NF-κB信号通路在骨关节炎发生发展中的研究进展
Research Progress of NF-κB Signaling Pathway in the Pathogenesis and Development of Osteoarthritis
DOI: 10.12677/ACM.2024.142395, PDF, HTML, XML, 下载: 79  浏览: 165 
作者: 张 柯:新疆医科大学研究生院,新疆 乌鲁木齐 ;新疆医科大学第四临床医学院(新疆维吾尔自治区中医医院),新疆 乌鲁木齐;方 锐*:新疆医科大学第四临床医学院(新疆维吾尔自治区中医医院),新疆 乌鲁木齐
关键词: 关节炎NF-κB信号通路转录因子关节软骨研究进展Osteoarthritis NF-κB Signaling Pathway Transcription Factors Articular Cartilage Research Progress
摘要: 骨关节炎(OA)是一种与磨损、炎症和衰老相关的关节疾病。各种机械应力伴随炎症促进软骨细胞外基质的降解导致关节软骨的破坏。NF-κB长期以来被认为是一种致病因子,因此已成为OA的治疗靶点。由于NF-κB是一种多用途和多功能的转录因子,参与各种生物过程,全面了解NF-κB在OA病理中的功能或调节将有助于制定有针对性的治疗策略,以保护软骨免受OA损伤并降低潜在副作用的风险。在这篇综述中,我们讨论了NF-κB在OA发生发展中的研究进展,为更好地了解OA及探索潜在的治疗方向提供基础。
Abstract: Osteoarthritis (OA) is a joint disease associated with wear and tear, inflammation, and aging. Vari-ous mechanical stresses accompanied by inflammation promote the degradation of cartilage extra-cellular matrix and lead to the destruction of articular cartilage. NF-κB has long been recognized as a causative agent and has therefore become a therapeutic target for OA. Because NF-κB is a versa-tile and multifunctional transcription factor involved in a variety of biological processes, a compre-hensive understanding of the function or regulation of NF-κB in OA pathology will help develop tar-geted therapeutic strategies to protect cartilage from OA damage and reduce the risk of potential side effects. In this review, we discuss advances in NF-κB in the development of OA, providing a ba-sis for better understanding OA and exploring potential therapeutic directions.
文章引用:张柯, 方锐. NF-κB信号通路在骨关节炎发生发展中的研究进展[J]. 临床医学进展, 2024, 14(2): 2797-2805. https://doi.org/10.12677/ACM.2024.142395

1. 引言

骨关节炎(osteoarthritis, OA)是一种临床常见的慢性关节炎,病理上表现为关节软骨的损害,最终发生关节软骨退变、纤维化、断裂、缺损及整个关节面的损害。临床表现为关节疼痛、僵硬、肥大及活动受限,好发于膝、髋、颈椎和腰椎等负重关节及远端指间关节、第一腕掌关节和第一跖趾关节 [1] 。统计显示,当前全球有超过5亿人受到OA的影响,约22%的40岁以上的成年人患有膝关节OA。同时,由于缺乏长期的系统、有效的治疗,此类患者的最终结局是进行关节置换手术,这也使得关节置换手术在全球范围内每年以10%的速度增长,其中95%的患者为OA患者 [2] 。尽管人工关节可以在短期内解决患者对关节活动的需要,但是人工关节的使用寿命有限且存在一定的副作用,影响患者的长期预后,膝关节置换术后膝关节感染发生率为0.8%~1.9% [3] 。OA逐渐成为世界范围内中老年患者的主要致残原因之一,给患者带来生命财产安全的同时也带来严重的社会负担 [4] 。

由于发病机制未明,目前尚没有治愈OA的方法,在过去很长的一段时间内,OA的临床治疗方案多以缓解关节疼痛为主。随着研究的进行,当前的OA的治疗策略已是非药物性预防及药物性阻滞或延缓OA的进展为主 [5] 。对于OA发生发展的病理生理机制认识的深入是当前治疗思路改变的重要基础。如β-连环蛋白(β-catenin)信号通路 [6] 、核因子激活的B细胞kappa轻链(NF-κB)信号通路 [7] 、转化生长因子-β/smad蛋白(TGF-β/Smad)信号通路 [8] 等。其中以NF-κB信号通路的最为重要。多项研究均显示 [9] [10] [11] ,NF-κB在OA中异常激活,是一种疾病促成因子,其参与许多OA发生发展的相关事件,包括软骨细胞分解代谢、软骨细胞存活和滑膜炎症。因此,NF-κB及其上游调节因子、辅助因子和下游效应物均被认为是OA治疗干预的重要潜在靶点。本研究通过阅读近期发表的相关国内外研究论文,将NF-κB信号通路在OA中的发生发展作一综述,为后续的研究提供基础。

2. OA发生发展的病理生理机制

关节软骨是一种关节内高度特化的结缔组织,由软骨细胞及其产生的细胞外基质(extracellular matrix, ECM)组成,天然软骨基质主要由II型胶原蛋白和蛋白聚糖组成,提供软骨应对机械应力缓冲 [12] 。软骨细胞通过合成ECM维持软骨稳态,从而保持软骨的结构和功能完整性,但关节软骨缺乏血管、神经,自身修复能力有限,因此软骨细胞的保存对关节健康至关重要。在各类炎症因子的持续刺激下会造成软骨细胞的损伤和凋亡,失去维持软骨完整性的能力,不仅如此,持续的刺激会导致软骨细胞由原来的合成ECM的细胞转变为分解ECM的细胞,后者的这种生物学效应是通过其分泌的基质金属蛋白酶家族(matrix metalloproteinases, MMPs)及人金属肽酶含血小板反应蛋白家族(a disintegrin and metalloproteinase with thrombspondin, ADAMTSs)所实现的,如MMP13、ADAMTS5等 [13] [14] 。随着这种分解效应的逐步扩大并超过了其本身所应该发挥的合成效应,最终导致了软骨功能的退化 [15] 。研究显示,这种分解效应可以被包括白介素-1β (intelukin-1β, IL-1β)、IL-6及肿瘤坏死因子-α (tumor necrosis factor-α, TNF-α)等,这些炎症反应因子最初产生于局部炎性改变的关节滑膜,及时的休息及对症处理可以导致关节滑膜的炎症缓解,但长期的机械应力及其他因素的刺激将导致关节滑膜的炎症反应扩大,并通过自分泌或旁分泌上述炎症因子的正反馈机制导致关节软骨炎症的进展,最终导致严重的关节功能障碍,炎症因子在关节炎的发生发展占约40%的作用 [16] [17] 。

3. NF-κB信号通路

NF-κB,最初是由Ranjan Sen教授及其团队确定了一种与活化B淋巴细胞细胞核中特定的、保守的DNA序列结合的蛋白质,随之将其命名为B细胞中κ轻链基因附近的核因子,即NF-κB [18] 。在静息(未刺激)条件下,NF-κB二聚体与NF-κB抑制蛋白(inhibitory subunit of NF-κB, IκB)结合的胞质中,在感知各类机械及化学刺激后,IκB被IκB激酶(IκB kinae, IκK)磷酸化,通过泛素–蛋白酶体系统降解IκB,游离的NF-κB二聚体可以自由的从细胞质转移到细胞核中,最后调节数百种免疫调节蛋白、促炎细胞因子、粘附分子、趋化因子和生长因子的表达 [19] 。NF-κB是作为异二聚体和同二聚体发挥作用的相关蛋白复合物家族,涉及免疫、应激反应、炎症性疾病、细胞增殖和细胞死亡等多种重要的病理生理进程,其中包括:蛋白50 (protein 50, P50)、P52及P65等,这些NF-κB与网状内皮增生病毒癌基因(reticuloendotheliosis viral oncogene, V-Rel)具有N端同源性,这些转录因子共同拥有一个对其发挥功能来说非常重要的结构域,即网状内皮增生同源结构域(reticuloendotheliosis homoog domain, RHD),该域负责同或异源二聚体活性复合物的二聚化,与IκB互相作用,通过进入细胞核与DNA结合来调控Rel/NF-κB靶基因的启动子/增强子区域 [20] [21] 。根据激活NF-κB信号级联的差异,将NF-κB信号通路分为经典途径和非经典途径,经典途径由TNF (TNF receptor, TNFR)、TOll样(Toll like receptor, TLR)或T细胞受体(T cell receptor, TCR)介导,包括激活IκKα/IκKγ复合物,随后通过泛素-蛋白酶体系统导致IκB分子的磷酸化和降解,引发NF-κB的核转移 [22] 。非经典途径主要涉及刺激B细胞激活因子(B-lymphocyte stimulator, BLyS)、CD40和依赖于通过磷酸化激活的IκKα,激活的IκKα诱导P100前体依赖性蛋白水解,以释放能够开启靶基因转录的成熟P52蛋白 [23] 。信号级联通过在细胞膜水平激活受体如IL-1R、TNFR、TLR、TCR开始,一旦被激活,这些受体及其相关蛋白复合物就会聚集在一起,并通过利用衔接蛋白相互作用、蛋白磷酸化、非降解泛素化和其他信号转导机制来激活NF-κB信号通路。在经典的NF-κB信号通路的刺激过程中,由IκKα和IκKβ作为激酶亚基和IκKγ作为调节亚基组成的IκK复合物被激活,而该复合物在激活经典的NF-κB通路中起着至关重要的作用。对于非经典通路,则是IκKα发挥着类似的重要作用 [24] 。

4. NF-κB信号通路对关节各类结构的影响

4.1. NF-κB信号通路对软骨的影响

生长软骨,也就是骺软骨,包括4个区,从末端到中间依次为软骨储备区、软骨增生区、软骨钙化区和成骨区,每个区域由不同分化阶段的软骨细胞组成 [25] 。研究显示,p65整个骺软骨中均有表达,但是主要是集中在软骨储备区和成骨区,提示经典的NF-κB参与到正常的软骨发育,特别是软骨内成骨的过程 [26] 。IκB的过度表达会导致骨形态发生蛋白(bone morphogenetic protein, BMP)的表达降低及鸡胚肢体发育的异常 [27] 。此外,通过激活胰岛素样生长因子(insulin-like growth factor 1, IGF-1)引起的NF-κB信号通路的激活会刺激软骨细胞的增殖和成熟并抑制其凋亡而发挥软骨形成的作用 [28] 。相反,通过p65 siRNA、S1808 (PDTC)等NF-κB直接抑制剂会抑制BMP2的表达而减少软骨细胞的增殖和分化,增加细胞的凋亡,对培养的大鼠的软骨细胞有明显的抑制生长的作用 [29] 。进一步的研究显示在BMP2基因的启动子附近有两个潜在的NF-κB应答元件,NF-κB通过这些元件诱导BMP2的表达。可见NF-κB在骺软骨形成中的重要作用 [30] 。一项针对ATDC5软骨细胞系的研究显示,短暂的NF-κB在软骨的分化启动中发挥着重要的作用,在软骨分化的最初几个小时内,BMP2诱导NF-κB的短暂激活,引起SOX9表达的增加,后者是软骨早期形成不可或缺的一部分,而经过p65 siRNA处理的ATDC5细胞则显著降低了NF-κB激活所诱导的SOX9的表达 [31] 。尽管大量的研究证实了NF-κB在关节软骨形成及早期发育中的重要作用,但是成年患者的关节软骨的破坏中,NF-κB可能也发挥着重要的作用。一项针对小鼠实验显示IκK的激活会导致年龄相关OA的发生 [32] 。关节软骨表面的机械作用受体、细胞因子受体等的刺激会激活NF-κB信号通路并导致关节软骨损伤,TNF-α等炎症因子会刺激OA患者的软骨细胞可以显著提高IκB和p65蛋白的表达 [33] [34] 。Wu等 [35] 研究也发现青藤碱不仅可以下调IL-1β诱导的促炎因子的表达,并且其可以通过抑制小鼠软骨细胞中的NF-κB信号通路的活性来抑制炎症反应和软骨破坏。Lu等 [36] 研究发现关节内注射Physalin A (一种天然的活性物质)可以减轻小鼠OA模型中软骨的破坏作用,而PA的软骨保护作用又归功于抑制NF-κB信号通路。可以明确的是NF-κB对关节软骨的影响,但是在软骨发育、形成、损伤等不同病理生理阶段可以呈现各种不同的作用。

4.2. NF-κB信号通路对骨形成及骨破坏的影响

同样是在一些胚胎发育模型中,研究人员构造了IκKβ特异性缺乏(IκKβ-cKO)的小鼠,并对小鼠的骨骼发育进行了追踪观察,结果发现由于缺乏破骨细胞而显示出骨小梁体积的增加,相应的破骨细胞的前体细胞的数量也明显减少,而当IκKβ-cKO小鼠与TNFR1-KO小鼠杂交形成的IκKβ-cKO/TNFR1-KO的小鼠中,破骨细胞的前体细胞具有一定的凋亡抗性。同样在胚胎发育的模型中,在IκB未被降解的情况下,破骨细胞分化因子(RANKL)的刺激也不足以引起明显的破骨细胞分化进程的加快,而当加入了IκKβ时,这种RANKL介导的破骨细胞的分化进程明显加快,相应的IκKβ抑制剂则抑制这个进程的发生。表明了NF-κB在早期骨形成及骨破坏中的影响 [37] [38] [39] 。随着骨骼发育的逐渐完善,成年骨骼在整个生命过程中不断进行重塑以维持骨骼稳态,正常的骨重塑主要需要骨细胞之间活动的微妙平衡。多项研究均表明了抑制NF-κB信号通路对成骨细胞的促进作用,Sun等 [40] 研究显示芍药苷可以通过抑制NF-κB信号通路从而减轻催乳素对成骨细胞生成的抑制作用,Bai等 [41] 证明AKBA (乙酰-11-酮β-BA)可以通过抑制TNF-α和NF-κB信号通路来促进成骨细胞分化,Liu等 [42] 研究发现皮洛塞鹿角肽(PAP)可以通过NF-κB途径增强成骨细胞分化,Mishra等 [43] 研究也证实NF-κB信号通路在成熟的成骨细胞中是活跃的,并且该信号通路的激活阻断了成骨细胞去分化的过程,Zuo等 [44] 通过研究也发现17β-雌二醇替代疗法可以通过NF-κB信号通路改善成骨细胞功能。与之相对的,Cheng等 [45] 研究也指出I-BET151可以抑制RANKL诱导的破骨细胞的生成,也发现I-BET151可以显著抑制所有浓度下的P65的核易位,也有研究表明NF-κB信号通路的激活会诱导活化T细胞核因子1 (Nuclear Factor Of Activated T-Cells 1, NFATc1) [46] ,后者则是破骨细胞生成的重要调节剂,Charles等 [47] 研究发现即使RANKL缺陷的情况下,TNF-α、IL-6等也可以诱导破骨细胞发生,而这些炎症因子的发生多来源于NF-κB信号通路。大多数的研究均表明NF-κB信号通路对成骨的抑制作用和破骨的促进作用,也在其中占有重要比例。

4.3. NF-κB信号通路对滑膜的影响

当前多认为OA是一个关节广泛累及的疾病,与其他关节炎相似的是,滑膜的炎性改变也是OA发展的重要一环,滑膜也是一种结缔组织,由滑膜细胞组成,处于关节囊和关节腔之间,除固有的支撑结构外,也可以分泌少量的粘液起到润滑关节的作用,对关节软骨具有重要的保护作用 [48] 。尽管滑膜的炎性改变不是OA的起始病理改变,但是在OA发生的早期,软骨的炎症改变所分泌的炎症因子会造成滑膜炎症 [49] 。研究显示OA患者中,滑膜中的NF-κB信号通路相关炎症因子(IL-1β、TNF-α及IL-6等)始终处于高水平状态,在TNF-α处理的OA患者的滑膜细胞中也发现明显的NF-κB信号通路的上调 [50] 。单纯的中重度滑膜炎也有明显的NF-κB信号通路的激活,表现为IκB、NF-κB以及下游炎症因子的表达明显升高 [51] 。最新的研究显示滑膜巨噬细胞对OA的发生发展有重要的促进作用,活化的巨噬细胞受mTOR、NF-κB、JNK、PI3K/Akt等信号通路调控,在OA滑膜组织、滑膜液和外周血中极化为M1或M2亚型,激活状态和M1/M2比值与OA严重程度高度相关。除了自分泌相互作用外,巨噬细胞与软骨细胞之间的旁分泌相互作用通过分泌炎症因子、生长因子、MMPs和金属蛋白酶组织抑制剂(tissue inhibitor of matrix metalloproteinases, TIMPs)在OA的发生和发展中起着至关重要的作用,导致随后的软骨降解和破坏。针对滑膜巨噬细胞的治疗可以缓解疼痛,防止骨性关节炎发展过程中的滑膜炎、软骨损伤和骨赘形成 [52] [53] [54] 。

5. NF-κB信号通路在OA发病中的意义

软骨基质完整性的破坏是由关节软骨的软骨细胞分解代谢/凋亡增加和软骨细胞合成代谢减少引起的 [55] 。通过对各类OA动物模型的研究,各种促进OA发生发展及抑制OA的易感基因也逐步被认识,NF-κB信号通路就是其中较为确定的一种,OA中各类炎症及机械刺激所可以激活NF-κB信号通路。在软骨细胞的体外细胞实验中,NF-κB信号通路会明显降低IL-1β所介导的分解代谢 [56] 。在动物模型中,注射特异性的NF-κB信号通路相关的p65 siRNA会明显减轻损伤性的软骨病变 [57] 。随着NF-κB信号通路越来越清晰的被认识,抑制该信号通路治疗肿瘤、炎症等相关疾病已被广泛关注并且其作为药物治疗靶点也已被广泛研究和应用。目前,临床上对于NF-κB抑制研究最为深入的为蛋白酶体阻滞剂和IκK抑制剂,一些新药已投入临床研究,但其存在的副作用及不良反应也逐步暴露出来,其中包括肾毒性、神经病变及疾病不明原因的复发加重等 [58] 。Zhou等 [59] 研究显示人参皂苷等可以通过抑制NF-κB信号通路,最终下调炎性因子及细胞凋亡相关蛋白的表达;Jong等 [60] 研究也显示人参皂苷可以抑制NF-κB信号通路来缓解关节软骨的破坏;有研究显示青柠檬A可以通过抑制NF-κB信号通路而减弱OA状态下的关节软骨的炎症反应 [61] ;也有研究将一些抑制NF-κB信号通路的功能饮食饲养OA大鼠,大鼠的OA病情也得到了一定程度的缓解 [62] 。以上研究也表明抑制NF-κB信号通路对于OA进程中的某些关键点如软骨破坏、炎性因子等大有裨益,但其中也存在诸多问题,如这些研究均为动物实验,缺乏证据力更强的临床试验、对于药物的副作用和不良反应未取得进一步的研究等,但相信随着临床医学和基础医学的飞速发展,这些问题最终会得到改善和解决。

6. 总结与展望

近年来,随着分子生物学及基础医学的快速发展对于肿瘤、炎症、免疫等相关疾病的发病机制有了进一步清晰明确的了解,其中对于信号通路的研究也有了长足的发展,对于OA的影响信号通路目前有Wnt、Notch、NF-κB等,这些信号通路的研究为OA的治疗提供了更多新的思路与前景,其中NF-κB信号通路因其控制大量基因的表达,并且这些基因参与调节免疫反应、细胞生长和增殖、存活和凋亡、应激反应和胚胎发生以及对于各种刺激的发育并且与各种炎性细胞之间的相互作用而被广泛关注,但是NF-κB信号通路的研究有诸多问题呈现在眼前:1) NF-κB目前的研究更多停留在动物实验等阶段,缺少更高质量的临床研究以更加充分的证明抑制该信号通路对于OA各个发展阶段的详细情况;2) 抑制该信号通路治疗OA可能产生一些不良作用,如抑制合成代谢和细胞分化等,且目前对于该信号通路与其他信号通路之间的相互影响及作用尚不明确,因此,增加更多关于对于该信号通路与其他信号通路之间的相互影响的基础研究迫在眉睫;3) NF-κB对于OA的研究更多的是倾向于对于关节软骨的研究,但越来越多的研究表明该信号通路对于关节滑膜、韧带等也具有调节作用,所以该信号通路对于OA的整个发生发展过程的调节也值得重视;并且该信号通路的研究对于更加清晰的认识OA疾病进程也将有重要意义;4) 对于抑制该信号通路的策略更加值得重视,能否精准、特定、广泛性抑制该信号通路则需要更多的基础研究来实现,并且对于抑制NF-κB信号通路会不会影响其他信号通路或者炎性细胞因子的研究尚不明确。5) 从临床角度出发,疼痛往往是患者就医的最初症状,而通过抑制信号通路能否第一时间改善患者的临床症状有待进一步研究。

目前对于OA的发病机制尚不完全明确,对于信号通路的研究能否明显改善或者逆转OA仍是一个未知数,但坚定随着对于OA发病机制越来越清晰的认识和对于NF-κB信号通路越来越广泛的研究,精准、特定抑制该信号通路对于OA的治疗以及深刻认识OA的发病机制一定会带来新的思路和见解。

参考文献

NOTES

*通讯作者。

参考文献

[1] Nedunchezhiyan, U., Varughese, I., Sun, A.R., et al. (2022) Obesity, Inflammation, and Immune System in Osteoarthritis. Frontiers in Immunology, 13, Article 907750.
https://doi.org/10.3389/fimmu.2022.907750
[2] Peat, G. and Thomas, M.J. (2021) Osteoar-thritis Year in Review 2020: Epidemiology & Therapy. Osteoarthritis and Cartilage, 29, 180-189.
https://doi.org/10.1016/j.joca.2020.10.007
[3] Kumar, A., Palit, P., Thomas, S., et al. (2021) Osteoarthritis: Prognosis and Emerging Therapeutic Approach for Disease Management. Drug Development Research, 82, 49-58.
https://doi.org/10.1002/ddr.21741
[4] Dantas, L.O., Salvini, T.F. and McAlindon, T.E. (2021) Knee Osteoarthritis: Key Treat-ments and Implications for Physical Therapy. Brazilian Journal of Physical Therapy, 25, 135-146.
https://doi.org/10.1016/j.bjpt.2020.08.004
[5] Cho, Y., Jeong, S., Kim, H., et al. (2021) Disease-Modifying Therapeutic Strate-gies in Osteoarthritis: Current Status and Future Directions. Experimental & Molecular Medicine, 53, 1689-1696.
https://doi.org/10.1038/s12276-021-00710-y
[6] Shang, X., Böker, K.O., Taheri, S., et al. (2021) The Interaction between Mi-croRNAs and the Wnt/β-Catenin Signaling Pathway in Osteoarthritis. International Journal of Molecular Sciences, 22, Article 9887.
https://doi.org/10.3390/ijms22189887
[7] Li, Z., Huang, Z., Zhang, H., et al. (2021) P2X7 Receptor Induces Pyroptotic Inflam-mation and Cartilage Degradation in Osteoarthritis via NF-κB/NLRP3 Crosstalk. Oxidative Medicine and Cellular Longevity, 2021, Article ID: 8868361.
https://doi.org/10.1155/2021/8868361
[8] Lu, X., Weng, X., Li, Z., et al. (2022) Protective Role of MicroRNA-23a/B-3p Inhibi-tion against Osteoarthritis through Gremlin1-Depenent Activation of TGF-β/Smad Signaling in Chondrocytesa. Inflammopharmacolo-gy, 30, 843-853.
https://doi.org/10.1007/s10787-022-00923-1
[9] Buhrmann, C., Brockmueller, A., Mueller, A.L., et al. (2021) Curcumin Atten-uates Environment-Derived Osteoarthritis by Sox9/NF-KB Signaling Axis. International Journal of Molecular Sciences, 22, Article 7645.
https://doi.org/10.3390/ijms22147645
[10] Wang, C., Gao, Y., Zhang, Z., et al. (2020) Safflower Yellow Alleviates Osteoarthritis and Prevents Inflammation by Inhibiting PGE2 Release and Regulating NF-κB/SIRT1/AMPK Signaling Pathways. Phytomedicine, 78, Article ID: 153305.
https://doi.org/10.1016/j.phymed.2020.153305
[11] Tang, S., Nie, X., Ruan, J., et al. (2022) Circular RNA CircNFKB1 Promotes Osteoarthritis Progression through Interacting with ENO1 and Sustaining NF-κB Signaling. Cell Death & Dis-ease, 13, Article No. 695.
https://doi.org/10.1038/s41419-022-05148-2
[12] Wang, X., Wu, Q., Zhang, R., et al. (2023) Stage-Specific and Loca-tion-Specific Cartilage Calcification in Osteoarthritis Development. Annals of the Rheumatic Diseases, 82, 393-402.
https://doi.org/10.1136/ard-2022-222944
[13] Cafferata, E.A., Monasterio, G., Castillo, F., et al. (2021) Overexpression of MMPs, Cytokines, and RANKL/OPG in Temporomandibular Joint Osteoarthritis and Their Association with Joint Pain, Mouth Open-ing, and Bone Degeneration: A Preliminary Report. Oral Diseases, 27, 970-980.
https://doi.org/10.1111/odi.13623
[14] Zhang, Q., Ji, Q., Wang, X., et al. (2015) SOX9 Is a Regulator of ADAMTSs-Induced Cartilage Degeneration at the Early Stage of Human Osteoarthritis. Osteoarthritis Cartilage, 23, 2259-2268.
https://doi.org/10.1016/j.joca.2015.06.014
[15] Choi, M.C., Jo, J., Park, J., et al. (2019) NF-κB Signaling Pathways in Osteoar-thritic Cartilage Destruction. Cells, 8, Article 734.
https://doi.org/10.3390/cells8070734
[16] Ni, Z., Kuang, L., Chen, H., et al. (2019) The Exosome-Like Vesicles From Osteoarthritic Chondrocyte Enhanced Mature IL-1β Production of Macrophages and Aggra-vated Synovitis in Osteoarthritis. Cell Death & Disease, 10, Article No. 522.
https://doi.org/10.1038/s41419-019-1739-2
[17] Liu, S., Cao, C., Zhang, Y., et al. (2019) PI3K/Akt Inhibitor Partly Decreases TNF-α-Induced Activation of Fibroblast-Like Synoviocytes in Osteoarthritis. Orthopaedic Surgery, 14, 42-51.
https://doi.org/10.1111/os.12423
[18] Yu, H., Lin, L., Zhang, Z., et al. (2020) Targeting NF-κB Pathway for the Therapy of Diseases: Mechanism and Clinical Study. Signal Transduction and Targeted Therapy, 5, Article No. 209.
https://doi.org/10.1038/s41392-020-00312-6
[19] Lawrence, T. (2019) The Nuclear Factor NF-κB Pathway in Inflammation. Cold Spring Harbor Perspectives in Biology, 1, A001651.
https://doi.org/10.1101/cshperspect.a001651
[20] Liu, P., Li, Y., Wang, W., et al. (2022) Role and Mechanisms of the NF-ĸB Signaling Pathway in Various Developmental Processes. Bio-medicine & Pharmacotherapy, 153, Article ID: 113513.
https://doi.org/10.1016/j.biopha.2022.113513
[21] Wibisana, J.N. and Okada, M. (2022) Encoding and Decoding NF-κB Nuclear Dynamics. Current Opinion in Cell Biology, 77, Article ID: 102103.
https://doi.org/10.1016/j.ceb.2022.102103
[22] Alharbi, K.S., Afzal, O., Altamimi, A.S.A., et al. (2022) Potential Role of Nutraceuticals via Targeting a Wnt/β-Catenin and NF-κB Pathway in Treatment of Osteoarthritis. Journal of Food Biochemistry, 46, e14427.
https://doi.org/10.1111/jfbc.14427
[23] Cai, K., Na, W., Guo, M., et al. (2019) Targeting the Cross-Talk between the Hedgehog and NF-κB Signaling Pathways in Multiple Myeloma. Leukemia & Lymphoma, 60, 772-781.
https://doi.org/10.1080/10428194.2018.1493727
[24] Ye, Y. and Zhou, J. (2023) The Protective Activity of Natural Flavonoids against Osteoarthritis by Targeting NF-κB Signaling Pathway. Frontiers in Endocrinology, 14, Article 1117489.
https://doi.org/10.3389/fendo.2023.1117489
[25] Guo, X., Xi, L., Yu, M., et al. (2023) Regeneration of Articular Cartilage De-fects: Therapeutic Strategies and Perspectives. Journal of Tissue Engineering, 14.
https://doi.org/10.1177/20417314231164765
[26] Hu, J., Zhou, J., Wu, J., et al. (2020) Loganin Ameliorates Cartilage Degenera-tion and Osteoarthritis Development in an Osteoarthritis Mouse Model through Inhibition of NF-κB Activity and Pyroptosis in Chon-drocytes. Journal of Ethnopharmacology, 247, Article ID: 112261.
https://doi.org/10.1016/j.jep.2019.112261
[27] Nishimura, R., Hata, K., Takahata, Y., et al. (2020) Role of Signal Transduction Pathways and Transcription Factors in Cartilage and Joint Diseases. International Journal of Molecular Sciences, 21, Article 1340.
https://doi.org/10.3390/ijms21041340
[28] Hossain, M.A., Adithan, A., Alam, M.J., et al. (2021) IGF-1 Facilitates Cartilage Reconstruction by Regulating PI3K/AKT, MAPK, and NF-KB Signaling in Rabbit Osteoarthritis. Journal of Inflammation Research, 14, 3555-3568.
https://doi.org/10.2147/JIR.S316756
[29] Lu, J., Zhang, H., Pan, J., et al. (2021) Fargesin Ameliorates Osteoarthritis via Macro-phage Reprogramming by Downregulating MAPK and NF-κB Pathways. Arthritis Research & Therapy, 23, Article No. 142.
https://doi.org/10.1186/s13075-021-02512-z
[30] Urata, M., Kokabu, S., Matsubara, T., et al. (2018) A Peptide That Blocks the Interaction of NF-κB P65 Subunit with Smad4 Enhances BMP2-Induced Osteogenesis. Journal of Cellular Physiology, 233, 7356-7366.
https://doi.org/10.1002/jcp.26571
[31] Caron, M.M., Emans, P.J., Surtel, D.A., et al. (2012) Activation of NF-κB/P65 Facilitates Early Chondrogenic Differentiation during Endochondral Ossification. PLOS ONE, 7, e33467.
https://doi.org/10.1371/journal.pone.0033467
[32] Catheline, S.E., Bell, R.D., Oluoch, L.S., et al. (2021) IKKβ-NF-κB Signaling in Adult Chondrocytes Promotes the Onset of Age-Related Osteoarthritis in Mice. Science Signaling, 14, eabf3535.
https://doi.org/10.1126/scisignal.abf3535
[33] Zhou, R.P., Dai, B.B., Xie, Y.Y., et al. (2018) Interleukin-1β and Tumor Necrosis Factor-α Augment Acidosis-Induced Rat Articular Chondrocyte Apoptosis via Nuclear Factor-κB-Dependent Upregulation of ASIC1a Channel. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1864, 162-177.
https://doi.org/10.1016/j.bbadis.2017.10.004
[34] Zhao, Y., Li, Y., Qu, R., et al. (2019) Cortistatin Binds to TNF-α Receptors and Protects against Osteoarthritis. eBioMedicine, 41, 556-570.
https://doi.org/10.1016/j.ebiom.2019.02.035
[35] Wu, Y., Lin, Z., Yan, Z., et al. (2019) Sinomenine Contributes to the Inhibition of the Inflammatory Response and the Improvement of Osteoarthritis in Mouse-Cartilage Cells by Acting On the Nrf2/HO-1 and NF-κB Signaling Pathways. International Immunopharmacology, 75, Article ID: 105715.
https://doi.org/10.1016/j.intimp.2019.105715
[36] Lu, R., Yu, X., Liang, S., et al. (2021) Physalin a Inhibits MAPK and NF-κB Signal Transduction through Integrin α Vβ3 and Exerts Chondroprotective Effect. Frontiers in Pharmacology, 12, Article 761922.
https://doi.org/10.3389/fphar.2021.761922
[37] Jimi, E., Takakura, N., Hiura, F., et al. (2019) The Role of NF-κB in Physiologi-cal Bone Development and Inflammatory Bone Diseases: Is NF-κB Inhibition “Killing Two Birds with One Stone”? Cells, 8, Article 1636.
https://doi.org/10.3390/cells8121636
[38] Otero, J.E., Dai, S., Foglia, D., et al. (2008) Defective Osteoclastogenesis by IKKβ-Null Precursors Is a Result of Receptor Activator of NF-κB Ligand (RANKL)-Induced JNK-Dependent Apoptosis and Impaired Differentiation. Journal of Biological Chemistry, 283, 24546-24553.
https://doi.org/10.1074/jbc.M800434200
[39] Jimi, E., Aoki, K., Saito, H., et al. (2004) Selective Inhibition of NF-κB Blocks Osteoclastogenesis and Prevents Inflammatory Bone Destruction in Vivo. Nature Medicine, 10, 617-624.
https://doi.org/10.1038/nm1054
[40] Sun, X., Zhu, K., Feng, C., et al. (2022) Paeoniflorin Ameliorates Hyperprolactinemia-Induced Inhibition of Osteoblastogenesis by Suppressing the NF-κB Signaling Pathway. International Journal of Endocrinology, 2022, Article ID: 4572033.
https://doi.org/10.1155/2022/4572033
[41] Bai, F., Chen, X., Yang, H. and Xu, H.G. (2018) Acetyl-11-Keto-β-Boswellic Acid Promotes Osteoblast Differentiation by Inhibiting Tumor Necrosis Factor-α and Nuclear Factor-κB Activity. Journal of Craniofacial Surgery, 29, 1996-2002.
https://doi.org/10.1097/SCS.0000000000004691
[42] Liu, G., Ma, C., Wang, P., et al. (2017) Pilose Antler Peptide Potentiates Osteoblast Differentiation and Inhibits Osteoclastogenesis via Manipulating the NF-κB Pathway. Biochemical and Biophysical Re-search Communications, 491, 388-395.
https://doi.org/10.1016/j.bbrc.2017.07.091
[43] Mishra, R., Sehring, I., Cederlund, M., et al. (2020) NF-κB Signaling Negatively Regulates Osteoblast Dedifferentiation during Zebrafish Bone Regeneration. Developmental Cell, 52, 167-182.E7.
https://doi.org/10.1016/j.devcel.2019.11.016
[44] Zuo, H.L., Xin, H., Yan, X.N., et al. (2020) 17β-Estradiol Improves Osteo-blastic Cell Function through the Sirt1/ NF-κB/MMP-8 Pathway. Climacteric, 23, 404-409.
https://doi.org/10.1080/13697137.2020.1758057
[45] Cheng, J., Zheng, J., Guo, N., et al. (2017) I BET151 Inhibits Osteoclas-togenesis via the RANKL Signaling Pathway in RAW264.7 Macrophages. Molecular Medicine Reports, 16, 8406-8412.
https://doi.org/10.3892/mmr.2017.7631
[46] Park, J.H., Lee, N.K. and Lee, S.Y. (2017) Understanding of RANK Signaling in Osteoclast Differentiation and Maturation. Molecules and Cells 40, 706-713.
https://doi.org/10.14348/molcells.2017.0225
[47] O’Brien, W., Fissel, B.M., Maeda, Y., et al. (2016) RANK-Independent Oste-oclast Formation and Bone Erosion in Inflammatory Arthritis. Arthritis & Rheumatology, 68, 2889-2900.
https://doi.org/10.1002/art.39837
[48] Bhattaram, P. and Chandrasekharan, U. (2017) The Joint Synovium: A Critical Determi-nant of Articular Cartilage Fate in Inflammatory Joint Diseases. Seminars in Cell & Developmental Biology, 62, 86-93.
https://doi.org/10.1016/j.semcdb.2016.05.009
[49] Lietman, C., Wu, B., Lechner, S., et al. (2018) Inhibition of Wnt/β-Catenin Signaling Ameliorates Osteoarthritis in a Murine Model of Experimental Osteoarthritis. JCI Insight, 3, e96308.
https://doi.org/10.1172/jci.insight.96308
[50] Hu, Y., Gui, Z., Zhou, Y., et al. (2019) Quercetin Alleviates Rat Osteoarthritis by Inhibiting Inflammation and Apoptosis of Chondrocytes, Modulating Synovial Macrophages Polarization to M2 Macrophages. Free Radical Biology and Medicine, 145, 146-160.
https://doi.org/10.1016/j.freeradbiomed.2019.09.024
[51] Udomsinprasert, W., Jinawath, A., Teerawattanapong, N. and Honsawek, S. (2020) Interleukin-34 Overexpression Mediated through Tumor Necrosis Fac-tor-α Reflects Severity of Synovitis in Knee Osteoarthritis. Scientific Reports, 10, Article No. 7987.
https://doi.org/10.1038/s41598-020-64932-2
[52] Zhou, F., Mei, J., Han, X., et al. (2019) Kinsenoside Attenuates Osteoarthritis by Repolarizing Macrophages through Inactivating NF-κB/MAPK Signaling and Protecting Chondrocytes. Acta Pharmaceutica Sinica B, 9, 973-985.
https://doi.org/10.1016/j.apsb.2019.01.015
[53] Li, K., Yan, G., Huang, H., et al. (2022) Anti-Inflammatory and Immunomodu-latory Effects of the Extracellular Vesicles Derived from Human Umbilical Cord Mesenchymal Stem Cells on Osteoarthritis via M2 Macrophages. Journal of Nanobiotechnology, 20, Article No. 38.
https://doi.org/10.1186/s12951-021-01236-1
[54] Zhang, H., Cai, D. and Bai, X. (2020) Macrophages Regulate the Progression of Osteoarthritis. Osteoarthritis and Cartilage, 28, 555-561.
https://doi.org/10.1016/j.joca.2020.01.007
[55] Hwang, H.S. and Kim, H.A. (2015) Chondrocyte Apoptosis in the Pathogenesis of Osteoarthritis. International Journal of Molecular Sciences, 16, 26035-26054.
https://doi.org/10.3390/ijms161125943
[56] Choi, M.C., Maru Yama, T., Chun, C.H., et al. (2018) Alleviation of Murine Osteo-arthritis by Cartilage-Specific Deletion of IκBζ. Arthritis & Rheumatology, 70, 1440-1449.
https://doi.org/10.1002/art.40514
[57] Yan, H., Duan, X., Pan, H., et al. (2017) Suppression of NF-κB Activity via Nanoparti-cle-Based SiRNA Delivery Alters Early Cartilage Responses to Injury. Proceedings of the National Academy of Sciences of the United States of America, 113, E6199-E6208.
https://doi.org/10.1073/pnas.1608245113
[58] Yao, Q., Wu, X., Tao, C., et al. (2023) Osteoarthritis: Pathogenic Signaling Pathways and Therapeutic Targets. Signal Transduction and Targeted Therapy, 8, Article No. 56.
https://doi.org/10.1038/s41392-023-01330-w
[59] Zhou, P., Lu, S., Luo, Y., et al. (2017) Attenuation of TNF-α-Induced In-flammatory Injury in Endothelial Cells by Ginsenoside Rb1 via Inhibiting NF-κB, JNK and P38 Signaling Pathways. Frontiers in Pharmacology, 8, Article 464.
https://doi.org/10.3389/fphar.2017.00464
[60] Hossain, M.A., Alam, M.J., Kim, B., et al. (2022) Ginsenoside-Rb1 Prevents Bone Cartilage Destruction through Down-Regulation of P-Akt, P-P38, and P-P65 Signaling in Rabbit. Phytomedicine, 100, Article ID: 154039.
https://doi.org/10.1016/j.phymed.2022.154039
[61] Zhu, W., Zhang, Y., Li, Y., et al. (2022) Glaucocalyxin A Attenuates IL-1β-Induced Inflammatory Response and Cartilage Degradation in Osteoarthritis Chondrocytes via Inhibiting the Activation of NF-κB Signaling Pathway. Disease Markers, 2022, Article ID: 6516246.
https://doi.org/10.1155/2022/6516246
[62] Hao, L., Ma, C., Li, Z., et al. (2022) Effects of Type II Collagen Hydrolysates on Osteoarthritis through the NF-κB, Wnt/β-Catenin and MAPK Pathways. Food & Function, 13, 1192-1205.
https://doi.org/10.1039/D1FO03414F