衣康酸治疗肾脏疾病的研究进展
Progress of Itaconate in the Treatment of Renal Diseases
DOI: 10.12677/ACM.2024.142322, PDF, HTML, XML, 下载: 85  浏览: 167 
作者: 曹心怡, 张 春*:华中科技大学同济医学院附属协和医院肾内科,湖北 武汉
关键词: IRG1衣康酸Nrf2急性肾损伤慢性肾脏病狼疮性肾炎IRG1 Itaconate Nrf2 Acute Kidney Injury Chronic Kidney Disease Lupus Nephritis
摘要: 衣康酸作为IRG1编码的顺式乌头酸脱羧酶催化形成的代谢物,在巨噬细胞中生成,具有免疫调节功能,可以抑制过度炎症并激活Nrf2抗炎抗氧化通路。天然衣康酸不是绝对的免疫抑制剂,但衣康酸衍生物具有更强的Nrf2诱导性和更强的炎症抑制性,已有研究发现衣康酸及其衍生物可治疗肿瘤、退行性神经病变和多类炎性疾病。因高血流高耗氧的生理特性,肾脏易暴露于各种刺激因子并发生缺血缺氧损伤,近年多项研究发现衣康酸在治疗肾脏疾病方面的潜力。本综述讨论了衣康酸及衍生物对改善急性肾损伤、慢性肾脏病和狼疮性肾炎的研究进展,并总结了相关机制,包括激活Nrf2抗炎抗氧化通路、调节巨噬细胞免疫活动以及抑制核因子NF-κB和炎症小体NLRP3下游炎性因子释放。
Abstract: Itaconate is produced in macrophages as a metabolite catalysed by IRG1-encoded cis-aconitate de-carboxylase and has immunomodulatory properties, inhibiting excessive inflammation and acti-vating the Nrf2 anti-inflammatory antioxidant pathway. Natural itaconate is not an absolute immu-nosuppressant, but itaconate derivatives have stronger ability to induce Nrf2 and more potent in-flammatory inhibitory properties than natural itaconate, and itaconate and its derivatives have been found to be useful in the treatment of tumours, degenerative neuropathies, and multiple types of inflammatory diseases. Due to the physiological characteristics of high blood flow and high oxy-gen consumption, the kidneys are easily exposed to a variety of irritating factors and undergo is-chemic and hypoxic injuries. In recent years, a number of studies have found that itaconate has the potential to be used in the treatment of renal diseases. This review discusses the research progress of itaconate and derivatives in ameliorating acute kidney injury, chronic kidney disease and lupus nephritis, and summarizes the related mechanisms, including activation of the Nrf2 pathway, mod-ulation of macrophage immune activity, and inhibition of inflammatory factor release downstream of NF-κB and NLRP3.
文章引用:曹心怡, 张春. 衣康酸治疗肾脏疾病的研究进展[J]. 临床医学进展, 2024, 14(2): 2293-2300. https://doi.org/10.12677/ACM.2024.142322

1. 引言

衣康酸,早在柠檬酸热分解过程中被发现,是三羧酸循环(tricarboxylic acid cycle, TCA cycle)中间体顺式乌头酸分解后的代谢产物,由Gustav Crasso在1840年命名。尽管衣康酸的抗菌能力很早就被发现,但在2013年Alessandro Michelucci等人首次将免疫应答基因1 (Immune-responsive gene 1, IRG1)与衣康酸联系起来 [1] ,指出IRG1编码顺式乌头酸脱羧酶(aconitate decarboxylase 1, ACOD1)催化衣康酸形成。至此IRG-1衣康酸轴被发现,衣康酸也从此与免疫活动的调节联系起来。衣康酸使kelchlike ECH-相关蛋白1 (KEAP1)上的半胱氨酸残基烷基化,激活核因子E2相关因子2 (nuclear factor E2-related factor 2, Nrf2),从而参与多种抗炎抗氧化通路 [2] 。由于衣康酸的免疫调节特性,IRG1-衣康酸在肿瘤的免疫治疗方案 [3] 、感染、自身免疫疾病 [4] 和神经退行性病变等领域都有研究 [5] 。

肾脏的高血流量加上高耗氧量,使肾脏对血氧供应更加敏感,并更容易通过血液循环接触到高浓度的药物和化学物质,如细菌毒素脂多糖(lipopolysaccharide, LPS)、免疫复合物、缺血诱导因子(Hypoxia-inducible factor, HIF)等,因而容易受到伤害 [6] 。近年来有研究注意到,IRG1-衣康酸信号能够缓解肾炎、急性肾损伤和肾脏病的慢性进展,通过Nrf2经典通路抗炎抗氧化、抑制免疫细胞活性和降低自身免疫抗体的水平等方式干预肾脏疾病 [7] [8] 。衣康酸作为免疫调节代谢物和信号分子进入肾脏病领域的视野。

衣康酸对于肾脏病的意义和其缓解病情的机制,还有待系统性挖掘,所以在本综述中我们将从衣康酸及衣康酸衍生物的生理功能开始讨论,总结目前研究中衣康酸可改善的肾脏疾病类型,并挖掘涉及的信号通路,这对更深入研究IRG1-衣康酸影响肾脏病理的相关机制和临床的应用具有借鉴意义。

2. IRG1/衣康酸的生理功能

2.1. 衣康酸的抗菌功能

早在1977年,McFadden BA等人就发现衣康酸可以在葡萄糖缺乏的情况下抑制细菌的生长 [9] 。这可能是由于衣康酸通过抑制丙酰辅酶A羧化酶防止阴性菌的醋酸同化作用,它似乎会干扰细菌在醋酸盐作为主要营养来源的培养基中生长和生存的能力 [10] 。近年的研究显示,衣康酸巨噬细胞对细菌感染的反应中起溶酶体诱导剂的作用 [11] 。衣康酸本身不具有杀菌作用,而是从巨噬细胞溶酶体和改变细菌的营养供给方面干预细菌,这意味着衣康酸在治疗人类细菌感染方面具有潜质,但也需要根据细菌的适应能力和环境变化调整。

2.2. 衣康酸的免疫调节功能

天然衣康酸不是一个严格的免疫抑制剂,而是免疫调节剂。IRG1在免疫细胞以外的细胞和未活化的巨噬细胞中几乎不表达,但在活化的巨噬细胞中却可以达到基线水准的200倍,可以说,IRG1的表达几乎局限于活化的免疫细胞 [12] 。巨噬细胞可以被多种因素刺激后上调ACOD1/IRG1的水平,包括Toll样受体、细胞因子、LPS和干扰素等分子 [13] [14] ,所以衣康酸的水平也能一定程度反映巨噬细胞响应炎症应激的程度。干扰素I通过调控LPS激活巨噬细胞,巨噬细胞中糖酵解通量上升,且异柠檬酸脱氢酶1 (isocitrate dehydrogenase-1, IDH1)下调和IRG1的表达上调,这使TCA循环中的柠檬酸向衣康酸转变 [2] 。衣康酸通过抑制琥珀酸脱氢酶调控三羧酸循环,从而具有抑制过度炎症反应的功能,包括抑制巨噬细胞的激活与炎性因子(例如白介素1β (interleukin 1β, IL1β))、白介素6 (IL6)和肿瘤坏死因子α (tumor necrosis factor α, TNFα)的释放 [15] 。除此之外,衣康酸及其衍生物能通过ATF3抑制IκBζ介导的炎症反应 [16] 。有研究表明ATF3会抑制干扰素I表达,虽然干扰素I是诱导IRG1表达的因子之一,但衣康酸可能通过ATF3负反馈回路抑制干扰素I [17] 。

巨噬细胞在不同的细胞因子刺激下具有损伤和修复不同的功能表型,这种现象称之为极化。极化后的M1型分泌炎性因子TNFα、IL6和IL1β,而M2型巨噬细胞分泌IL10和抑制TNFα释放。M1型巨噬细胞产生衣康酸以调节过度的炎症应激反应,但M2型巨噬细胞在某些条件下也可以产生衣康酸 [12] 。

3. 衣康酸衍生物的生理功能

衣康酸二甲酯作为衣康酸的衍生物之一,因其具有细胞渗透性,被广泛用于内源性衣康酸的替代研究物质。但衣康酸二甲酯不会在胞内转化为衣康酸,而是强化了LPS激活后的衣康酸合成 [18] 。衣康酸二甲酯的应用可以抑制脓毒症中巨噬细胞的炎症反应和焦亡 [19] [20] 。焦亡不同于细胞凋亡和坏死,是免疫细胞参与炎症的机制之一。另一类衣康酸衍生物4-辛基衣康酸(4-octyl itaconate, 4-OI)具有相似的硫醇反应性,相较其他衣康酸衍生物更易透过细胞膜,可以经过水解在胞内形成衣康酸。4-OI同样抑制免疫细胞的过度炎症反应,并在多种模型中起到抗炎、抗氧化和抗纤维化作用,如急性肺损伤 [21] 和原发性硬化性肝胆损伤 [22] 。除了提高内源性衣康酸的水平,4-OI和衣康酸二甲酯可以通过独立于Nrf2通路的方式抑制IκB和IL1β的水平,并且可以不通过未修饰的衣康酸而是直接烷基化Keap1,强烈诱导Nrf2下游的抗氧化因子HMOX1和NQO1 [23] 。内源性衣康酸对干扰素的调节功能未有直接报道 [12] ,但其衍生物4-OI可以通过Nrf2信号抑制病毒感染诱导的STING通路和干扰素I,具有缓解STING/干扰素诱导的疾病的潜力 [24] 。总的来说,衣康酸衍生物4-OI和衣康酸二甲酯更类似于免疫抑制剂,比衣康酸的抗炎作用力更强,但同时应用天然未修饰的衣康酸也具有相应优势,即能够还原其生理性的免疫调节能力。

4. IRG1/衣康酸在人类疾病中的治疗潜力

研究显示IRG1在人和小鼠肿瘤的肿瘤相关巨噬细胞中表达,肿瘤细胞通过激活NF-κB通路诱导巨噬细胞中IRG1的表达和衣康酸的产生,衣康酸会抑制炎症基因的表达和CD8+T细胞向肿瘤组织的浸润 [3] 。衣康酸的免疫抑制功能会促进肿瘤组织的生长,敲除IRG1后,肿瘤的生长得到了抑制。神经退行性疾病IRG1/ACOD1表达升高意味着神经毒性小胶质细胞表型增多,导致慢性神经炎症、进行性神经元丢失和最终认知能力下降,如阿尔茨海默病和痴呆症,故IRG1也是治疗神经退行性疾病的潜在靶点 [5] 。研究发现衣康酸通是代谢和表观遗传重编程中抑制Th17细胞分化并促进Treg细胞分化的重要代谢物,与此一致的是衣康酸处理的Th17极化T细胞的过继转移改善了自体免疫性脑脊髓炎,这意味着衣康酸成为潜在的自体免疫疾病的治疗药物 [4] 。一方面,IRG1通路的激活可以抑制病原体感染和自体免疫反应,另一方面,IRG1表达限制可以缓解肿瘤生长、神经退行性疾病和免疫瘫痪。

5. IRG1/衣康酸及其衍生物在肾脏病中的作用

5.1. 减轻急性肾损伤的恶化

在LPS诱导的急性肾损伤动物模型和鼠近端肾小管细胞系中 [25] ,4-OI的应用缓解了近端肾小管细胞的凋亡、炎症和氧化应激,增加肾皮质和近端小管细胞内的Nrf2和抗氧化因子(如HMOX1和NQO1)的表达,抑制巨噬细胞活性并减少了炎性因子释放。同时作者还发现,信号转导转录激活因子3 (signal transducer and activator of transcription 3, STAT3)极有可能是4-OI的直接结合位点,4-OI通过抑制STAT3通路,上调自噬相关基因,逆转急性肾小管细胞损伤。自噬是一种依赖于溶酶体的细胞内降解系统活动,是各种生理活动所必需的过程,在人类疾病中可能发生失调。此前有关其他疾病模型的研究显示STAT3磷酸化下调会增强自噬和改善疾病的预后 [26] ,在多个有关急性肾损伤小鼠模型的研究中,抑制核因子κB (nuclear factor-kappa B, NF-κB)/STAT3通路和JAK2/STAT3通路被证明可以改善急性肾损伤的脓毒症状态 [27] [28] 。另一个有关脓毒症(LPS和大肠杆菌注射)诱导急性肾损伤的模型的研究显示,内毒素预处理可以重编程TCA循环,上调IRG1-衣康酸轴的表达,减轻肾小管炎性浸润,单用衣康酸二甲酯预处理脓毒肾损伤小鼠同样可以缓解肾脏损伤,证实了IRG1的保护作用 [29] 。

在肾缺血再灌注损伤的小鼠模型中进一步验证了衣康酸对急性肾损伤的保护作用 [8] ,此研究发现IRG1-衣康酸轴通过激活Nrf2通路抑制巨噬细胞活化,并减轻肾脏细胞氧化应激。相较野生型对照组,敲除IRG1后的小鼠术后生存率明显降低,组织损伤也更加严重。作者用缺氧再氧合实验模拟RAW264.7巨噬细胞在缺血再灌注损伤下的状态,发现衣康酸二甲酯处理后的缺氧-复氧巨噬细胞减少了TNFα和IL1β的分泌,若敲低Nrf2基因,则衣康酸二甲酯的干预效果降低。C/ebpβ基因很可能是支配IRG1的上游基因,因为沉默肾脏细胞和巨噬细胞中的C/ebpβ后IRG1表达下降。已有研究发现激活C/ebpβ可以降低高糖刺激的肾小管上皮细胞和糖尿病肾皮质中活性氧(reactive oxygen species, ROS)水平 [30] ,而ROS是线粒体损伤和凋亡的有力的激活剂,是衡量氧化应激的标志。总的来说,在氧化应激与炎症反应刺激下,IRG1作为保护性基因受C/ebpβ基因调控上调,从而激活Nrf2通路调节免疫细胞,保护肾脏不受脓毒血症影响。

巨噬细胞不同的表型在急性肾损伤到慢性肾脏病发展的过程中有重要的角色。M1型分泌炎性因子加重组织损伤和细胞凋亡 [31] ,M2型巨噬细胞分泌抗炎因子并抑制炎性反应,能对抗急性肾损伤并参与组织修复 [32] 。然而,到了肾损伤后期,M2型巨噬细胞在肾间质长期停留,可能导致组织修复不佳。单侧输尿管梗阻(unilateral ureteral occlusion, UUO)小鼠模型中证实,M2极化促进肾脏纤维化 [33] ,且在人糖尿病肾中纤维化的程度和M2的浸润程度成正比 [34] 。衣康酸及其衍生物,可以抑制M1型的活动,不仅如此,2022年Runtsch M.C.等人发现衣康酸和4-OI可以抑制M2型中JAK1/STAT6通路,改善M2驱动的相关疾病 [35] 。因此,探究IRG1在巨噬细胞参与肾损伤与肾修复的平衡中的作用,具有非常重要的意义。

5.2. 缓解肾脏纤维化

当肾脏受到高血压、高血糖、感染或药物毒性等始动因素的伤害时,炎性因子被释放,这会招募巨噬细胞、淋巴细胞、粒细胞等炎性细胞穿过肾间质区域,引起肾脏细胞的炎症和氧化应激反应,激活参与纤维化的生长因子(transforming growth factor, TGF-β1)通路,肾固有细胞如系膜细胞、肾小球上皮细胞和肾小管上皮细胞可转化为肌成纤维细胞 [36] 。研究发现,在UUO和腺嘌呤处理的纤维化模型大鼠中,NF-κB被激活且其下游p65,IκBα和p-IκBα表达升高,但在在静脉注射六周4-OI的治疗组中,NF-κB通路被抑制 [37] 。同时这个研究证实了4-OI会降低转化TGF-β1及其下游p-Smad2/Smad2、p-Smad3/Smad3的表达,上调Smad7蛋白,这会减少纤维化相关标志(如α-sma,fibronectin和PAI-I),减轻肾脏代偿性肥大和组织学的纤维化状态。

有研究提出,钠–葡萄糖协同转运蛋白2 (sodium-glucose co-transporter, SGLT2)抑制剂达格列净,作为治疗慢性肾脏病的新晋药物,可以导致异柠檬酸脱氢酶2的降低,线粒体柠檬酸载体的增加和IRG1的表达增加,从而增加TCA循环中的衣康酸 [38] 。经历了达格列净治疗的肾缺血再灌注损伤小鼠相比于对照组,其小管间质纤维化的组织学表现减轻,TCA循环代谢产物的累积减少,并抑制NOD-,LRR-和pyrin结构域包含蛋3(NOD-, LRR- and pyrin domain-containing protein 3, NLRP3)的激活。作者还发现,当不使用达格列净,单用4-OI治疗小鼠时,同样可以抑制NLRP3,并减轻小鼠肾脏从急性损伤到慢性肾纤维化的转变。4-OI抑制了NEK7和NLRP3之间的相互作用,从而切断NLRP3激活中的关键步骤 [39] ,并干预NLRP3的下游IL1β和IL18等炎症因子的释放 [40] 。IRG1作为SGLT2抑制剂调节的下游,且衣康酸是可以直接抗炎、抗氧化的分子,这表明IRG1-衣康酸轴对肾脏炎症及纤维化转变具有很大的潜力。

5.3. 缓解狼疮性肾炎和原发性肾小球肾炎

系统性红斑狼疮(systemic lupus erythematosus, SLE)是一种多系统受累的自身免疫疾病,约40%~70%的病人会发展出狼疮性肾炎 [41] 。促炎性和抗炎性细胞因子的失调对系统性炎症、局部组织损伤和SLE进展中的免疫反应性的调节至关重要,TNFα、IL1β和IL6等炎性因子在SLE中起重要的致病作用 [42] 。Nrf2通过激活heme oxygenase-1 (HO-1),NAD(P)H:quinone oxidoreductase 1 (NQO1)等基因转录抗氧化应激 [43] ,通过抑制NF-κB通路抗炎 [44] 。Nrf2基因的缺失,可以导致老年雌鼠狼疮样自体免疫性肾炎的发生,肾小球出现节段性硬化和增生,小球微血管壁内C3、IgG和IgM沉积 [45] 。

前文已经提到,衣康酸可以通过激活Nrf2抑制巨噬细胞的活化和炎性因子的分泌,以缓解急性肾损伤时的免疫细胞浸润,在狼疮病人的外周血单核细胞中,衣康酸同样激活Nrf2通路抵抗炎症反应,减轻狼疮致病因素。用4-OI处理从SLE患者血清分离的外周血单核细胞和THP-1人巨噬细胞系,可以激活两种细胞的Keap1-Nrf2系统,并抑制NF-κB通路激活,减少TNFα、IL1β和IL-6的释放 [46] 。Blanco, L. P.等人同样在SLE患者外周血单核细胞、外周血B细胞、狼疮小鼠模型中验证了4-OI的治疗效果,通过体外和体内实验完善衣康酸和狼疮性肾炎相关的研究 [47] 。应用了4-OI后的狼疮小鼠不仅自身免疫抗体(抗dsDNA和抗RNP抗体)的水平都降低,蛋白尿、血肌酐、肾脏免疫复合物沉积等肾生化指标也降低,且4-OI处理组的肾脏组织学表现相比于对照组,其肾小管官腔扩张、肾小管硬化和炎性细胞浸润程度有所缓解。4-OI抑制了小鼠脾脏JAK1通路激活并改善脾大,且IFN、IL6、TNFα和IL1β的表达水平在脾细胞中降低。在体外,4-OI处理的人源B细胞增殖活动和IgG抗体分泌活动减弱。此研究显示,虽然4-OI对淋巴器官内免疫细胞亚群的表型调节不足够显著,但依旧可以抵御自身免疫抗体水平升高和肾脏自身免疫损伤,这可能和4-OI通过经典通路抑制免疫细胞炎症反应和对B细胞下游产生影响有关。

除了自身免疫抗体为诱因的继发性肾炎,原发性肾小球肾炎如新月体型肾炎,其肾病进展是巨噬细胞依赖性的,即循环单核细胞受趋化因子刺激在肾脏组织中浸润 [48] ,IgA肾病同样与免疫细胞炎性浸润和自身免疫抗体积聚有关 [49] ,所以原发性肾小球肾炎也具有衣康酸类化合物治疗的可行性。缺铁的人巨噬细胞实验中显示,衣康酸/琥珀酸的比值升高,IL1β (IL-1β)和TNFα降低,这表明铁剥夺通过衣康酸的免疫调节特性抑制巨噬细胞经典的LPS极化,在巨噬细胞依赖性肾小球肾炎如新月体型肾小球肾炎动物模型中,使肾小球细胞增殖受限和肾损伤程度降低 [7] 。由此可见,衣康酸本身的免疫调节功能,使其能被应用于不同病因的肾脏疾病,即除了抑制肾脏组织炎症和氧化应激,也可以从免疫细胞的调节上干预肾脏疾病。

6. 总结

天然衣康酸可调节巨噬细胞免疫活动,形成干扰素负反馈回路,而衣康酸衍生物更类似于免疫抑制剂,可以强化对Nrf2的激活和对NF-κB的抑制。两者都具有其优势,并被用作各种类型疾病模型的研究。衣康酸抑制STAT3通路提高自噬,缓解肾皮质和近端肾小管细胞的损伤凋亡,并能通过激活Nrf2抑制巨噬细胞活化,从而改善急性肾损伤的炎性细胞浸润和肾小管坏死。在急性肾损伤或肾炎向慢性肾脏病转化的进程中,衣康酸抑制NF-κB通路、NRLP3炎症小体和下游炎性因子释放,延缓肾脏细胞的表型向纤维型转变,且衣康酸抑制TGF-β1/Smad2/Smad3信号,缓解组织纤维化。巨噬细胞的极化分型在此进程中扮演重要角色,而衣康酸是参与调节分型的重要代谢物,可以抑制M1型的过度炎症反应和M2型的组织重构作用。衣康酸介导的Nrf2的激活减轻狼疮病人外周单核细胞的炎症反应,还改善了自身免疫抗体水平狼疮肾炎的肾病相关指标。

衣康酸抑制狼疮患者外周血单核细胞的炎症反应和原发性肾小球肾炎巨噬细胞LPS极化、浸润,这说明其作为免疫调节剂,有缓解单个或多个病因联合的肾小球肾炎的潜力。总体来说,有关衣康酸治疗肾病的研究多数在动物实验阶段,常着眼于免疫细胞的调节活动,其他细胞系的IRG1基因是否表达、临床应用是否具有潜力还需更多研究,尚存未知领域,但具有很高的探索价值。

致谢

曹心怡对文献进行了阅读总结与编撰,张春提出综述的主题概念、列出提纲并对手稿进行修订。

NOTES

*通讯作者。

参考文献

[1] Michelucci, A., Cordes, T., Ghelfi, J., et al. (2013) Immune-Responsive Gene 1 Protein Links Metabolism to Immunity by Catalyzing Itaconic Acid Production. Proceedings of the National Academy of Sciences of the United States of America, 110, 7820-7825.
https://doi.org/10.1073/pnas.1218599110
[2] Mills, E.L., Ryan, D.G., Prag, H.A., et al. (2018) Itaconate Is an Anti-Inflammatory Metabolite That Activates Nrf2 via Alkylation of KEAP1. Nature, 556, 113-117.
https://doi.org/10.1038/nature25986
[3] Chen, Y.-J., Li, G.-N., Li, X.-J., et al. (2023) Targeting IRG1 Reverses the Immunosuppressive Function of Tumor-Associated Macrophages and Enhances Cancer Immunotherapy. Science Advances, 9, eadg0654.
https://doi.org/10.1126/sciadv.adg0654
[4] Aso, K., Kono, M., Kanda, M., et al. (2023) Itaconate Ameliorates Autoimmunity by Modulating T Cell Imbalance via Metabolic and Epigenetic Reprogramming. Nature Communications, 14, Article No. 984.
https://doi.org/10.1038/s41467-023-36594-x
[5] Wu, R., Chen, F., Wang, N., et al. (2020) Acod1 in Immunome-tabolism and Disease. Cellular & Molecular Immunology, 17, 822-833.
https://doi.org/10.1038/s41423-020-0489-5
[6] Radi, Z.A. (2019) Kidney Pathophysiology, Toxicology, and Drug-Induced Injury in Drug Development. International Journal of Toxicology, 38, 215-227.
https://doi.org/10.1177/1091581819831701
[7] Pereira, M., Chen, T.D., Buang, N., et al. (2019) Acute Iron Dep-rivation Reprograms Human Macrophage Metabolism and Reduces Inflammation in Vivo. Cell Reports, 28, 498-511.E5.
https://doi.org/10.1016/j.celrep.2019.06.039
[8] Zhu, D., Zhao, Y., Luo, Y., et al. (2021) Irg1-Itaconate Axis Protects Against Acute Kidney Injury via Activation of Nrf2. American Journal of Translational Research, 13, 1155-1169.
[9] McFadden, B.A. and Purohit, S. (1977) Itaconate, an Isocitrate Lyase-Directed Inhibitor in Pseudo-monas indigofera. Journal of Bacteriology, 131, 136-144.
https://doi.org/10.1128/jb.131.1.136-144.1977
[10] Berg, I.A., Filatova, L.V. and Ivanovsky, R.N. (2002) Inhibition of Acetate and Propionate Assimilation by Itaconate via Pro-pionyl-Coa Carboxylase in Isocitrate Lyase-Negative Purple Bacterium Rhodospirillum rubrum. FEMS Microbiology Letters, 216, 49-54.
https://doi.org/10.1111/j.1574-6968.2002.tb11413.x
[11] Zhang, Z., Chen, C., Yang, F., et al. (2022) Itaconate Is a Lysosomal Inducer That Promotes Antibacterial Innate Immunity. Molecular Cell, 82, 2844-2857.E10.
https://doi.org/10.1016/j.molcel.2022.05.009
[12] O’Neill, L.A.J. and Artyomov, M.N. (2019) It-aconate: The Poster Child of Metabolic Reprogramming in Macrophage Function. Nature Reviews Immunology, 19, 273-281.
https://doi.org/10.1038/s41577-019-0128-5
[13] Strelko, C.L., Lu, W., Dufort, F.J., et al. (2011) Itaconic Acid Is A Mammalian Metabolite Induced during Macrophage Activation. Journal of the American Chemical Society, 133, 16386-16389.
https://doi.org/10.1021/ja2070889
[14] Bambouskova, M., Potuckova, L., Paulenda, T., et al. (2021) Itaconate Confers Tolerance to Late NLRP3 Inflammasome Activation. Cell Reports, 34, Article 108756.
https://doi.org/10.1016/j.celrep.2021.108756
[15] Lampropoulou, V., Sergushichev, A., Bambouskova, M., et al. (2016) Itaconate Links Inhibition of Succinate Dehydrogenase with Macrophage Metabolic Remodeling and Regulation of Inflammation. Cell Metabolism, 24, 158-166.
https://doi.org/10.1016/j.cmet.2016.06.004
[16] Bambouskova, M., Gorvel, L., Lampropoulou, V., et al. (2018) Electrophilic Properties of Itaconate and Derivatives Regulate the IκBζ-ATF3 Inflammatory Axis. Nature, 556, 501-504.
https://doi.org/10.1038/s41586-018-0052-z
[17] Labzin, L.I., Schmidt, S.V., Masters, S.L., et al. (2015) ATF3 Is a Key Regulator of Macrophage IFN Responses. The Journal of Immunology, 195, 4446-4455.
https://doi.org/10.4049/jimmunol.1500204
[18] ElAzzouny, M., Tom, C.T.M.B., Evans, C.R., et al. (2017) Dime-thyl Itaconate Is Not Metabolized into Itaconate Intracellularly. Journal of Biological Chemistry, 292, 4766-4769.
https://doi.org/10.1074/jbc.C117.775270
[19] Huang, S.-S., Guo, D.-Y., Jia, B.-B., et al. (2021) Dimethyl Ita-conate Alleviates the Pyroptosis of Macrophages through Oxidative Stress. BMC Immunology, 22, Article No. 72.
https://doi.org/10.1186/s12865-021-00463-3
[20] Zhang, S., Jiao, Y., Li, C., et al. (2021) Dimethyl Itaconate Alle-viates the Inflammatory Responses of Macrophages in Sepsis. Inflammation, 44, 549-557.
https://doi.org/10.1007/s10753-020-01352-4
[21] Li, Y., Chen, X., Zhang, H., et al. (2020) 4-Octyl Itaconate Alle-viates Lipopolysaccharide-Induced Acute Lung Injury in Mice by Inhibiting Oxidative Stress and Inflammation. Drug Design, Development and Therapy, 14, 5547-5558.
https://doi.org/10.2147/DDDT.S280922
[22] Li, Y., Li, B., Xiao, X., et al. (2023) Itaconate Inhibits CD103+ TRM Cells and Alleviates Hepatobiliary Injury in Mouse Models of Primary Sclerosing Cholangitis. Hepatology, 79, 25-38.
https://doi.org/10.1097/HEP.0000000000000549
[23] Swain, A., Bambouskova, M., Kim, H., et al. (2020) Com-parative Evaluation of Itaconate and Its Derivatives Reveals Divergent Inflammasome and Type I Interferon Regulation in Macrophages. Nature Metabolism, 2, 594-602.
https://doi.org/10.1038/s42255-020-0210-0
[24] Olagnier, D., Brandtoft, A.M., Gunderstofte, C., et al. (2018) Nrf2 Negatively Regulates Sting Indicating a Link between Antiviral Sensing and Metabolic Reprogramming. Nature Communications, 9, Article No. 3506.
https://doi.org/10.1038/s41467-018-05861-7
[25] Xu, L., Cai, J., Li, C., et al. (2023) 4-Octyl Itaconate Attenuates LPS-Induced Acute Kidney Injury by Activating Nrf2 and Inhibiting STAT3 Signaling. Molecular Medicine, 29, Article No. 58.
https://doi.org/10.1186/s10020-023-00631-8
[26] Kim, T.W., Cheon, C. and Ko, S.G. (2020) SH003 Ac-tivates Autophagic Cell Death by Activating ATF4 and Inhibiting G9a under Hypoxia in Gastric Cancer Cells. Cell Death and Disease, 11, Article No. 717.
https://doi.org/10.1038/s41419-020-02924-w
[27] Zhou, Y., Xu, W. and Zhu, H. (2019) CXCL8(3-72) K11R/G31P Protects Against Sepsis-Induced Acute Kidney Injury via Nf-κB and JAK2/STAT3 Pathway. Biological Research, 52, Article No. 29.
https://doi.org/10.1186/s40659-019-0236-5
[28] Sun, S., Wang, J., Wang, J., et al. (2019) Maresin 1 Mitigates Sepsis-Associated Acute Kidney Injury in Mice via Inhibition of the NF-κB/STAT3/MAPK Pathways. Frontiers in Pharmacology, 10, Article 1323.
https://doi.org/10.3389/fphar.2019.01323
[29] Hato, T., Zollman, A., Plotkin, Z., et al. (2018) Endotoxin Precondi-tioning Reprograms S1 Tubules and Macrophages to Protect the Kidney. Journal of the American Society of Nephrology, 29, 104-117.
https://doi.org/10.1681/ASN.2017060624
[30] Xu, J., Liu, L., Gan, L., et al. (2021) Berberine Acts on C/EBPβ/lncRNA Gas5/miR-18a-5p Loop to Decrease the Mitochondrial ROS Generation in HK-2 Cells. Frontiers in Endocrinology (Lausanne), 12, Article 675834.
https://doi.org/10.3389/fendo.2021.675834
[31] Rayego-Mateos, S., Marquez-Exposito, L., Rodrigues-Diez, R., et al. (2022) Molecular Mechanisms of Kidney Injury and Repair. International Journal of Molecular Sciences, 23, Article 1542.
https://doi.org/10.3390/ijms23031542
[32] Li, X., Mu, G., Song, C., et al. (2018) Role of M2 Macrophages in Sepsis-Induced Acute Kidney Injury. Shock, 50, 233-239.
https://doi.org/10.1097/SHK.0000000000001006
[33] Feng, Y., Ren, J., Gui, Y., et al. (2018) Wnt/β-Catenin-Promoted Macrophage Alternative Activation Contributes to Kidney Fibrosis. Journal of the American Society of Nephrology, 29, 182-193.
https://doi.org/10.1681/ASN.2017040391
[34] Klessens, C.Q.F., Zandbergen, M., Wolterbeek, R., et al. (2017) Macrophages in Diabetic Nephropathy in Patients with Type 2 Diabetes. Nephrology Dialysis Transplantation, 32, 1322-1329.
https://doi.org/10.1093/ndt/gfw260
[35] Runtsch, M.C., Angiari, S., Hooftman, A., et al. (2022) Ita-conate and Itaconate Derivatives Target JAK1 to Suppress Alternative Activation of Macrophages. Cell Metabolism, 34, 487-501.E8.
https://doi.org/10.1016/j.cmet.2022.02.002
[36] Meng, X.-M., Nikolic-Paterson, D.J. and Lan, H.Y. (2016) TGF-β: The Master Regulator of Fibrosis. Nature Reviews Nephrology, 12, 325-338.
https://doi.org/10.1038/nrneph.2016.48
[37] Tian, F., Wang, Z., He, J., et al. (2020) 4-Octyl Itaconate Protects Against Renal Fibrosis via Inhibiting TGF-Beta/ Smad Pathway, Autophagy and Reducing Generation of Reactive Oxy-gen Species. European Journal of Pharmacology, 873, Article 172989.
https://doi.org/10.1016/j.ejphar.2020.172989
[38] Ke, Q., Shi, C., Lv, Y., et al. (2022) SGLT2 Inhibitor Counter-acts NLRP3 Inflammasome via Tubular Metabolite Itaconate in Fibrosis Kidney. The FASEB Journal, 36, e22078.
https://doi.org/10.1096/fj.202100909RR
[39] Hooftman, A., Angiari, S., Hester, S., et al. (2020) The Immuno-modulatory Metabolite Itaconate Modifies NLRP3 and Inhibits Inflammasome Activation. Cell Metabolism, 32, 468-478.E467.
https://doi.org/10.1016/j.cmet.2020.07.016
[40] Hoyle, C., Green, J.P., Allan, S.M., et al. (2022) Itaconate and Fumarate Derivatives Inhibit Priming and Activation of the Canonical NLRP3 Inflammasome in Macro-phages. Immunology, 165, 460-480.
https://doi.org/10.1111/imm.13454
[41] Mohan, C. and Putterman, C. (2015) Genetics and Pathogenesis of Systemic Lupus Erythematosus and Lupus Nephritis. Nature Reviews Nephrology, 11, 329-341.
https://doi.org/10.1038/nrneph.2015.33
[42] Su, D.-L., Lu, Z.-M., Shen, M.-N., et al. (2012) Roles of Pro- and Anti-Inflammatory Cytokines in the Pathogenesis of SLE. Journal of Biomedicine and Biotechnology, 2012, Article ID: 347141.
https://doi.org/10.1155/2012/347141
[43] Suzuki, T. and Yamamoto, M. (2015) Molecular Basis of the Keap1-Nrf2 System. Free Radical Biology and Medicine, 88, 93-100.
https://doi.org/10.1016/j.freeradbiomed.2015.06.006
[44] Wardyn, J.D., Ponsford, A.H. and Sanderson, C.M. (2015) Dissecting Molecular Cross-Talk between Nrf2 and Nf-κB Response Pathways. Biochemical Society Transac-tions, 43, 621-626.
https://doi.org/10.1042/BST20150014
[45] Yoh, K., Itoh, K., Enomoto, A., et al. (2001) Nrf2-Deficient Female Mice Develop Lupus-Like Autoimmune Nephritis. Kidney International, 60, 1343-1353.
https://doi.org/10.1046/j.1523-1755.2001.00939.x
[46] Tang, C., Wang, X., Xie, Y., et al. (2018) 4-Octyl Itaconate Activates Nrf2 Signaling to Inhibit Pro-Inflammatory Cytokine Production in Peripheral Blood Mononuclear Cells of Systemic Lupus Erythematosus Patients. Cellular Physiology and Biochemistry, 51, 979-990.
https://doi.org/10.1159/000495400
[47] Blanco, L.P., Patino-Martinez, E., Nakabo, S., et al. (2022) Modulation of the Itaconate Pathway Attenuates Murine Lupus. Arthritis & Rheumatology, 74, 1971-1983.
https://doi.org/10.1002/art.42284
[48] Chen, A., Lee, K. and He, J.C. (2022) Treating Crescentic Glomerulonephri-tis by Targeting Macrophages. Kidney International, 102, 1212-1214.
https://doi.org/10.1016/j.kint.2022.09.004
[49] Xie, D., Zhao, H., Xu, X., et al. (2021) Intensity of Macrophage In-filtration in Glomeruli Predicts Response to Immunosuppressive Therapy in Patients with IGA Nephropathy. Journal of the American Society of Nephrology, 32, 3187-3196.
https://doi.org/10.1681/ASN.2021060815