老年AECOPD患者病因及抗生素治疗的研究进展
Research Progress of Risk Factors andAntibiotic Therapy in Elderly Patients with AECOPD
DOI: 10.12677/ACREM.2024.121002, PDF, HTML, XML, 下载: 77  浏览: 302 
作者: 张欢欢, 王卓亚:青海大学附属医院老年医学二科,青海 西宁
关键词: AECOPD老年人群AECOPD病因病原菌耐药模式抗生素 AECOPD Elderly Population Risk Factors of AECOPD Pathogenic Bacteria Drug Resistance Pattern Antibiotics
摘要: 慢性阻塞性肺疾病(Chronic obstructive pulmonary disease, COPD)是一种呼吸内科十分常见的、可以预防和治疗的肺部疾病。随着人口老龄化时代的来临,慢阻肺在我国老年人群中具有高患病率及高死亡率等特点。呼吸道症状的急剧恶化称之为慢阻肺急性加重,可由多种因素导致。其中病原菌的感染是慢阻肺急性加重的最主要原因,抗生素的合理使用能够显著有效地缩短病程减少并发症。为了更好地预防和治疗慢阻肺,本文通过查阅国内外文献,对老年AECOPD患者病因及抗生素治疗的研究进展进行综述。
Abstract: Chronic obstructive pulmonary disease (COPD) is a preventable and treatable lung disease that is very common in respiratory medicine. With the age of aging population coming, COPD has the characteristics of high morbidity and high mortality among the aged population. A sharp worsening of respiratory symptoms is called an acute exacerbation of COPD and can be caused by a number of factors. Among them, the infection of pathogenic bacteria is the main cause of acute exacerbation of COPD. Rational use of antibiotics can significantly shorten the course of disease and reduce complications. In order to better prevent and treat COPD, this article reviews the research progress of risk factors and antibiotic treatment of elderly patients with AECOPD by referring to domestic and foreign relevant literature.
文章引用:张欢欢, 王卓亚. 老年AECOPD患者病因及抗生素治疗的研究进展[J]. 亚洲急诊医学病例研究, 2024, 12(1): 8-16. https://doi.org/10.12677/ACREM.2024.121002

1. 引言

慢阻肺是一种以持续性呼吸道症状及气流受限为主要病变特征的慢性疾病,呼吸困难、咳嗽及咳痰为其主要临床表现。慢阻肺患者如伴有需要改变治疗方案的呼吸道症状急性恶化,称之为慢性阻塞性肺疾病急性加重期(Acute Exacerbations of Chronic obstructive pulmonary disease, AECOPD)。一项对我国近20年来COPD疾病经济负担分析显示,虽然COPD对我国人群造成的经济损失总体而言呈现下降趋势,但是老龄化使人群的COPD疾病负担仍处于较高水平( [1] pp. 1554-1561) ( [2] pp. 451-465)。慢阻肺的经济负担随着年龄的增长而增加。年龄是慢阻肺的危险因素,年龄越大患病率越高( [3] p. 134)。与年轻患者相比,老年人群具有基础疾病多、免疫力底、营养不良等特点,因此慢阻肺急性加重对老年患者的影响更大、致残率及病死率更高,给家庭和社会带来了极大的负担( [4] pp. 1677-1685) ( [5] pp. 395-404) ( [6] pp. 10401-10413)。慢阻肺急性加重多种原因引起,常见原因包括呼吸道感染、吸烟及环境污染、季节变化(冬季高发)等。大多数COPD急性加重都是由于病原菌感染引起,根据不同地区病原菌特点及药敏实验结果合理地选择敏感抗生素,能够缩短AECOPD患者病程的同时减少急性并发症的发生。不同抗生素的抗菌活性、耐药模式和副作用存在显著差异,因此在所有AECOPD患者中使用相同的抗生素并不合适。然而是否所有急性加重的患者均应接受抗生素治疗呢?相关研究表明 [7] (pp. 439-451),对于病情较轻且无任何细菌感染临床征象的患者,不推荐使用抗生素。病原菌的痰培养具有滞后性,实际工作中可依据临床经验,对于有病原菌感染高危因素及典型临床表现的患者,推荐经验性应用抗生素治疗。本文通过整理相关文献,对于老年AECOPD患者病因及抗生素治疗的研究进展做一综述。

2. 老年AECOPD患病特点

2.1. AECOPD定义及临床特点

慢性阻塞性肺疾病是一种由各种原因导致的慢性肺部炎症性疾病,在全球具有极高的致残率及死亡率。慢性阻塞性肺疾病病变特点为:小气道的病变及肺气肿。前者是指阻塞性细支气管炎、气道重塑以及外周气道的狭窄,后者指肺实质的破坏以致肺泡单位的损失,从而导致气体的潴留和肺部过度充气。慢阻肺在临床中可依据患者病情严重程度,将其分为稳定期和急性加重期,其中AECOPD是指患者呼吸道症状急剧恶化,超出日常的变异,需要改变药物治疗,典型临床表现为呼吸困难的加重、咳嗽加剧、痰量增多和/或痰液呈脓性,甚至出现发热、心悸、疲乏、意识不清等全身症状 [8] 。

2.2. 老年人群患病特点

2.2.1. 老年共病

老年共病(multi morbidity, MM)是指老年患者体内2种或2种以上慢性病共存。近期一项研究显示 [9] (pp. 503-513),全球65岁以上人口的比例将从2010年的11%增加2050年的22%,有将近60%的老年人患有共病。老年综合征也隶属于共病的范畴,老年综合征主要包括认知障碍、衰弱、跌倒、感觉丧失、营养不良、体重减轻、日常生活活动能力下降、疼痛、药物滥用、尿失禁等 [10] (pp. 787-795)。各个系统的慢性疾病之间相互影响,加重患者病情。例如当老年患者有神经系统疾病,会导致感觉、行动迟钝及肌无力,慢阻肺患者急性加重期呼吸道分泌物增加时,排痰的能力差,易导致痰液潴留,从而引起继发性肺部感染。

共病必然会导致多重用药,多重用药(Ploypharmacy)是指同时使用5种或者5种以上的药物 [11] 。随着老年患者服用药物种类的增多,更容易受到药物不良反应的影响,例如药物之间的相互作用、副作用、药物依赖以及服药依从性下降等。从而导致患者的最终疗效不理想、预后差、不良反应多,甚至出现治疗不连续、过度医疗等医源性的问题。

2.2.2. 免疫力底下

随着年龄的增长,老年人的免疫系统发生了改变,初级淋巴器官退化,先天免疫应答改变,导致对感染性疾病的易感性增加。由于免疫老化,老年人更容易感染,特别是流感、肺炎球菌、呼吸道合胞病毒和B组链球菌,但也更容易发生机会性和复发性慢性感染 [12] (pp. 83-94)。因为COPD患者气道中大量活化的T细胞不能消除细菌感染,因此COPD被认为是一种免疫缺陷状态,其中Th1功能受损与慢性阻塞性肺病患者对呼吸道感染的易感性有关 [13] (pp. 219-226)。老年患者由于身体各器官发生退行性变化,免疫功能底下,更易发生感染而致COPD病情恶化,是COPD急性发作的高危人群。

2.2.3. 营养不良

营养不良(Malnutrition)是指能量及营养素摄入不足、吸收或者利用障碍而导致身心功能减退的一种状态 [14] (pp. 335-340)。一项对发展中国家COPD患者的营养状态的调查显示 [15] ,COPD门诊患者合并营养不良的发生率约为25%,住院患者高达50%。老龄化与营养状态密切相关,老年人是营养不良的高危人群,随着年龄的增加,营养不良及营养不良风险随之增加。营养不良可导致一系列的不良事件,尤其是在老年患者人群中,营养不良将会延长病程,严重影响疾病预后及生活质量。

老年患者由于咀嚼功能差、可摄入的营养素有限、消化能力减退、吸收差及长期用药引起的胃肠道症状等均可导致进食量减少。研究显示 [16] (pp. 73-76),COPD患者静息状态下的能量消耗比普通人群高出15%~20%。摄入量不足以及疾病本身消耗大量能量,极易并发营养不良 [17] (pp. 53-61)。慢阻肺患者营养不良可导致肌力减弱、体质量不足、呼吸肌强度和耐力下降,如此循环往复,加重气流阻塞,导致肺功能进一步下降 [18] [19] 。营养不良不仅对患者通气动力、呼吸肌力量、膈肌功能造成直接损害,同时还会大大削弱其免疫功能,对肺功能造成损害,是COPD患者病情进展的重要原因,最终导致呼吸衰竭及多种并发症,极大的增加COPD患者的病死率 [20] (pp. 3447-3458)。

3. 老年AECOPD常见病因

3.1. 呼吸道感染

3.1.1. 细菌感染

呼吸道感染是AECOPD最常见的病因 [21] (pp. S3-S7),约40%~60%的呼吸道感染病例是由细菌引起的 [22] (p. 1344)。对COPD患者肺微生物组的研究表明 [23] ,在支气管树中存在潜在致病菌定值。其中非分型流感嗜血杆菌是COPD患者稳定期和病情加重时远端气道中最常见的细菌 [24] (p. 1119)。COPD患者的肺防御机制受损,其支气管分泌物中潜在致病菌增殖是其病情加重的直接后果。轻、中度COPD患者的痰培养中更常见的为流感嗜血杆菌和卡他莫拉菌,但是对于患有慢性支气管炎和/或支气管扩张的重度COPD患者,细菌谱是不相同的。

在一项针对于住院AECOPD患者的细菌谱的前瞻性研究中发现 [25] (pp. 19-27),近一半(47.22%)的病例中可分离出病原菌,其中铜绿假单胞菌为最主要的病原菌(38.23%),其次是肺炎克雷伯杆菌(29.41%)、金黄色葡萄球菌(23.53%)、肺炎链球菌(5.88%)和不动杆菌(2.94%)。韩国最近进行的一项研究分析了736例严重AECOPD病例 [26] (p. 216),发现支气管梗阻的严重程度与细菌鉴定率之间存在直接相关性,其中铜绿假单胞菌和肺炎链球菌的相关性最强。63.3%的病例发现了病原菌,最常见的分离病原菌为铜绿假单胞菌(13.0%)、肺炎链球菌(11.4%)和流感嗜血杆菌(5.3%)。金黄色葡萄球菌和肺炎克雷伯杆菌在死亡事件组中更为常见。铜绿假单胞菌和肠道革兰氏阴性杆菌更常见于肺功能严重受损和病情严重恶化需要机械通气的患者。

3.1.2. 病毒感染

病毒感染被认为是AECOPD最重要的危险因素之一,约30%的COPD急性加重是由病毒引起的。相关报道显示 [27] (pp. 129-136),与AECOPD相关的最常见病毒是鼻病毒、甲型流感、呼吸道合胞病毒(RSV)和副流感病毒。与细菌感染相似,AECOPD的总体病毒流行率也存在地理差异。鼻病毒是西方国家分离出的最常见的病毒 [28] (p. 53),而流感病毒是韩国发现的最常见的病毒。

与细菌感染相反,COPD分期越晚病毒检出率越低 [26] (p. 216)。在澳大利亚的一项研究中,作者发现AECOPD患者的病毒谱与一般人群中报告的病毒谱相似。其中22%的病例存在病毒和细菌混合感染。在印度的233名AECOPD住院患者中,19.7%检测到呼吸道病毒,甲型流感/H3N2流感病毒和鼻病毒是检测到最常见的病毒 [29] (pp. 1-9)。在伊朗进行的一项为期3年的研究中 [30] (pp. 523-529)发现,可在47.6%的COPD加重期患者和25%的COPD稳定期患者中检测到病毒感染。鼻病毒是两组患者中最常见的病毒,其次是呼吸道合胞病毒A/B、腺病毒、肠道病毒和甲型流感病毒。此外,研究证实22.2%的AECOPD患者存在双重病毒感染。

3.1.3. 真菌感染

COPD患者在日常生活中需要反复使用抗菌药及糖皮质激素等药物,机体长期处于慢性炎症症状,增加了患者肺部发生真菌感染的风险。COPD肺部真菌感染最常见的是白色念珠菌 [31] (pp. 1592-1599),研究显示 [32] ,真霉定植可加重气道的高反应性,并诱导持续的气道炎症和支气管收缩。因此,可认为真菌定植可能增加COPD患者病情加重的严重程度。

3.2. 吸烟及环境污染

在COPD发生和进展中吸烟被认为是主要危险因素。吸烟者的肺功能下降更快,死亡率也比不吸烟者更高。吸烟者长期暴露在香烟烟雾中的焦油和尼古丁烟雾中,嗜中性粒细胞和巨噬细胞被招募和激活,释放丝氨酸和基质金属蛋白酶,进一步激活氧化应激反应,清除外来元素。当细胞外基质被破坏,细胞死亡超出其修复能力时,就会发生肺气肿,这可能会导致COPD加重。在一项对于山西省COPD患病高危因素的调查研究显示 [33] (pp. 1699-1708),吸烟年限与COPD患病率之间存在明显的剂量–反应关系,随着吸烟年数的增加患病率也逐年攀升。最近的一项研究表明 [34] ,慢性气流受限吸烟者气道上皮中ICAM-1 (60%的人鼻病毒和流感嗜血杆菌的主要受体)的细胞表面表达增加。研究结果提示了主动吸烟、感染和病情加重之间的密切关系。吸烟被认为是慢性阻塞性肺病的唯一主要可预防因素 [35] (pp. 1055-1061)。考虑到吸烟导致的COPD患病率较高,戒烟应该是减少COPD患者数量的重要策略。

影响呼吸系统的主要环境污染物还有:臭氧(O3)、一氧化碳(CO)、颗粒物(PM2.5,PM10)和二氧化硫(SO2)。这些污染物可诱导氧化应激和炎症,导致气道损伤和功能障碍 [36] (pp. 3079-3091)。一项大型流行病学研究调查了2013~2017年间中国北京地区空气污染物对慢性阻塞性肺病患者的影响 [37] (p. 8711),观察到SO2、NO2、CO、PM2.5和PM10对COPD加重住院有显著影响,但O3没有。现如今人们越来越关注颗粒物(PM)气溶胶对呼吸系统发病率的影响,特别是对COPD加重风险的影响。此外研究表明 [38] (pp. 725-734),PM10水平每增加10 μg/m3,COPD急诊病例就增加3.34%,在74岁以上的人群中增加3.75%。因此可认为颗粒物气溶胶会增加AECOPD发病率,积极改善环境污染可使得AECOPD发病率下降。

3.3. 季节变化

AECOPD患者数量与季节之间具有很强的相关性,研究显示大多数病毒感染发生在冬季( [39] pp. 131-139) ( [40] pp. 96-100),冬季住院的COPD患者数量增加 [41] 。在西班牙的一项研究中显示 [42] (pp. 328-337),AECOPD的住院率最高的是冬季,其次是秋季、春季和夏季。慢性阻塞性肺疾病住院人数与平均气温密切且独立相关,气温每下降1℃,入院人数增加4.7%。Wise等人 [43] (p. 16)分析了COPD患者死亡率和病情加重的季节性变化,发现AECOPD发生在冬季(34.1%)、秋季(26.3%)、春季(23.2%)和夏季(16.4%)的比例存在明显差异。其中严重加重(19.6%),在冬季较常见(35.4%),夏季较少见(16%)。

3.4. 其它原因

此外发现COPD加重最可靠的预测因子是既往的加重史。葡萄牙的一项研究分析了稳定期COPD患者病情恶化、住院率和死亡率的5年预测,前一年的病情恶化是未来病情恶化风险的最佳预测因子。在5年的随访期间,几乎70%的GOLD3级患者和90%的GOLD4级患者出现了病情加重。GOLD4级COPD患者因AECOPD住院和死亡的比例超过67% [44] (pp. 1105-1113)。过去加重次数较多的患者未来加重风险较高,肺功能和生活质量加速下降,死亡风险增加( [45] pp. 3391-3405) ( [46] pp. 631-648)。

有关研究也证实了COPD加重与气流受限程度之间的关系。Müllerová等人证明 [47] ,气道受限的严重程度越高,急性加重的风险就越大。香港的一项研究表明 [48] (pp. 498-503),77%的住院患者是患有中至重度气流限制的COPD患者。而Foda等人 [49] (pp. 209-214)的研究同样提示气道阻塞严重程度的增加使得AECOPD发生率也增加。

4. 抗生素治疗AECOPD的研究进展

4.1. 不同地区病原菌及药敏实验结果特点

AECOPD患者入院后需要及时制定治疗方案,然而临床痰培养及药敏实验结果一般需要48到72小时,这限制了它们的实用性。且痰培养物中存在呼吸道病原体并不能区分是慢性常规定植菌和还是急性感染病原菌,因此痰培养病原菌特异性有限。因此了解常见致病菌种类,及其耐药模式对于临床经验性选择抗生素治疗方案十分重要。

在我国北京地区由11家综合医院招募了318名AECOPD患者进行痰培养标本并鉴定细菌,发现肺炎克雷伯杆菌和铜绿假单胞菌是北京地区AECOPD住院患者中最常见的致病菌。药敏实验结果显示肺炎克雷伯菌、铜绿假单胞菌、鲍曼不动杆菌和大肠杆菌对阿米卡星和头孢哌酮敏感 [50] (pp. 699-710)。张丽等人 [51] (pp. 1456-1459)在武汉地区对391例AECOPD肺部感染患者的痰标本培养病原菌显示,致病菌主要为铜绿假单胞菌、鲍不动杆菌、肺炎克雷伯等。其中铜绿假单胞菌对复方新诺明具有较高的耐药性;鲍曼不动杆菌对阿米卡星较敏感;肺炎克雷伯杆菌对阿米卡星、亚胺培南和美罗培南敏感。同样的肺炎克雷伯杆菌和铜绿假单胞菌也是我国台湾省AECOPD住院患者最常见的病原菌。在AECOPD的发病过程中西方国家最常见的致病菌为肺炎链球菌、非分型流感嗜血杆菌和卡他莫拉菌。

4.2. 抗生素的选择

AECOPD患者是否应用抗生素治疗一直饱受争议,是由于大约一半的COPD急性加重是由细菌感染引发的,抗生素治疗的目的是阻止细菌感染作为AECOPD的可能原因。然而也有其它原因引起COPD急性加重,其中包括病毒感染和吸烟及环境刺激物等。并非所有患者都适合使用抗生素治疗,研究显示建议具有病原菌感染高危因素的患者使用抗生素。如因急性加重住院的患者且具有急性加重三种主要症状(呼吸困难、痰量增加和脓痰)的患者,和患有重度COPD或导致呼吸储备降低的重度合并症(如充血性心力衰竭)的急性重症患者。然而在中度急性加重时,应根据具体情况考虑是否使用抗菌药物 [52] (pp. 982-985)。

COPD分为稳定期和急性加重期,不同的分期及不同病情的严重程度的治疗方案也不同。现有证据不支持COPD稳定期常规预防性使用抗菌药物 [52] (pp. 982-985)。Anthonisen提出的症状标准被认为是急性加重严重程度的指标。Anthonisen类型可指导AECOPD患者用药,研究发现I型和II型Anthonisen患者抗生素治疗受益较大。其中I型患者获益最大,提示了病情严重恶化的患者从抗菌药物中受益最多 [53] (p. 58)。铜绿假单胞菌的感染常常与重度COPD相关,因此需要住院治疗的患者中铜绿假单胞菌感染可能性更大。铜绿假单胞菌感染的高危因素有近期住院患者、之前的痰培养中有铜绿假单胞菌生长、近期多次使用抗菌药物以及FEV1 < 30%的极重度COPD。无铜绿假单胞菌感染危险因素的住院患者抗生素可选择氟喹诺酮类或第三代头孢菌素。在存在铜绿假单胞菌感染风险的住院患者中,抗生素可应用头孢吡肟、头孢他啶、哌拉西林/他唑巴坦或环丙沙星等 [54] 。

在选择抗菌药物时应考虑药物间的相互作用及药物配伍之间的禁忌症。AECOPD患者抗生素治疗的主要目标是加速临床症状缓解和预防急性并发症(如呼吸衰竭、气管插管和机械通气)的发生,减少治疗失败率 [55] 。抗生素已被证实对住院AECOPD患者有益,因此在临床工作中合理地使用抗生素能够降低重症患者的死亡率。

参考文献

[1] 侯珊珊, 施劲东, 尹欣, 等. 1990-2019年中国慢性阻塞性肺疾病的疾病负担情况分析[J]. 中华流行病学杂志, 2022, 43(10): 1554-1561.
[2] Liang, C., Mao, X., Niu, H., et al. (2021) Characteristics, Management and In-Hospital Clinical Outcomes among Inpatients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease in China: Re-sults from the Phase I Data of ACURE Study. The International Journal of Chronic Obstructive Pulmonary Disease, 16, 451-465.
https://doi.org/10.2147/COPD.S281957
[3] 中国医师协会呼吸医师分会慢性阻塞性肺疾病工作委员会, 中华医学会呼吸病学分会慢性阻塞性肺疾病学组. 《慢性阻塞性肺疾病诊治指南(2021年修订版)》诊断要点[J]. 实用心脑肺血管病杂志, 2021, 29(6): 134.
[4] Li, M., Cheng, K., Ku, K., et al. (2021) Factors Influencing the Length of Hospital Stay among Patients with Chronic Obstructive Pulmonary Disease (COPD) in Macao Population: A Retrospec-tive Study of Inpatient Health Record. International Journal of Chronic Obstructive Pulmonary Disease, 16, 1677-1685.
https://doi.org/10.2147/COPD.S307164
[5] Maddocks, M., Kon, S.S.C., Singh, S.J., et al. (2015) Rehabilitation Following Hospitalization in Patients with COPD: Can It Reduce Readmissions? Respirology, 20, 395-404.
https://doi.org/10.1111/resp.12454
[6] Xu, J., Wang, X., Li, Z., et al. (2021) AECOPD Research in the Past Ten Years: A Bibliographic Analysis Based on Web of Science. Annals of Palliative Medicine, 10, 10401-10413.
https://doi.org/10.21037/apm-21-2756
[7] Kunadharaju, R. and Sethi, S. (2020) Treatment of Acute Exacerbations in Chronic Obstructive Pulmonary Disease. Clinics in Chest Medicine, 41, 439-451.
https://doi.org/10.1016/j.ccm.2020.06.008
[8] Choi, J., Shim, J.J., Lee, M.G., et al. (2023) Association between Air Pollution and Viral Infection in Severe Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Journal of Korean Medical Science, 38, e68.
https://doi.org/10.3346/jkms.2023.38.e68
[9] King, D.E., Xiang, J. and Pilkerton, C.S. (2018) Multimorbidity Trends in United States Adults, 1988-2014. The Journal of the American Board of Family Medicine, 31, 503-513.
https://doi.org/10.3122/jabfm.2018.04.180008
[10] Chen, T., Dredze, M., Weiner, J.P., et al. (2019) Identifying Vulnerable Older Adult Populations by Contextualizing Geriatric Syndrome Information in Clinical Notes of Electronic Health Records. Journal of the American Medical Informatics Association, 26, 787-795.
https://doi.org/10.1093/jamia/ocz093
[11] Masnoon, N., Shakib, S., Kalisch-Ellett, L., et al. (2017) What Is Polypharmacy? A Systematic Review of Definitions. BMC Geriatrics, 17, 230-239.
https://doi.org/10.1186/s12877-017-0621-2
[12] Ciabattini, A., Nardini, C., Santoro, F., et al. (2018) Vaccination in the Elderly: The Challenge of Immune Changes with Aging. Seminars in Immunology, 40, 83-94.
https://doi.org/10.1016/j.smim.2018.10.010
[13] Tan, D.B.A., Teo, T.H., Setiawan, A.M., et al. (2017) Increased CTLA-4+ T Cells May Contribute to Impaired T Helper Type 1 Immune Responses in Patients with Chronic Obstructive Pulmonary Disease. Immunology, 151, 219-226.
https://doi.org/10.1111/imm.12725
[14] Cederholm, T., Bosaeus, I., Barazzoni, R., et al. (2015) Diagnostic Criteria for Malnutrition—An ESPEN Consensus Statement. Clinical Nutrition, 34, 335-340.
https://doi.org/10.1016/j.clnu.2015.03.001
[15] Hoong, J.M., Ferguson, M. and Hukins, C., et al. (2017) Economic and Operational Burden Associated with Malnutrition in Chronic Obstructive Pulmonary Disease. Clinical Nutrition, 36, 1105-1109.
https://doi.org/10.1016/j.clnu.2016.07.008
[16] 李国翔, 赵京梅, 王永红. 营养状况与慢性阻塞性肺疾病急性加重的相关性研究[J]. 临床肺科杂志, 2017, 22(1): 73-76.
[17] Messous, S., Elargoubi, A., Pillet, S., et al. (2021) Bacterial and Viral Infection in Patients Hospitalized for Acute Exacerbation of Chronic Obstructive Pulmonary Disease: Implication for Antimicrobial Management and Clinical Outcome. Chronic Obstructive Pulmonary Disease, 18, 53-61.
https://doi.org/10.1080/15412555.2020.1854210
[18] Xiao, M., Wang, X., Wang, H., et al. (2023) Risk Factors for Hyponatremia in Acute Exacerbation Chronic Obstructive Pulmonary Disease (AECOPD): A Multicenter Cross-Sectional Study. BMC Pulmonary Medicine, 23, Article No. 39.
https://doi.org/10.1186/s12890-023-02328-4
[19] Wu, C.T., Li, G.H., Huang, C.T., et al. (2021) Acute Exacerba-tion of a Chronic Obstructive Pulmonary Disease Prediction System Using Wearable Device Data, Machine Learning, and Deep Learning: Development and Cohort Study. JMIR Mhealth Uhealth, 9, e22591.
https://doi.org/10.2196/22591
[20] Wang, H., Yang, T., Yu, X., et al. (2022) Risk Factors for Length of Hospital Stay in Acute Exacerbation Chronic Obstructive Pulmonary Disease: A Multicenter Cross-Sectional Study. International Journal of General Medicine, 15, 3447-3458.
https://doi.org/10.2147/IJGM.S354748
[21] Soriano, J.B. (2017) An Epidemiological Overview of Chronic Obstructive Pulmonary Disease: What Can Real-Life Data Tell Us about Disease Management? COPD, 14, S3-S7.
https://doi.org/10.1080/15412555.2017.1286165
[22] Miravitlles, M. and An-zueto, A. (2017) Chronic Respiratory Infection in Patients with Chronic Obstructive Pulmonary Disease: What Is the Role of Antibiotics? International Journal of Molecular Sciences, 18, Article No. 1344.
https://doi.org/10.3390/ijms18071344
[23] Hsu, C., Suk, C., Hsu, Y., et al. (2022) Sphingosine-1-Phosphate and CRP as Potential Combination Biomarkers in Discrimination of COPD with Community-Acquired Pneumonia and Acute Exacerbation of COPD. Respiratory Research, 23, Article No. 63.
https://doi.org/10.1186/s12931-022-01991-1
[24] Mallia, P., Finney, L., Ritchie, A., et al. (2014) Lower Airway Colonization and Inflammatory Response in COPD: A Focus on Haemophilus Influenzae. International Journal of Chronic Obstructive Pulmonary Disease, 9, 1119-1132.
[25] Kuwal, A., Joshi, V., Dutt, N., et al. (2018) A Prospective Study of Bacteriological Etiology in Hospitalized Acute Exacerbation of COPD Patients: Relationship with Lung Func-tion and Respiratory Failure. Turkish Thoracic Journal, 19, 19-27.
https://doi.org/10.5152/TurkThoracJ.2017.17035
[26] Choi, J., Oh, J.Y., Lee, Y.S., et al. (2019) Bacterial and Vi-ral Identification Rate in Acute Exacerbation of Chronic Obstructive Pulmonary Disease in Korea. Yonsei Medical Jour-nal, 60, 216-222.
https://doi.org/10.3349/ymj.2019.60.2.216
[27] Kano, K., Washio, Y., Fujimoto, T., et al. (2022) Differences in the Spectrum of Respiratory Viruses and Detection of Human Rhinovirus C in Exacerbations of Adult Asthma and Chronic Obstructive Pulmonary Disease. Respiratory Investigation, 60, 129-136.
https://doi.org/10.1016/j.resinv.2021.08.009
[28] Jahan, R., Mishra, B., Behera, B., et al. (2021) Study of Respira-tory Viruses and Their Coinfection with Bacterial and Fungal Pathogens in Acute Exacerbation of Chronic Obstructive Pulmonary Diseases. Lung India, 38, 53-58.
https://doi.org/10.4103/lungindia.lungindia_273_20
[29] Song, W., Wang, Y., Tian, F., et al. (2021) Clinical Sig-nificance of Procalcitonin, C-Reactive Protein, and Interleukin-6 in Helping Guide the Antibiotic Use for Patients with Acute Exacerbations of Chronic Obstructive Pulmonary Disease. Disease Markers, 2021, Article ID: 8879401.
https://doi.org/10.1155/2021/8879401
[30] Hosseini, S.S., Ghasemian, E., Jamaati, H., et al. (2015) Association between Respiratory Viruses and Exacerbation of COPD: A Case-Control Study. Infectious Diseases, 47, 523-529.
https://doi.org/10.3109/23744235.2015.1022873
[31] Yao, C., Wang, L., Shi, F., et al. (2021) Optimized Combi-nation of Circulating Biomarkers as Predictors of Prognosis in AECOPD Patients Complicated with Heart Failure. In-ternational Journal of Medical Sciences, 18, 1592-1599.
https://doi.org/10.7150/ijms.52405
[32] Tong, X., Cheng, A., Xu, H., et al. (2018) Aspergillus Fumigatus during COPD Exacerbation: A Pair-Matched Retrospective Study. BMC Pulmonary Medicine, 18, Article No. 55.
https://doi.org/10.1186/s12890-018-0611-y
[33] Feng, C., Xu, M., Kang, J., et al. (2021) Atypical Pathogen Dis-tribution in Chinese Hospitalized AECOPD Patients: A Multicenter Cross-Sectional Study. International Journal of Chronic Obstructive Pulmonary Disease, 16, 1699-1708.
https://doi.org/10.2147/COPD.S300779
[34] Shukla, S.D., Mahmood, M.Q., Weston, S., et al. (2017) The Main Rhinovirus Respiratory Tract Adhesion Site (ICAM-1) Is Upregulated in Smokers and Patients with Chronic Airflow Limitation (CAL). Respiratory Research, 18, Article No. 6.
https://doi.org/10.1186/s12931-016-0483-8
[35] Loh, L.C., Rashid, A., Sholehah, S., et al. (2016) Low Prevalence of Obstructive Lung Disease in a Suburban Population of Malaysia: A BOLD Collaborative Study. Respirology, 21, 1055-1061.
https://doi.org/10.1111/resp.12793
[36] Li, J., Sun, S., Tang, R., et al. (2016) Major Air Pollutants and Risk of COPD Exacerbations: A Systematic Review and Meta-Analysis. The International Journal of Chronic Obstructive Pulmonary Disease, 11, 3079-3091.
https://doi.org/10.2147/COPD.S122282
[37] Song, B., Zhang, H., Jiao, L., et al. (2022) Effect of High-Level Fine Particulate Matter and Its Interaction with Meteorological Factors on AECOPD in Shijiazhuang, China. Scientific Reports, 12, Article No. 8711.
https://doi.org/10.1038/s41598-022-12791-4
[38] Zheng, B., Taljaard, M., Aaron, S.D., et al. (2022) Association between Antibiotics and Rehospitalization in Patients with Acute Exacerbations of Chronic Obstructive Pulmonary Dis-ease Discharged from the Emergency Department. Canadian Journal of Emergency Medicine, 24, 725-734.
https://doi.org/10.1007/s43678-022-00373-2
[39] Kwak, H.J., Park, D.W., Kim, J.E., et al. (2016) Prevalence and Risk Factors of Respiratory Viral Infections in Exacerbations of Chronic Obstructive Pulmonary Disease. The Tohoku Journal of Experimental Medicine, 240, 131-139.
https://doi.org/10.1620/tjem.240.131
[40] Djamin, R.S., Uzun, S., Snelders, E., et al. (2015) Occurrence of Vi-rus-Induced COPD Exacerbations during Four Seasons. Infectious Diseases (London), 47, 96-100.
https://doi.org/10.3109/00365548.2014.968866
[41] Fu, X., Zhong, Y., Xu, W., et al. (2021) The Prevalence and Clinical Features of Pulmonary Embolism in Patients with AE-COPD: A Meta-Analysis and Systematic Review. PLOS ONE, 16, e0256480.
https://doi.org/10.1371/journal.pone.0256480
[42] Yılmaz, C., Özkan, S. and Erer, O.F. (2021) Risk Assessment and Rate of Readmission within 30 Days of Discharge after Hospitalization for Acute Exacerbation of Chronic Obstruc-tive Pulmonary Disease. Tüberküloz ve Toraks, 69, 328-337.
https://doi.org/10.5578/tt.20219705
[43] Li, M., Cheng, K., Ku, K., et al. (2023) Modelling 30-Day Hospital Readmission after Discharge for COPD Patients Based on Electronic Health Records. NPJ Primary Care Respiratory Medicine, 33, Article No. 16.
https://doi.org/10.1038/s41533-023-00339-6
[44] Cardoso, J., Coelho, R., Rocha, C., et al. (2018) Prediction of Severe Exacerbations and Mortality in COPD: The Role of Exacerbation History and Inspiratory Capacity/Total Lung Capacity Ratio. International Journal of Chronic Obstructive Pulmonary Disease, 13, 1105-1113.
https://doi.org/10.2147/COPD.S155848
[45] Calverley, P.M., Tetzlaff, K., Dusser, D., et al. (2017) Determinants of Exacerbation Risk in Patients with COPD in the TIOSPIR Study. International Journal of Chronic Obstructive Pul-monary Disease, 12, 3391-3405.
https://doi.org/10.2147/COPD.S145814
[46] Dixit, D., Bridgeman, M.B., Andrews, L.B., et al. (2015) Acute Ex-acerbations of Chronic Obstructive Pulmonary Disease: Diagnosis, Management, and Prevention in Critically Ill Patients. Pharmacotherapy, 35, 631-648.
https://doi.org/10.1002/phar.1599
[47] Müllerová, H., Shukla, A., Hawkins, A., et al. (2014) Risk Factors for Acute Exacerbations of COPD in a Primary Care Population: A Retrospective Observational Cohort Study. BMJ Open, 4, e006171.
https://doi.org/10.1136/bmjopen-2014-006171
[48] Au, L.H. and Chan, H.S. (2013) Severity of Airflow Limita-tion, Co-Morbidities and Management of Chronic Obstructive Pulmonary Disease Patients Acutely Admitted to Hospital. Hong Kong Medical Journal, 19, 498-503.
[49] Foda, H., Brehm, A., Goldsteen, K., et al. (2017) Inverse Relationship between Nonadherence to Original GOLD Treatment Guidelines and Exacerbations of COPD. International Journal of Chronic Obstructive Pulmonary Disease, 12, 209-214.
https://doi.org/10.2147/COPD.S119507
[50] Ma, X., Cui, J., Wang, J., et al. (2015) Multicentre Investigation of Pathogenic Bacteria and Antibiotic Resistance Genes in Chinese Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Journal of International Medical Research, 43, 699-710.
https://doi.org/10.1177/0300060515587577
[51] 张丽, 范忠杰, 周凡. 慢性阻塞性肺疾病急性加重期肺部感染患者的病原菌分布、耐药性及危险因素分析[J]. 中国病原生物学杂志, 2019, 14(12): 1456-1459.
[52] Diao, W.Q., Xu, M. and He, B. (2018) The Microbiome in Chronic Obstructive Pulmonary Disease. Chinese Journal of Tuberculosis and Respiratory Diseases, 41, 982-985.
[53] Brennan, M., McDonnell, M.J., Harri-son, M.J., et al. (2022) Antimicrobial Therapies for Prevention of Recurrent Acute Exacerbations of COPD (AECOPD): Beyond the Guidelines. Respiratory Research, 23, Article No. 58.
https://doi.org/10.1186/s12931-022-01947-5
[54] Hoult, G., Gillespie, D., Wilkinson, T.M.A., et al. (2022) Bi-omarkers to Guide the Use of Antibiotics for Acute Exacerbations of COPD (AECOPD): A Systematic Review and Me-ta-Analysis. BMC Pulmonary Medicine, 22, Article No. 194.
https://doi.org/10.1186/s12890-022-01958-4
[55] Bagge, K., Sivapalan, P., Eklöf, J., et al. (2021) Antibiotic Treatment in Acute Exacerbation of COPD: Patient Outcomes with Amoxicillin vs. Amoxicillin/Clavulanic Acid—Data from 43,636 Outpatients. Respiratory Research, 22, Article No. 11.
https://doi.org/10.1186/s12931-020-01606-7