| [1] | Long, J., Shelhamer, E. and Darrell, T. (2015) Fully Convolutional Networks for Semantic Segmentation. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, 7-12 June 2015, 3431-3440. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [2] | Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2012) ImageNet Classification with Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems, 25, 1097-1105. | 
                     
                                
                                    
                                        | [3] | Simonyan, K. and Zisserman, A. (2015) Very Deep Convolutional Networks for Large-Scale Image Recognition. 3rd International Conference on Learning Representations (ICLR 2015), San Diego, 7-9 May 2015, 1-14. | 
                     
                                
                                    
                                        | [4] | Szegedy, C., Liu, W., Jia, Y., et al. (2014) Going Deeper with Convolutions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, 7-12 June 2015, 1-9. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [5] | Ronneberger, O., Fischer, P. and Brox, T. (2015) U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Navab, N., Hornegger, J., Wells, W. and Frangi, A., Eds., Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Springer, Cham, 234-241. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [6] | Chen, L.C., Papandreou, G., Kokkinos, I., et al. (2014) Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs. Computer Science, 4, 357-361. | 
                     
                                
                                    
                                        | [7] | Chen, L.C., Papandreou, G., Kokkinos, I., et al. (2018) DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, 834-848. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [8] | Chen, L.C., Papandreou, G., Schroff, F., et al. (2023) Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv: 1706.05587. | 
                     
                                
                                    
                                        | [9] | Chen, L.C., Zhu, Y.K., Papandreou, G., et al. (2018) Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C. and Weiss, Y., Eds., Computer Vision—ECCV 2018, Springer, Cham, 833-851. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [10] | Zhao, H.S., Qi, X.J., Shen, X., Shi, J. and Jia, J. (2018) Icnet for Real-Time Semantic Segmentation on High-Resolution Images. In: Ferrari, V., Hebert, M., Sminchisescu, C. and Weiss, Y., Eds., Computer Vision—ECCV 2018, Springer, Cham, 418-434. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [11] | Li, H.C., Xiong, P.F., Fan, H.Q. and Sun, J. (2019) Dfanet: Deep Feature Aggregation for Real-Time Semantic Segmentation. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, 15-20 June 2019, 9522-9531. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [12] | Chollet, F. (2017) Xception: Deep Learning with Depthwise Separable Convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, 21-26 July 2017, 1800-1807. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [13] | Li, X.T., You, A.S., Zhu, Z., et al. (2002) Semantic Flow for Fast and Accurate Scene Parsing. In: Vedaldi, A., Bischof, H., Brox, T. and Frahm, J.M., Eds., Computer Vision—ECCV 2020, Springer, Cham, 775-793. | 
                     
                                
                                    
                                        | [14] | He, K.M., Zhang, X.Y., Ren, S.Q., and Sun, J. (2016) Deep Residual Learning for Image Recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, 27-30 June 2016, 770-778. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [15] | Ma, N.N., Zhang, X.Y., Zheng, H.T. and Su, J. (2018) Shufflenetv2: Practical Guidelines for Efficient CNN Architecture Design. In: Ferrari, V., Hebert, M., Sminchisescu, C. and Weiss, Y., Eds., Computer Vision—ECCV 2018, Springer, Cham, 122-138. | 
                     
                                
                                    
                                        | [16] | Yu, C.Q., Wang, J.B., et al. (2018) BiSeNet: Bilateral Segmentation Network for Real-Time Semantic Segmentation. . In: Ferrari, V., Hebert, M., Sminchisescu, C. and Weiss, Y., Eds., Computer Vision—ECCV 2018, Springer, Cham, 334-349. | 
                     
                                
                                    
                                        | [17] | Paszke, A., Chaurasia, A., Kim, S. and Culurciello, E. (2016) ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. arXiv: 1606.02147. | 
                     
                                
                                    
                                        | [18] | Li, G., Yun, I.Y., Kim, J. and Kim, J. (2019) Dabnet: Depth-Wise Asymmetric Bottleneck for Real-Time Semantic Segmentation. arXiv: 1907.11357. | 
                     
                                
                                    
                                        | [19] | Gao, R. (2021) Rethinking Dilated Convolution for Real-time Semantic Segmentation. arXiv: 2111.09957. | 
                     
                                
                                    
                                        | [20] | Howard, A.G., Zhu, M.L., et al. (2017) MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv: 1704.04861. | 
                     
                                
                                    
                                        | [21] | Xie, S.N., Girshick, R., et al. (2023) Aggregated Residual Transformations for Deep Neural Networks. arXiv: 1611.05431. | 
                     
                                
                                    
                                        | [22] | Chen, J.R., Kao, S.H., et al. (2023) Run, Don’t Walk: Chasing Higher FLOPS for Faster Neural Networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Vancouver, 17-24 June 2023, 12021-12031. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [23] | Yu, C.Q., Gao, C.X., et al. (2021) Bisenet V2: Bilateral Network with Guided Aggregation for Real-Time Semantic Segmentation. International Journal of Computer Vision, 129, 3051-3068. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [24] | Sandler, M., Howard, A., Zhu, M, L., et al. (2018) MobileNetV2: Inverted Residuals and Linear Bottlenecks. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, 18-23 June 2018, 4510-4520. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [25] | Cordts, M., Omran, M., Ramos, S., et al. (2016) The Cityscapes Dataset for Semantic Urban Scene Understanding. 2016 Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, 27-30 June 2016, 3213-3223. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [26] | Brostow, G.J., Shotton, J., Fauqueur, J., et al. (2008) Segmentation and Recognition Using Structure from Motion Point Clouds. In: Forsyth, D., Torr, P. and Zisserman, A., Eds., Computer Vision—ECCV 2008, Springer, Berlin, 44-57. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [27] | Mehta, S., Rastegari, M., Caspi, A., et al. (2018) ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C. and Weiss, Y., Eds., Computer Vision—ECCV 2018, Springer, Cham, 552-568. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [28] | Wu, T.Y., Tang, S., Zhang, R., et al. (2021) CGNet: A Light-Weight Context Guided Network for Semantic Segmentation. IEEE Transactions on Image Processing, 30, 1169-1179. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [29] | Romera, E., Alvarez, J.M., Bergasa, L.M., et al. (2017) ERFNet: Efficient Residual Factorized Convnet for Real-Time Semantic Segmentation. IEEE Transactions on Intelligent Transportation Systems, 19, 263-272. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [30] | Wang, Y., Zhou, Q., Liu, J., et al. (2019) Lednet: A Lightweight Encoder-Decoder Network for Real-Time Semantic Segmentation. Proceedings of the IEEE International Conference on Image Processing, Taipei, 22-25 September 2019, 1860-1864. [Google Scholar] [CrossRef] |