金纳米颗粒在病毒性疾病中的应用进展
Progress in the Application of Gold Nanoparticles in Viral Diseases
DOI: 10.12677/NAT.2024.141001, PDF, HTML, XML, 下载: 75  浏览: 313  科研立项经费支持
作者: 温一帆, 杨 槐, 安家宝, 樊聪敏, 杜田明, 贾润清*, 曹 鹏*:北京工业大学环境与生命学部,北京
关键词: 金纳米颗粒病毒病毒性疾病检测治疗 Gold Nanoparticles Virus Viral Disease Detection Treatment
摘要: 灵敏特异的检测方案和有效的抗病毒疗法对于预防治疗病毒感染至关重要。金纳米颗粒(Gold Nanoparticles, AuNPs)是指尺寸在1~100 nm的金属纳米材料,因其良好的生物相容性、较低的生物毒性和可调节的尺寸而广受关注,目前常应用于生物分子传感、药物递送、疫苗制备、癌症治疗和抗菌药物等领域。正是由于AuNPs的这些特性,使其在预防和治疗已知或潜在未知的病毒感染等方面也具有独特的优势。本文简要介绍了AuNPs在对抗病毒性疾病中发挥的作用,主要涵盖了病毒检测、疫苗制备、药物递送和抗病毒治疗四个方面的研究进展,并探讨了AuNPs在应用开发中面临的挑战以及未来的发展前景。
Abstract: Sensitive and specific detection protocols and effective antiviral therapy are essential for the prevention and treatment of viral infections. Gold nanoparticles (AuNPs), metallic nanomaterials with dimensions ranging from 1 to 100 nanometers, are highly regarded for their excellent biocompatibility, low biotoxicity, and adjustable size properties. Currently, AuNPs are extensively utilized in various fields such as biomolecular sensing, drug delivery, vaccine development, cancer treatment, and antimicrobial drugs. Notably, the unique characteristics of AuNPs offer significant potential in preventing and treating viral infections, including both known and potential unknown viruses. This article primarily focuses on the role of AuNPs in combating viral diseases, covering recent research advancements in areas such as viral detection, vaccine preparation, drug delivery, and antiviral treatment. It also explores the challenges faced in the practical application and development of AuNPs, as well as their future prospects.
文章引用:温一帆, 杨槐, 安家宝, 樊聪敏, 杜田明, 贾润清, 曹鹏. 金纳米颗粒在病毒性疾病中的应用进展[J]. 纳米技术, 2024, 14(1): 1-11. https://doi.org/10.12677/NAT.2024.141001

1. 引言

Figure 1. Application progress of AuNPs for diagnosing and treating viral diseases (by Figdraw)

图1. AuNPs诊断和治疗病毒性疾病的应用进展图(本图由Figdraw绘制)

由病毒引起的疾病仍然是当前全球公共卫生的最大威胁,如艾滋病(AIDS)、登革热(Dengue)、乙型肝炎(Hepatitis B)、新型冠状病毒肺炎(COVID-19)等。面对当前和未来可能出现的病毒性疾病对健康和社会带来的严重影响,迫切需要更为有效的诊断和治疗方法。

金纳米颗粒(Gold nanoparticles, AuNPs)一般指直径小于100 nm的胶体金颗粒,其形状包括球形、棒状、星形、立方体等 [1] ,是最为常见、应用最为广泛的贵金属纳米材料。由于AuNPs的尺寸极小,所以有着与宏观金材料以及小分子材料截然不同的理化性质,如局域表面等离子体共振(Localized Surface Plasmon Resonance, LSPR)等 [2] 。AuNPs具有良好的生物相容性和无毒性等特性 [3] ,易于进行表面修饰 [4] ,一方面能够提高其生物相容性,另一方面能赋予新的功能(功能化) [5] 。当AuNPs尺寸小于2 nm时会形成超小金纳米材料AuNCs [6] ,蛋白质、多肽和DNA作为功能配体来修饰会更加容易 [7] ,并且受生物分子包裹的AuNPs表现出更优异的生物相容性和生物功能性 [8] 。

目前,AuNPs已被广泛用于生物传感 [9] 、癌症治疗 [10] 、医药 [11] [12] 和食品 [13] 等多个方面。由于其在尺寸、形貌、表面化学和其他性质方面的多功能性和可调性 [4] ,使得AuNPs在病毒性疾病的诊断和治疗方面有着显著优势,例如已经应用于新冠病毒诊断试剂制备 [14] 。本文综述了AuNPs在诊断和治疗病毒性疾病的应用进展,主要包括病毒检测、疫苗制备、药物递送和抗病毒治疗四个方面(见图1)。

2. 病毒检测

在病毒性疾病的治疗过程中,快速而精确的初期诊断至关重要。AuNPs在化学和生物传感领域已有详细的研究 [15] ,由于AuNPs独特的光学性质和表面特性等,在病毒检测方面也取得了一系列的研究进展 [16] [17] (表1)。1) 比色性质。早期人们利用AuNPs对ssDNA和dsDNA的吸附能力不同,通过pp1ab基因检测比色法,将其用于SARS-CoV的检测,根据颜色变化在5 min内可快速检测出SARS-CoV [18] 。2) LSPR特性。AuNPs的LSPR特性被用于设计核酸传感器,能够快速地检测出临床样本中未扩增的HCV RNA [19] 。3) 表面增强拉曼散射(Surface-Enhanced Raman Scattering, SERS)性质。AuNPs的SERS性质被用于生物传感器检测,能够快速准确地诊断流感病毒,并可区分不同类型的流感病毒和非流感病毒 [20] 。4) 荧光性质。传统的检测方法由荧光团组成,AuNPs通常作为荧光猝灭剂,有着独特的距离依赖性荧光猝灭或增强特性。基于AuNPs的荧光检测法(Fluorescent Assays),Zhang等人开发了HPV寡核苷酸修饰的AuNPs和微流控珠阵列的荧光测定方法,是一种快速和可控的HPV DNA检测系统 [21] 。5) 易于表面修饰,与病毒蛋白的强亲和能力。基于AuNPs的胶体金法免疫层析技术常用于各种病毒地快速检测,目前较为常用的是利用AuNPs所设计的侧向层析测定法(Lateral-flow Assay, LFA)。如Wang等人利用胶体金纳米颗粒标记纯化的狂犬病毒糖蛋白,研制出了狂犬病毒抗体免疫层析检测试纸条,能够在现场快速检测出狂犬病毒特异性抗体 [22] 。Huang等人设计了一种胶体金纳米颗粒层析检测法,通过间接免疫层析法实现对SARS-CoV-2病毒IgM抗体的快速诊断和现场检测 [23] 。下文则将详细介绍几种新型的基于AuNPs的病毒检测传感器的应用。

Table 1. Advancements in the research of AuNPs in various virus detection applications

表1. AuNPs在多种病毒检测方面的研究进展

由乙型肝炎病毒(HBV)导致的慢性病毒感染是全球范围内的重大公共卫生问题 [28] ,而精确有效的诊断措施是有效治疗Hepatitis B的前提。Kim等人 [24] 利用抗HBV表面抗原(Hepatitis B surface Antigen, HBsAg)抗体偶联的AuNPs 和抗HBsAg抗体偶联的第二层AuNPs得到了异种组装的AuNPs三明治免疫分析芯片方法,是一种特异性和灵敏度更高的HBsAg检测方法。他们研制的异种组装局域表面等离子体共振芯片可在10到15 min内检测到100 fg/mL的HBsAg,检测灵敏度远高于常用的LFA。通过临床可接受的抗原检测范围的验证,证明了该方法在检测临床人血清样本中的HBsAg具有实际应用价值。

AIDS是由艾滋病病毒(HIV)引发的,世界卫生组织将其定义为一个重大的全球公共卫生问题,据统计2022年约有63万人死于艾滋病。在高风险暴露后迅速(最好在2小时内且不迟于72小时内)阻断即暴露后预防(Post-exposure Prophylaxis, PEP)可有效预防HIV感染 [29] ,因此对于HIV快速精准的检测是非常必要的。Kurdekar等人 [25] 设计了一种新型的金纳米簇免疫分析法(GNCIA),即采用链霉亲和素来修饰金纳米团簇(Gold Nanoclusters, AuNCs)。该方法在临床标本中对HIV p24抗原的检测灵敏度为5 pg/mL,检测范围可达1000 pg/mL,并呈线性剂量依赖性。相较于传统酶联免疫吸附试验,这种分析方法更为灵敏和精确,特异性更高,HIV p24抗原的检测灵敏度和特异性提高了3倍 [30] 。考虑到目前仍存在问题如背景荧光不足等,在临床环境中使用纸基微流控GNCIA可以将分析周期从5到6小时缩短到几乎1小时,对于快速精确地诊断AIDS患者和后续及时服用阻断药物有重要意义。

世界卫生组织于2023年5月5日宣布,新冠疫情不再构成“国际关注的突发公共卫生事件”,尽管如此,由于SARS-CoV-2的累积突变,对于新冠及其突变体的防控仍是当前需要重视的问题。努力开发高效、灵敏的诊断技术,能够在无明显症状的潜伏期早期发现SARS-CoV-2及其突变体,对预防传播具有重要意义。在SARS-CoV-2流行早期,大规模检测易感人群并及时隔离是应对这场病毒性疾病的关键。为了实现这一目标,Ventura等人 [26] 设计了一种基于SARS-CoV-2诱导的AuNPs相互作用的比色生物传感器。该传感器具体是采用光化学固定化技术(Photochemical Immobilization Technique, PIT)将抗SARS-CoV-2刺突(S)、包膜(E)和膜(M)的抗体高密度修饰在AuNPs表面。这种由PIT功能化的AuNPs的胶体溶液,能够灵敏地检测鼻咽拭子中的病毒颗粒。与实时荧光定量PCR比较,其检测限相当于循环阈值Ct = 36.5。在实时荧光定量PCR无法提供快速反应的情况下,该方法是一种有效的替代,在不需要任何预处理(RNA的提取和扩增)的前提下,能够迅速灵敏地筛选出大规模低SARS-CoV-2载量的感染人群。

然而在当前阶段,随着SARS-CoV-2的不断突变,先前所研发的生物传感器很有可能失效。在这样的背景下,基于AuNPs的新型生物传感器已经被研发,旨在检测SARS-CoV-2突变体。Armesto等人 [27] 开发了一种基于AuNPs的检测方法(Repvi),可直接从鼻咽拭子或唾液样本中检测SARS-CoV-2 RNA,而不需要其他仪器的辅助,检测方法简单且无需复杂的样本处理。Repvit检测方法采用针对SARS-CoV-2核蛋白和包膜基因(N和E)保守区域的寡核苷酸序列来修饰AuNPs。利用AuNPs的特性,修饰后的金纳米粒子分散后显红色,当纳米粒子与RNA结合后会形成团聚从而使溶液变成透明或偏蓝的颜色 [31] ,从而检测出SARS-CoV-2。与抗体检测的方法不同,这种技术作为一种核酸检测能够快速适应新出现的SARS-CoV-2突变体,且由于Repvit技术是针对SARS-CoV-2 N和E基因多个区域的探针,突变对该检测结果的影响较低。根据样本检测数据,该传感器敏感性和特异性都较高,检测限相当于实时荧光定量PCR循环阈值Ct = 25-33 [32] ,为检测未来SARS-CoV-2突变体提供了新的可能性,且在大规模筛查SARS-CoV-2及其突变体感染者方面具有较大潜力。

3. 疫苗制备

有效的疫苗制备应具备抗原、佐剂和(或)递送系统 [33] 。佐剂是用于激活先天性免疫系统的药理学或免疫制剂,能够稳定抗原构象,促进抗原靶向抗原提呈细胞,并引导抗原提呈,刺激和增强免疫应答 [34] [35] 。经验证,AuNPs本身具有较好的佐剂特性,能够增强免疫系统功能 [36] ,并以其独特的理化性质、较低的毒性和可改进的表面功能在免疫和疫苗接种中被广泛用作抗原载体 [37] [38] 。

Dengue是一种蚊媒病毒性疾病,主要是由感染伊蚊的雌蚊叮咬传播 [39] 。该疾病由四种血清型登革热病毒(DENV-1至DENV-4)引起,是公共卫生面临的一项重大挑战,每年约有3.9亿人感染登革热,导致50万人住院,2万人死亡 [40] 。目前尚无特异性的抗病毒治疗方法。登革热病毒粒子外壳的包膜糖蛋白III域(The Domain III of the Envelope Glycoprotein, EDIII)是较为重要的特异性中和表位 [41] ,是Dengue疫苗开发的重要抗原 [42] ,然而当前所批准的商业疫苗登瓦夏(Dengvaxia)效力低,副作用发生率高 [43] 。Quach等人 [44] 基于AuNPs设计了一种新的登革热病毒亚单位疫苗,该亚单位疫苗选取EDIII作为抗原,以AuNPs作为EDIII的载体(AuNP-E)和疫苗的佐剂,合成时将不同浓度的EDIII加入到AuNP溶液中,使AuNPs周围自发形成EDIII电晕,通过静电吸附结合EDIII中胺或巯基残基的配位键。在对疫苗的评测中得到当AuNP-E最高浓度为2 nM时,对巨噬细胞和树突状细胞具有低水平的细胞毒性,同时能够激活补体系统,导致末端补体复合物Sc5b-9的形成,诱发更强的免疫反应。用该疫苗免疫小鼠后,可观察到脾细胞的增殖以及辅助性T细胞1型(Th1)和辅助性T细胞2型(Th2)反应,产生IFN-c和IL-4。重要的是,该疫苗可诱导高水平的抗EDIII和DENV的IgG产生,具有抗DENV的潜在临床应用价值。但需要注意的是,这种疫苗诱导的抗体水平可以通过AuNPs的大小和浓度来调节。所以该疫苗未来的研究需要着重于确定最佳AuNPs的大小和浓度,以实现更强的体内免疫反应,发挥最佳的抗DENV效果。该亚单位疫苗的设计相较Dengvaxia安全性更高,血清阴性的Dengvaxia患者接种疫苗可能会增强患者的严重程度 [45] ,而Quach等人设计的亚单位疫苗能有效避免此情况,副作用更小,有效性更高,能够对Dengue产生持久的保护性或治疗性免疫应答。同时为开发四价基于AuNPs亚单位登革热疫苗迈出了重要一步。

为应对COVID-19大流行,全球迅速开展了相关疫苗研制工作,并有超170种候选疫苗进入临床实验阶段。其中SARS-CoV-2刺突蛋白(Spike, S)被认为是疫苗开发中最关键的抗原来源 [46] 。然而由于S蛋白不断发生突变,使SARS-CoV-2具有更高的传播能力并降低已有疫苗的有效性 [47] [48] ,因此迫切需要针对S蛋白保守区域设计新的疫苗。Fan等人 [49] 基于AuNPs设计了一种亚单位疫苗。亚单位疫苗具有较好的安全性和精确的靶向性,但免疫原性较低,难以诱导强烈或持久的免疫反应,因此需要合适的佐剂来增强免疫应答 [50] 。Fan等人选择AuNPs作为疫苗载体和佐剂,原因在于其具有良好的生物相容性、低的细胞毒性和对多种免疫细胞的刺激作用 [51] 。具体而言,该疫苗设计了一种利用2–羟丙基三甲基氯化铵壳聚糖(2-Hydroxypropyl-Trimethylam-Monium Chloride Chitosan, HTCC)和直链淀粉复合物缠绕AuNPs的SARS-CoV-2 S蛋白亚单位疫苗载体。在对HTCC/直链淀粉/AuNPs疫苗载体性质检测时,发现其具有良好的稳定性、较高的蛋白负载能力、低的细胞毒性和较高的细胞吸收能力。通过对小鼠进行免疫实验,与对照组相比,该疫苗显著增强了小鼠淋巴细胞的增殖能力,产生了较高水平的IFN-γ和IL-4,同时明显激活了小鼠的体液免疫反应,导致高滴度的特异性IgG抗体和中和抗体的产生。此外该疫苗还介导了小鼠肺部免疫细胞活化,包括增加了小鼠肺泡和支气管的CD19+B细胞、CD11C+树突状细胞和CD11B+巨噬细胞的数量。

根据WHO最新的新冠疫苗紧急使用名单,目前已上市的SARS-CoV-2疫苗主要有以下几类:辉瑞公司的mRNA疫苗 [52] ,科兴生物的灭活疫苗 [53] ,阿斯利康的腺病毒载体疫苗 [54] 和SK Bioscience的重组蛋白亚单位疫苗 [55] 等。如表2所示,Fan等人基于AuNPs设计的亚单位疫苗相比传统的亚单位疫苗 [49] ,选用AuNPs作为佐剂免疫原性高,能够引起更强烈的免疫反应,而且相比选用其他物质作为佐剂安全性更高;相比科兴生物的灭活疫苗和阿斯利康的腺病毒载体疫苗,产生的免疫效果更强,且对新出现的SARS-CoV-2突变体也有一定的抑制作用;相比辉瑞公司的mRNA疫苗,安全性更高,副作用更小,能够避免mRNA疫苗诱发人体产生的强烈免疫反应。综上所述,基于AuNPs设计的亚单位疫苗相比其他类型疫苗有着更为明显的优势,为控制未来新发或突发病毒的传播提供了新的思路。

Table 2. Comparison between subunit vaccines designed based on AuNPs and commercially available vaccines

表2. 基于AuNPs设计的亚单位疫苗和已上市疫苗的比较

4. 药物递送

AuNPs目前广泛应用于肿瘤药物的递送 [56] [57] 。虽然AuNPs通常被用作抗病毒疫苗的佐剂和递送载体 [38] ,在抗病毒药物递送方面的研究相对较少,但是它在这个领域中也发挥着重要的作用。

目前治疗HIV-1的主要方法是采用抗逆转录病毒疗法(Antiretroviral Therapy, ART),该方法显著提高了HIV感染者的预期寿命和生活质量。联合抗逆转录病毒疗法(combination Antiretroviral Therapy, cART)能够针对HIV复制周期的不同阶段,全面提高抗病毒疗效至80%以上 [58] 。尽管ARTs有很多优点,但这些方法不能完全治愈HIV-1,即停止ARTs后,HIV仍在宿主中存在,导致许多患者需终身服药,这可能引发耐药性、药物毒性以及终身服药困难等问题 [59] 。所以ARTs在使用方面仍需进一步实质性改进,有研究建议使用AuNPs来递送抗逆转录病毒药物用于HIV-1治疗 [60] ,因为AuNPs表面修饰可确保药物有效载荷缓慢释放和介导靶向受体 [61] [62] 。

替诺福韦(Tenofovir, TNF)是一种核苷酸类似物逆转录酶抑制剂,可作用于嗜CCR5和CXCR4的HIV-1毒株。然而,TNF的低生物利用度和毒性问题是患者用药的关键挑战。为解决这一问题,FotoohAbadi等人 [63] 探索了一种独特的TNF和AuNPs的组合。他们将AuNPs作为TNF的药物载体,发现TNF偶联的AuNPs具有更高的生物利用度和强大的抗HIV-1活性。他们使用化学交联方法合成了AuNP-TNF,通过流式细胞检测和共聚焦显微镜观察确定了AuNPs能够高效进入细胞。该复合制剂的抗HIV-1逆转录酶活性比游离TNF高约15倍,通过细胞活力、遗传毒性、溶血和组织病理学研究证实了其安全性。对不同HIV-1毒株的抗病毒实验表明,与游离TNF相比,AuNP-TNF在所有细胞中的抗病毒活性提高了约15倍。并观察到AuNPs和AuNP-TNF具有很好地抗HIV-1蛋白酶活性,这对阻止病毒的入侵具有重要意义。在此基础上确定了AuNPs具有较高的渗透性、生物分布和被动靶向传递,能够到达多种组织或器官,从而使TNF作为长效制剂来克服药物输送不足和ARTs不能充分渗透到HIV病毒储存库的问题,最终起到长效病毒抑制的作用。综上,AuNPs在抗病毒药物递送中展现出巨大潜力,可用于预防和治疗现有及新出现的病毒性疾病。

5. 抗病毒治疗

研究表明,AuNPs能够通过干预病毒进入/融合或干扰整合酶的方式来抑制HIV复制 [60] [64] ,这说明AuNPs可以作为药物直接抑制病毒活性。同时由于AuNPs本身具有良好的生物相容性和低毒性 [3] ,因此它们有望成为直接治疗病毒性疾病的有力候选。国家纳米科学中心梁兴杰团队发现,表面正电荷的AuNPs可通过调节亚细胞结构稳态达到抗RNA包膜病毒感染的目的 [63] 。

全球95%以上的宫颈癌与人乳头状瘤病毒(HPV)感染有关。宫颈癌是全球女性中第四大常见癌症,仅2020年就有约60.4万新病例。在2020年34.2万多宫颈癌死亡病例中,大约90%发生在低收入和中等收入国家 [66] 。高昂的疫苗费用、不足的防护基础设施以及社会问题是导致感染的主要原因,因此需要更加有效的HPV治疗手段 [67] 。虽然目前许多AuNPs通过表面修饰功能化后发挥诊断和治疗作用,但是Valencia-Reséndiz等人 [68] 的研究发现,非功能化金纳米粒子(non-functionalized GNPs, nfGNPs)即可抑制HPV感染,提供了一种新颖且经济的治疗方法。这里使用的nfGNPs没有表面修饰且需要保护剂(如硫醇或柠檬酸)来稳定,防止不受控制的聚集从而达到长期储存的目的。实验证明,nfGNPs与HPV16 L1病毒样粒子(Virus-Like Particles, VLPs)之间产生疏水作用,阻断了HPV16的感染。采用HPV16 假病毒(Pseudo Virus, PsV)感染人胚胎肾293TT细胞,nfGNPs处理可使示踪PsV的荧光减少80~90%,即能够有效抑制HPV16的假感染,并对293TT细胞无有害影响。更为重要的是,nfGNPs对HPV16假感染的抑制作用优于肝素,后者被广泛认为是HPV感染的有效抑制剂 [69] 。尽管nfGNPs-HPV相互作用的分子机制尚不完全清楚,但目前的实验结果证明这种新型且经济的治疗方式对于抑制HPV16感染具有较大潜力,从而有效预防宫颈癌的发生。

为了迅速有效地治疗SARS-CoV-2感染,相关药物被紧急研发,其中一些药物已经获得了美国食品和药物管理局(FDA)的紧急使用授权,如Paxlovid、Remdesivir、Molnupiravir等。由于SARS-CoV-2 主蛋白酶(Mpro)的结构和功能都非常保守 [70] ,在人体内没有发现它的同源蛋白,且SARS-CoV-2对Mpro的功能高度依赖,使得Mpro成为新冠病毒蛋白酶抑制剂中的理想靶标 [71] 。Paxlovid即是典型的Mpro拟肽类抑制剂。北京工业大学高学云团队 [72] 的研究发现,由谷胱甘肽包裹的金纳米团簇(Gold Cluster, GA)作为Mpro抑制剂能够安全有效地治疗新冠病毒感染。通过晶体结构研究证明,GA释放的金离子与SARS-CoV-2 MproCys145共价结合,占据Mpro的活性口袋,有效抑制了SARS-CoV-2的催化活性。在感染SARS-CoV-2的Vero细胞中,GA的EC50值约为12.52 µM,体外能够有效抑制SARS-CoV-2。同时在转基因小鼠模型中发现,GA可降低肺内炎症细胞因子水平,保护肺部免受炎症损伤。在仓鼠模型中,与已批准药物Remdesivir相比,GA的治疗效果更好,显著抑制了炎症因子表达并减少了肺损伤。最后在小鼠和仓鼠病理学研究中发现,GA治疗没有明显的副作用。研究团队得出结论,GA经鼻滴注后被肺吸收良好,并可在肺内抑制病毒复制、直接抑制肺内炎症损伤,因此GA治疗有望成为安全有效治疗新冠的理想候选药物。从另一方面来看,AuNPs在直接治疗病毒性疾病方面具备一定的应用潜力。

由病毒所引起的过度炎症反应和细胞因子风暴也是抗病毒治疗中尤其需要注意的问题 [73] [74] [75] ,而多肽包裹的AuNPs可能会抑制相关的炎症反应。北京工业大学高学云团队研究发现 [76] ,合成肽包被的AuNCs在体内外可显著抑制NF-κB转录因子和一些促炎细胞因子TNF-α、IL-1和IL-6的表达,为抑制慢性炎症相关的骨破坏提供了一种有效的治疗策略。该团队还发现由谷胱甘肽包裹的AuNCs能够有效抑制角质形成细胞中NF-κB通路的异常激活和由此引起的促炎细胞因子的过表达,可用于治疗炎症性皮肤病 [77] ,因此我们推测多肽包裹的AuNPs在抑制病毒引发的炎症反应方面具有较大的潜力。

6. 结论和展望

各种病毒引发的疾病仍是全球重大的公共卫生挑战。本文综述了AuNPs在病毒检测、疫苗制备、药物递送和抗病毒治疗方面的应用进展,展示了其在这些领域中的重要作用。AuNPs独特的物理化学性质、良好的生物相容性、低毒性和经济的制备方法,使其在当前和未来的病毒性疾病防治中将扮演更加关键的角色。

AuNPs的研究也面临着挑战。目前对于AuNPs研究还不够深入,一些治疗机制尚不清晰,许多检测和治疗方法仅停留在体内外实验阶段,尚未进入临床阶段。尽管大量实验研究证实了AuNPs的生物传感效果,但长期评估AuNPs的生物相容性和从不同暴露途径、剂量和遗传效应方面来评价其毒性仍是严峻的挑战。虽然一些研究显示AuNPs无毒,但也有一些研究反驳了这一说法 [78] ,而未来也更加有必要深入研究AuNPs的安全性。此外,确保AuNPs在体内的稳定性、提高其生物利用度和靶向性、优化与病毒结合效率,以及解决大规模生产和储存问题,都是AuNPs研究当前和未来需要面对的挑战。随着纳米技术的不断发展和相关研究及临床试验的深入进行,我们相信这些挑战将逐步被克服,AuNPs将有望成为更先进的检测治疗方案和抗病毒治疗中的重要工具。

基金项目

北京市教委–市基金联合资助项目(KZ202210005001);北京工业大学星火基金资助课题(XH-2023-04-01)。

NOTES

*通讯作者。

参考文献

[1] Elahi, N., Kamali, M. and Baghersad, M.H. (2018) Recent Biomedical Applications of Gold Nanoparticles: A Review. Talanta, 184, 537-556.
https://doi.org/10.1016/j.talanta.2018.02.088
[2] Mayer, K.M. and Hafner, J.H. (2011) Localized Surface Plasmon Resonance Sensors. Chemical Reviews, 111, 3828-3857.
https://doi.org/10.1021/cr100313v
[3] Zhou, X., Liu, R., Qin, S., et al. (2016) Current Status and Future Direc-tions of Nanoparticulate Strategy for Cancer Immunotherapy. Current Drug Metabolism, 17, 755-762.
https://doi.org/10.2174/1389200217666160714095722
[4] Chen, Y., Xianyu, Y. and Jiang, X. (2017) Surface Modification of Gold Nanoparticles with Small Molecules for Biochemical Analysis. Accounts of Chemical Research, 50, 310-319.
https://doi.org/10.1021/acs.accounts.6b00506
[5] Alex, S. and Tiwari, A. (2015) Functionalized Gold Nanoparticles: Synthesis, Properties and Applications—A Review. Journal of Nanoscience and Nanotechnology, 15, 1869-1894.
https://doi.org/10.1166/jnn.2015.9718
[6] Qian, H., Zhu, M., Wu, Z. and Jin, R.C. (2012) Quantum Sized Gold Nanoclusters with Atomic Precision. Accounts of Chemical Research, 45, 1470-1479.
https://doi.org/10.1021/ar200331z
[7] Yuan, Q., Wang, Y., Zhao, L., et al. (2016) Peptide Protected Gold Clus-ters: Chemical Synthesis and Biomedical Applications. Nanoscale, 8, 12095-12104.
https://doi.org/10.1039/C6NR02750D
[8] Chen, X., Ren, X. and Gao, X. (2022) Peptide or Protein-Protected Metal Nanoclusters for Therapeutic Application. Chinese Journal of Chemistry, 40, 267-274.
https://doi.org/10.1002/cjoc.202100523
[9] Tabatabaei, M.S., Islam, R. and Ahmed, M. (2021) Applications of Gold Nanoparticles in ELISA, PCR, and Immuno-PCR Assays: A Review. Analytica Chimica Acta, 1143, 250-266.
https://doi.org/10.1016/j.aca.2020.08.030
[10] Kesharwani, P., Ma, R., Sang, L., et al. (2023) Gold Nanoparticles and Gold Nanorods in the Landscape of Cancer Therapy. Molecular Cancer, 22, Article No. 98.
https://doi.org/10.1186/s12943-023-01798-8
[11] Kumar, A., Zhang, X. and Liang, X.J. (2013) Gold Nanoparti-cles: Emerging Paradigm for Targeted Drug Delivery System. Biotechnology Advances, 31, 593-606.
https://doi.org/10.1016/j.biotechadv.2012.10.002
[12] Pasparakis, G. (2022) Recent Developments in the Use of Gold and Silver Nanoparticles in Biomedicine. Nanomedicine and Nanobiotechnology, 14, e1817.
https://doi.org/10.1002/wnan.1817
[13] Dasgupta, N. and Ranjan, S. (2018) An Introduction to Food Grade Nanoemulsions. Springer, Singapore.
https://doi.org/10.1007/978-981-10-6986-4
[14] Rasmi, Y., Kırboğa, K.K., Khan, J., et al. (2023) Gold Nanoparti-cle-Based Strategies against SARS-CoV-2: A Review. Reviews on Advanced Materials Science, 62, Article ID: 20230105.
https://doi.org/10.1515/rams-2023-0105
[15] Jans, H. and Huo, Q. (2012) Gold Nanoparticle-Enabled Biological and Chemical Detection and Analysis. Chemical Society Reviews, 41, 2849-2866.
https://doi.org/10.1039/C1CS15280G
[16] Draz, M.S. and Shafiee, H. (2018) Applications of Gold Nanoparticles in Virus Detection. Theranostics, 8, 1985-2017.
https://doi.org/10.7150/thno.23856
[17] Wang, J., Drelich, A.J., Hopkins, C.M., et al. (2022) Gold Nanoparticles in Virus Detection: Recent Advances and Potential Considerations for SARS-CoV-2 Testing Development. Nanomedi-cine and Nanobiotechnology, 14, e1754.
https://doi.org/10.1002/wnan.1754
[18] Li, H. and Rothberg, L. (2004) Colorimetric Detection of DNA Sequences Based on Electrostatic Interactions with Unmodified Gold Nanoparticles. Proceedings of the National Academy of Sci-ences of the United States of America, 101, 14036-14039.
https://doi.org/10.1073/pnas.0406115101
[19] Shawky, S.M., Awad, A.M., Allam, W., et al. (2017) Gold Aggregating Gold: A Novel Nanoparticle Biosensor Approach for the Direct Quantification of Hepatitis C Virus RNA in Clinical Samples. Biosensors and Bioelectronics, 92, 349-356.
https://doi.org/10.1016/j.bios.2016.11.001
[20] Lim, J., Nam, J., Yang, S., et al. (2015) Identification of Newly Emerging Influenza Viruses by Surface-Enhanced Raman Spectroscopy. Analytical Chemistry, 87, 11652-11659.
https://doi.org/10.1021/acs.analchem.5b02661
[21] Zhang, H., Liu, L., Li, C.W., et al. (2011) Multien-zyme-Nanoparticles Amplification for Sensitive Virus Genotyping in Microfluidic Microbeads Array Using Au Nano-particle Probes and Quantum Dots as Labels. Biosensors and Bioelectronics, 29, 89-96.
https://doi.org/10.1016/j.bios.2011.07.074
[22] Wang, H., Feng, N., Yang, S., et al. (2010) A Rapid Immuno-chromatographic Test Strip for Detecting Rabies Virus Antibody. Journal of Virological Methods, 170, 80-85.
https://doi.org/10.1016/j.jviromet.2010.09.002
[23] Huang, C., Wen, T., Shi, F.J., et al. (2020) Rapid Detection of IgM Antibodies against the SARS-CoV-2 Virus via Colloidal Gold Nanoparticle-Based Lateral-Flow Assay. ACS Ome-ga, 5, 12550-12556.
https://doi.org/10.1021/acsomega.0c01554
[24] Kim, J., Oh, S.Y., Shukla, S., et al. (2018) Heteroassembled Gold Nanoparticles with Sandwich-Immunoassay LSPR Chip Format for Rapid and Sensitive Detection of Hepatitis B Virus Surface Antigen (HBsAg). Biosensors and Bioelectronics, 107, 118-122.
https://doi.org/10.1016/j.bios.2018.02.019
[25] Kurdekar, A.D., Avinash Chunduri, L.A., Manohar, C.S., et al. (2018) Streptavidin-Conjugated Gold Nanoclusters as Ultrasensitive Fluorescent Sensors for Early Diagnosis of HIV Infection. Science Advances, 4, eaar6280.
https://doi.org/10.1126/sciadv.aar6280
[26] Ventura, B.D., Cennamo, M., Minopoli, A., et al. (2020) Colorimetric Test for Fast Detection of SARS-CoV-2 in Nasal and Throat Swabs. ACS Sensors, 5, 3043-3048.
https://doi.org/10.1021/acssensors.0c01742
[27] Armesto, M., Charconnet, M., Marimón, J.M., et al. (2023) Vali-dation of Rapid and Economic Colorimetric Nanoparticle Assay for SARS-CoV-2 RNA Detection in Saliva and Naso-pharyngeal Swabs. Biosensors, 13, Article 275.
https://doi.org/10.3390/bios13020275
[28] Trépo, C., Chan, H.L.Y. and Lok, A. (2014) Hepatitis B Virus Infec-tion. Lancet, 384, 2053-2063.
https://doi.org/10.1016/S0140-6736(14)60220-8
[29] DeHaan, E., McGowan, J.P., Fine, S.M., et al. (2022) PEP to Prevent HIV Infection. Johns Hopkins University, Baltimore.
[30] Kurdekar, A., Chunduri, L.A.A., Bulagonda, E.P., et al. (2016) Comparative Performance Evaluation of Carbon Dot-Based Paper Immunoassay on Whatman Filter Paper and Nitrocellulose Paper in the Detection of HIV Infection. Microfluidics and Nanofluidics, 20, Article No. 99.
https://doi.org/10.1007/s10404-016-1763-9
[31] Jain, P.K., Huang, W. and El-Sayed, M.A. (2007) On the Uni-versal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equa-tion. Nano Letters, 7, 2080-2088.
https://doi.org/10.1021/nl071008a
[32] Han, M.S., Byun, J.H., Cho, Y. and Rim, J.H. (2021) RT-PCR for SARS-CoV-2: Quantitative versus Qualitative. Lancet Infectious Diseases, 21, 165.
https://doi.org/10.1016/S1473-3099(20)30424-2
[33] Pashine, A., Valiante, N.M. and Ulmer, J.B. (2005) Target-ing the Innate Immune Response with Improved Vaccine Adjuvants. Nature Medicine, 11, S63-S68.
https://doi.org/10.1038/nm1210
[34] Wilson-Welder, J.H., Torres, M.P., Kipper, M.J., et al. (2009) Vaccine Adju-vants: Current Challenges and Future Approaches. Journal of Pharmaceutical Sciences, 98, 1278-1316.
https://doi.org/10.1002/jps.21523
[35] Shi, S., Zhu, H., Xia, X., et al. (2019) Vaccine Adjuvants: Understanding the Structure and Mechanism of Adjuvanticity. Vaccine, 37, 3167-3178.
https://doi.org/10.1016/j.vaccine.2019.04.055
[36] Dykman, L.A. and Khlebtsov, N.G. (2017) Immunological Properties of Gold Nanoparticles. Chemical Science, 8, 1719-1735.
https://doi.org/10.1039/C6SC03631G
[37] Liu, Y., Crawford, B.M. and Vo-Dinh, T. (2018) Gold Nanoparticles-Mediated Photothermal Therapy and Immunotherapy. Immunotherapy, 10, 1175-1188.
https://doi.org/10.2217/imt-2018-0029
[38] Salazar-González, J.A., Gonzá-lez-Ortega, O. and Rosales-Mendoza, S. (2015) Gold Nanoparticles and Vaccine Development. Expert Review of Vac-cines, 14, 1197-1211.
https://doi.org/10.1586/14760584.2015.1064772
[39] De Almeida, R.R., Paim, B., De Oliveira, S.A., et al. (2017) Dengue Hemorrhagic Fever: A State-of-the-Art Review Focused in Pulmonary Involvement. Lung, 195, 389-395.
https://doi.org/10.1007/s00408-017-0021-6
[40] Bhatt, S., Gething, P.W., Brady, O.J., et al. (2013) The Global Distribution and Burden of Dengue. Nature, 496, 504-507.
https://doi.org/10.1038/nature12060
[41] Wahala, W.M.P.B., Kraus, A.A., Haymore, L.B., et al. (2009) Dengue Virus Neutralization by Human Immune Sera: Role of Envelope Protein Domain III-Reactive Antibody. Virology, 392, 103-113.
https://doi.org/10.1016/j.virol.2009.06.037
[42] Fahimi, H., Mohammadipour, M., Haddad Kashani, H., et al. (2018) Dengue Viruses and Promising Envelope Protein Domain III-Based Vaccines. Applied Microbiology and Bio-technology, 102, 2977-2996.
https://doi.org/10.1007/s00253-018-8822-y
[43] Villar, L., Dayan, G.H., Arredondo-García, J.L., et al. (2015) Ef-ficacy of a Tetravalent Dengue Vaccine in Children in Latin America. New England Journal of Medicine, 372, 113-123.
https://doi.org/10.1056/NEJMoa1411037
[44] Quach, Q.H., Ang, S.K., Chu, J.H.J. and Kah, J.C.Y. (2018) Size-Dependent Neutralizing Activity of Gold Nanoparticle-Based Subunit Vaccine against Dengue Virus. Acta Bio-materialia, 78, 224-235.
https://doi.org/10.1016/j.actbio.2018.08.011
[45] Halstead, S.B. (2017) Dengvaxia Sensitizes Seronegatives to Vaccine Enhanced Disease Regardless of Age. Vaccine, 35, 6355-6358.
https://doi.org/10.1016/j.vaccine.2017.09.089
[46] Awadasseid, A., Wu, Y., Tanaka, Y. and Zhang, W. (2021) Current Advances in the Development of SARS-CoV-2 Vaccines. International Journal of Biological Sciences, 17, 8-19.
https://doi.org/10.7150/ijbs.52569
[47] Chen, D.Y., Chin, C.V., Kenney, D., et al. (2023) Spike and Nsp6 Are Key Determinants of SARS-CoV-2 Omicron BA.1 Attenuation. Nature, 615, 143-150.
https://doi.org/10.1038/s41586-023-05697-2
[48] Aguilar-Bretones, M., Fouchier, R.A., Koopmans, M.P., et al. (2023) Impact of Antigenic Evolution and Original Antigenic Sin on SARS-CoV-2 Immunity. Journal of Clinical Inves-tigation, 133, e162192.
https://doi.org/10.1172/JCI162192
[49] Fan, B., Gu, J., Deng, B., et al. (2023) Positively Charged-Amylose-Entangled Au-Nanoparticles Acting as Protein Carriers and Potential Adjuvants to SARS-CoV-2 Subunit Vaccines. ACS Applied Materials & Interfaces, 15, 29982-29997.
https://doi.org/10.1021/acsami.3c05295
[50] Bayani, F., Hashkavaei, N.S., Arjmand, S., et al. (2023) An Overview of the Vaccine Platforms to Combat COVID-19 with a Focus on the Subunit Vaccines. Progress in Biophysics and Mo-lecular Biology, 178, 32-49.
https://doi.org/10.1016/j.pbiomolbio.2023.02.004
[51] Niikura, K., Matsunaga, T., Suzuki, T., et al. (2013) Gold Nanoparticles as a Vaccine Platform: Influence of Size and Shape on Immunological Responses in Vitro and in Vivo. ACS Nano, 7, 3926-3938.
https://doi.org/10.1021/nn3057005
[52] Polack, F.P., Thomas, S.J., Kitchin, N., et al. (2020) Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. New England Journal of Medicine, 383, 2603-2615.
https://doi.org/10.1056/NEJMoa2034577
[53] Tanriover, M.D., Doğanay, H.L., Akova, M., et al. (2021) Efficacy and Safety of an Inactivated Whole-Virion SARS-CoV-2 Vaccine (CoronaVac): Interim Results of a Double-Blind, Randomised, Placebo-Controlled, Phase 3 Trial in Turkey. Lancet, 398, 213-222.
https://doi.org/10.1016/S0140-6736(21)01429-X
[54] Knoll, M.D. and Wonodi, C. (2021) Oxford-AstraZeneca COVID-19 Vaccine Efficacy. Lancet, 397, 72-74.
https://doi.org/10.1016/S0140-6736(20)32623-4
[55] Song, J.Y., Choi, W.S., Heo, J.Y., et al. (2022) Safety and Immunogenicity of a SARS-CoV-2 Recombinant Protein Nanoparticle Vaccine (GBP510) Adjuvanted with AS03: A Randomised, Placebo-Controlled, Observer-Blinded Phase 1/2 Trial. eClinicalMedicine, 51, Article ID: 101569.
https://doi.org/10.1016/j.eclinm.2022.101569
[56] Dreaden, E.C., Austin, L.A., Mackey, M.A. and El-Sayed, M.A. (2012) Size Matters: Gold Nanoparticles in Targeted Cancer Drug Delivery. Therapeutic Delivery, 3, 457-478.
https://doi.org/10.4155/tde.12.21
[57] Goddard, Z.R., Marín, M.J., Russell, D.A. and Searcey, M. (2020) Active Targeting of Gold Nanoparticles as Cancer Therapeutics. Chemical Society Reviews, 49, 8774-8789.
https://doi.org/10.1039/D0CS01121E
[58] Yazdanpanah, Y., Fagard, C., Descamps, D., et al. (2009) High Rate of Virologic Suppression with Raltegravir plus Etravirine and Darunavir/Ritonavir among Treatment-Experienced Patients Infected with Multidrug-Resistant HIV: Results of the ANRS 139 TRIO Trial. Clinical Infectious Diseases, 49, 1441-1449.
https://doi.org/10.1086/630210
[59] Chun, T.W., Moir, S. and Fauci, A.S. (2015) HIV Reservoirs as Obstacles and Opportunities for an HIV Cure. Nature Immunology, 16, 584-589.
https://doi.org/10.1038/ni.3152
[60] Garrido, C., Simpson, C.A., Dahl, N.P., et al. (2015) Gold Nanoparticles to Improve HIV Drug Delivery. Future Medicinal Chemistry, 7, 1097-1107.
https://doi.org/10.4155/fmc.15.57
[61] Kalimuthu, K., Lubin, B.C., Bazylevich, A., et al. (2018) Gold Nanoparti-cles Stabilize Peptide-Drug-Conjugates for Sustained Targeted Drug Delivery to Cancer Cells. Journal of Nanobiotech-nology, 16, Article No. 34.
https://doi.org/10.1186/s12951-018-0362-1
[62] Fratoddi, I., Venditti, I., Battocchio, C., et al. (2019) Highly Hy-drophilic Gold Nanoparticles as Carrier for Anticancer Copper(I) Complexes: Loading and Release Studies for Biomedi-cal Applications. Nanomaterials, 9, Article 772.
https://doi.org/10.3390/nano9050772
[63] Fotooh Abadi, L., Kumar, P., Paknikar, K., et al. (2023) Tenofo-vir-Tethered Gold Nanoparticles as a Novel Multifunctional Long-Acting Anti-HIV Therapy to Overcome Deficient Drug Delivery-: An in Vivo Proof of Concept. Journal of Nanobiotechnology, 21, Article No. 19.
https://doi.org/10.1186/s12951-022-01750-w
[64] Bowman, M.C., Ballard, T.E., Ackerson, C.J., et al. (2008) In-hibition of HIV Fusion with Multivalent Gold Nanoparticles. Journal of the American Chemical Society, 130, 6896-6897.
https://doi.org/10.1021/ja710321g
[65] Li, F., Huang, Q., Zhou, Z., et al. (2023) Gold Nanoparticles Combat Enveloped RNA Virus by Affecting Organelle Dynamics. Signal Transduction and Targeted Therapy, 8, Article No. 285.
https://doi.org/10.1038/s41392-023-01562-w
[66] Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[67] Jit, M., Prem, K., Benard, E. and Brisson, M. (2021) From Cervical Cancer Elimination to Eradication of Vaccine-Type Human Papillomavirus: Feasibility, Public Health Strategies and Cost-Effectiveness. Preventive Medicine, 144, Article ID: 106354.
https://doi.org/10.1016/j.ypmed.2020.106354
[68] Valencia-Reséndiz, D.G., Villegas, A., Bahena, D., et al. (2022) Non-Functionalized Gold Nanoparticles Inhibit Human Papillomavirus (HPV) Infection. International Journal of Molec-ular Sciences, 23, Article 7552.
https://doi.org/10.3390/ijms23147552
[69] Giroglou, T., Florin, L., Schäfer, F., et al. (2001) Human Papilloma-virus Infection Requires Cell Surface Heparan Sulfate. Journal of Virology, 75, 1565-1570.
https://doi.org/10.1128/JVI.75.3.1565-1570.2001
[70] Yan, F.F. and Gao, F. (2021) An Overview of Potential In-hibitors Targeting Non-Structural Proteins 3 (PLpro and Mac1) and 5 (3CLpro/Mpro) of SARS-CoV-2. Computational and Structural Biotechnology Journal, 19, 4868-4883.
https://doi.org/10.1016/j.csbj.2021.08.036
[71] Su, H., Zhou, F., Huang, Z., et al. (2021) Molecular Insights into Small-Molecule Drug Discovery for SARS-CoV-2. Angewandte Chemie, 60, 9789-9802.
https://doi.org/10.1002/anie.202008835
[72] He, Z., Ye, F., Zhang, C., et al. (2022) A Comparison of Remdesivir versus Gold Cluster in COVID-19 Animal Model: A Better Therapeutic Outcome of Gold Cluster. Nano Today, 44, Ar-ticle ID: 101468.
https://doi.org/10.1016/j.nantod.2022.101468
[73] Mehta, P., McAuley, D.F., Brown, M., et al. (2020) COVID-19: Consider Cytokine Storm Syndromes and Immunosuppression. Lancet, 395, 1033-1034.
https://doi.org/10.1016/S0140-6736(20)30628-0
[74] Lv, T., Cao, W. and Li, T. (2021) HIV-Related Immune Ac-tivation and Inflammation: Current Understanding and Strategies. Journal of Immunology Research, 2021, Article ID: 7316456.
https://doi.org/10.1155/2021/7316456
[75] Yang, G., Wan, P., Zhang, Y., et al. (2022) Innate Immunity, Inflammation, and Intervention in HBV Infection. Viruses, 14, Article 2275.
https://doi.org/10.3390/v14102275
[76] Yuan, Q., Gao, F., Yao, Y., et al. (2019) Gold Clusters Prevent Inflamma-tion-Induced Bone Erosion through Inhibiting the Activation of NF-κB Pathway. Theranostics, 9, 1825-1836.
https://doi.org/10.7150/thno.31893
[77] Liu, Y., Meng, C., Li, Y., et al. (2023) Peptide-Protected Gold Nanoclus-ters Efficiently Ameliorate Acute Contact Dermatitis and Psoriasis via Repressing the TNF-α/NF-κB/IL-17A Axis in Keratinocytes. Nanomaterials, 13, Article 662.
https://doi.org/10.3390/nano13040662
[78] Yañez-Aulestia, A., Gupta, N.K., Hernández, M., et al. (2022) Gold Nanoparticles: Current and Upcoming Biomedical Applications in Sens-ing, Drug, and Gene Delivery. Chemical Communications, 58, 10886-10895.
https://doi.org/10.1039/D2CC04826D