, 197, 14-22.
https://doi.org/10.1016/j.jssc.2012.08.016
[30] Wang, Y., Yang, W. and Yang, J. (2007) A Co-Al Layered Double Hydroxides Nanosheets Thin-Film Electrode: Fabrication and Electrochemical Study. Electrochemical and Solid State Letters, 10, A233.
https://doi.org/10.1149/1.2768166
[31] Ansaldo, A., Bondavalli, P., Bellani, S., et al. (2017) High‐Power Graphene-Carbon Nanotube Hybrid Supercapacitors. ChemNanoMat, 3, 436-446.
https://doi.org/10.1002/cnma.201700093
[32] 覃奇贤, 刘淑兰. 电极的极化和极化曲线(I)——电极的极化[J]. 电镀与精饰, 2008, 30(6): 28-30.
[33] Hosseini, M.G., et al. (2016) Synthesis, Characterization and Electro-chemical Study of Graphene Oxide-Multi Walled Carbon Nanotube-Manganese Oxide-Polyaniline Electrode as Supercapacitor. Journal of Materials Science & Technology, 32, 763-773.
https://doi.org/10.1016/j.jmst.2016.05.008
[34] 王文聪. 层状双金属氢氧化物超级电容器电极材料的制备和电化学性能研究[D]: [硕士学位论文]. 杭州: 浙江大学, 2019.
[35] Ajami, N. (2020) PANOA/MnO2/MWCNT Nanocomposite: Synthesis, Characterization, and Electrochemical Performance as Efficient Electrode Materials for Supercapacitors. Journal of Macromolecular Science: Pure & Applied Chemistry, 57, 1-8.
https://doi.org/10.1080/10601325.2018.1559697
[36] Chen, S., Zhao, L., Wei, W., et al. (2020) A Novel Strategy to Synthesize NiCo Layered Double Hydroxide Nanotube from Metal Organic Framework Composite for High-Performance Supercapacitor. Journal of Alloys and Compounds, 831, Article ID: 154794.
https://doi.org/10.1016/j.jallcom.2020.154794