术中甲状旁腺定位辅助技术研究进展
Research Progress on Intraoperative Parathyroid Gland Localization Assistance Technology
DOI: 10.12677/ACM.2024.142433, PDF, HTML, XML, 下载: 52  浏览: 127 
作者: 陈茂森:吉首大学第一附属医院(湘西土家族苗族自治州人民医院),湖南 吉首;周晓辉*:吉首大学医学院,湖南 吉首
关键词: 术中甲状旁腺定位辅助技术甲状腺手术Localization of Parathyroid Gland during Surgery Auxiliary Technology Thyroid Surgery
摘要: 甲状旁腺是人体重要内分泌腺,分别位于左右两叶甲状腺背面(或埋在其中)的中部和下部;其主要分泌甲状旁腺素,调节机体内钙、磷的代谢;在甲状腺或甲状旁腺手术中为了避免甲状旁腺误伤引起并发症或者甲状旁腺精准切除,术中定位识别甲状旁腺显得非常重要;故本文介绍常见几种术中甲状旁腺定位辅助技术研究进展,旨为更好地服务于临床精准治疗工作。
Abstract: The parathyroid gland is an important endocrine gland in the human body, located in the middle and lower parts of the left and right lobes of the thyroid gland (or buried in them); Its main secre-tion is parathyroid hormone, which regulates the metabolism of calcium and phosphorus in the body; In thyroid or parathyroid surgery, in order to avoid complications caused by accidental injury to the parathyroid gland or precise removal of the parathyroid gland, intraoperative localization and identification of the parathyroid gland are very important; Therefore, this article introduces the research progress of several common intraoperative parathyroid localization assistance tech-nologies, aiming to better serve clinical precision treatment work.
文章引用:陈茂森, 周晓辉. 术中甲状旁腺定位辅助技术研究进展[J]. 临床医学进展, 2024, 14(2): 3057-3064. https://doi.org/10.12677/ACM.2024.142433

1. 引言

甲状旁腺是人体重要内分泌腺之一,人体有两对甲状旁腺,棕黄色,形似大豆,分别位于左右两叶甲状腺背面(或埋在其中)的中部和下部;上对腺在甲状腺侧叶背面中1/3处;下对多在侧叶背面下端。甲状旁腺由咽囊内胚层发生;上对腺源于第四咽囊,在发生过程中与甲状腺一同下降;下对腺来自第三咽囊,在发生过程中与胸腺相连一同下降,一般只降到甲状腺下端,有的可到胸腺附近 [1] 。朱精强等根据甲状旁腺与甲状腺的位置关系及原位保留的难易程度将甲状旁腺分为A、B两型。A型为紧密型,即甲状旁腺与甲状腺的关系紧密、相对较难原位保留;其中又分为3个亚型:A1型,甲状旁腺与甲状腺表面平面相贴;A2型,甲状旁腺部分或完全嵌入甲状腺内,但是位于甲状腺固有被膜外;A3型,甲状旁腺完全位于甲状腺组织内,与A2型的区别是在甲状腺固有被膜内。B型为非紧密型,即甲状旁腺与甲状腺之间有自然间隙,比较容易原位保留;也分为3个亚型:B1型,甲状腺周围型,即除了B2及B3型的所有B型;B2型,胸腺内型,即甲状旁腺位于胸腺内;B3型,由胸腺或纵隔的血管供血者。大多数甲状旁腺都具有独立的甲状旁腺动脉,上位甲状旁腺的血液供应通常有3种来源:(1) 甲状腺上动脉后支,为最主要的动脉血供来源;(2) 甲状腺上、下动脉的吻合支;(3) 甲状腺最下动脉及喉部、气管、食管等处动脉。下位甲状旁腺的血供主要来源于甲状腺下动脉。营养上、下位甲状旁腺的血供是由甲状腺上、下动脉在进入甲状腺组织前发出 [2] 。甲状旁腺主要功能为分泌甲状旁腺激素(parathyroid hormone, PTH),调节机体内钙、磷的代谢。甲状旁腺功能低下或手术中甲状旁腺误切(或损伤)时,则PTH分泌不足,使血钙逐渐下降,而血磷逐渐上升,导致低血钙性抽搐,甚至死亡。甲状旁腺功能亢进常由于原发性甲状旁腺功能亢进症中的腺瘤、腺体增生或罕见的癌腺体过度分泌PTH,或由于继发性甲状旁腺功能亢进症中的慢性肾病或维生素D缺乏等患者 [3] ;临床表现包括骨密度下降以及伴随骨折、肾结石、肾钙化病、肾功能障碍或神经认知症状,如注意力集中和记忆困难、抑郁和焦虑 [4] 。甲状旁腺呈棕黄色,与脂肪组织、淋巴结相像,术中肉眼有时难以分辨,容易造成甲状旁腺损伤或误切;有研究表明,我国甲状腺术后暂时性和永久性甲状旁腺功能减退的发生率为6.9%~65.0%和0%~13% [5] [6] [7] ;同时甲状旁腺可能存在异位或者数量变化;在一项7005位患者研究中表明,异位甲状旁腺的发病率约为16%,位于颈部或纵隔处;大约20%的人拥有更少或更多的腺体 [1] 。尽管术前有很多影像学技术,比如彩超、CT、MRI以及99mTC-MIBI等检查,能够诊断和定位甲状旁腺,但对于手术当中实时指导有一定局限;为了更好的保护或精准切除甲状旁腺,术中甲状旁腺定位显得极为重要;故本文将常见的几种术中定位辅助技术研究进展进行综述。

2. 术中甲状旁腺激素测定

甲状旁腺激素由多种长度的PTH片段组成,其中包括具有生物活性的1-84PTH和非生物活性的1-84PTH、C末端区等片段。非生物活性的1-84PTH片段半衰期较长,在肝肾功能不全的患者中因清除减少而蓄积升高,并且竞争性抑制1-84PTH片段。单抗体测定(第1代)因受多种片段竞争性交叉反应的影响,耗时长以及PTH测得值误差大,目前已经淘汰;全段甲状旁腺激素(intact parathyroid hormone, IOPTH)测定(第2代)采用双侧免疫放射测定法,通过使用C末端和N末端针对性抗体显著提高了检测的敏感性和特异性,耗时显著缩短至8~20 min;生物活性1-84PTH测定(第3代)特异性靶向结合整个1-84PTH片段肽链,耗时更短,结果更精确 [8] [9] 。Nussbaum及其团队在1988年首先提出了术中甲状旁腺切除后PTH的测量,监测术前术后PTH的变化,来判断是否完整切除甲状旁腺 [10] 。1991年,Irvin等进行了进一步开发并常规应用于手术中,对21名患者采用免疫放射方法在IOPTH的监测下进行了甲状旁腺手术 [11] 。具体操作是术前切皮前PTH以及术后切除甲状旁腺后10 min或者20 min PTH的测定,比较两者的PTH变化。Miami标准是甲状旁腺切除后10分钟IOPTH下降50%以上,认为切除是有效的,治愈率为97%~99%。另外Wien,Halle,Rom成功标准是要求从甲状旁腺切除后10~20分钟的IOPTH较术前下降50%~70% [8] 。然而目前这几种标准尚未完全形成共识 [12] ,有学者认为,在预测治愈方面,Miami标准被认为是最平衡的,而如果怀疑多腺疾病,则倾向于罗马标准 [13] 。无论如何,手术外科医生必须明白,IOPTH的准确性取决于所使用的标准,并且在选择采样策略时要使用仔细的判断 [14] 。

3. 术中亚甲蓝染色定位

在甲状腺或甲状旁腺手术中,常采取静脉滴注亚甲蓝及甲状腺下动脉注射亚甲蓝两种方法来进行甲状旁腺定位。1971年,Dudley首次在甲状旁腺手术中采用亚甲蓝来识别甲状旁腺 [15] 。2003年Schell和Dudley报道了他们在没有任何术前定位研究或术中循环iPTH测定的情况下,仅使用术中静脉输注亚甲蓝(intraoperative methylene blue infusion, IMBI)来识别甲状腺异常;他们报告了688名患者的长期治愈率为97.7% [16] [17] 。随后Kuriloff等在35名患者中使用了IMBI,IMBI的给药计算剂量为7.5 mg/kg (1%亚甲蓝注射液在250至500毫升的生理盐水中稀释,输注时间为17分钟(范围为15~30),几乎不经代谢随尿排出,尿液持续蓝绿色10天后恢复;术中有效率为97%。2007年国内郭卫东等在36例患者中采用甲状腺下动脉注射1%亚甲蓝0.5~1 ml (5~10 μg)来进行定位,甲状旁腺被染成深蓝色,染色成功80.56% [18] 。有研究表明,使用亚甲蓝可能会出现并发症:恶心呕吐、腹痛、心前区疼痛、头痛、高血压、大汗淋漓、烦躁不安和意识模糊,严重时可出现神经毒性并发症,尤其在服用5-羟色胺再摄取抑制药物的患者中出现神经毒性并发症的风险更高 [19] [20] ;有学者认为低剂量亚甲蓝(5~10 mg/kg/剂量)是安全的 [19] ;Cardiff Centre推荐静脉滴注1%亚甲蓝剂量不应该超过4 mg/kg [20] 。国内学者推荐亚甲蓝的滴速应控制于40~90滴/分 [21] 。故应避免大剂量快速使用亚甲蓝,从而减少并发症的出现。

4. 术中近红外荧光显像技术定位

近红外(Near-infrared, NIR)拉曼光谱是一种潜在的光学诊断技术,可以测量光的非弹性散射。激发源(激光)引起的分子振动和旋转频率的变化会产生频率偏移,该频率偏移可进行测量、分析,并特定于所研究样品的分子成分 [22] 。2006年,Das等人使用了近红外830 nm激光照射甲状旁腺激发自身荧光,从而通过拉曼光谱来诊断甲状旁腺病理 [22] 。2011年,Paras等人证实了甲状旁腺和甲状腺组织中存在自发荧光,近红外激光激发甲状旁腺自发荧光峰值在820 nm,甲状旁腺荧光强度是甲状腺荧光强度的2至11倍,肌肉、脂肪和气管未测量到荧光,从而我们能够将其与周围组织区分开来 [23] 。目前近红外甲状旁腺荧光常用检测技术有两种:基于探针系统(例如PTeye)和基于图像系统(例如Fluobeam-800)。PTeye系统:该系统包括一个一次性光纤探头,连接到一个控制台,其中包含一个NIR光源和一个交互式显示器;具体操作:当探针接触甲状旁腺时,PTeye显示器提供实时甲状旁腺图像和机器发出蜂鸣声(类似于将探针用于神经监测设备),不受外部光源影响。Fluobeam-800系统:该设备由一个手持相机系统组成,该系统还包含一个NIR光源,以照亮手术领域中感兴趣的组织,由此产生的自动荧光信号被处理,从而在显示器上生成图像 [24] 。有研究表明,PTeye系统的甲状旁腺识别的准确率为96.1% [25] ;Fluobeam-800系统甲状旁腺识别的准确率为94%到100%不等 [24] [26] [27] 。需要注意的是,自发荧光信号会受到疾病状态、术前维生素D水平、血清钙水平和体重指数等变量的影响 [28] ;此外,棕色脂肪、胶质结节和转移性淋巴结会表现出自身荧光,这可能与甲状旁腺组织的自身荧光重叠,导致假阳性 [29] [30] 。

自荧光信号的原位投影为基于探针的系统进行术中成像指导提供了潜在的解决方案。2013年,Sarder等第一次提出了获得性荧光光学的原位投影的概念 [31] 。McWade等开发了一个基于近红外自荧光的叠加成像系统(OTIS),该系统可以检测组织NIR荧光,并将收集到的信号作为可见图像直接投射到术中视野上,而不是显示器上面,准确率为97% [32] 。OTIS系统具有非接触式测量作为基于成像的系统的优势,但该系统将将近红外摄像机和投影仪与不匹配的手术视图并排放置,因此有必要在不同的工作距离上校准系统 [33] [34] 。近年来,国内范张及其团队开发了一个同轴投影成像(CPI)系统,从手术现场获取术中现场图像,以无线方式将其传输到远程现场,并将指导性注释投射到手术区域 [35] 。随后,魏晨等团队将CPI与甲状旁腺自动荧光检测探针相结合,并提出了一种新的荧光扫描和投影(FSP)系统,用于甲状旁腺的术中定位和原位显示 [34] ;但目前该技术尚未在临床普遍开展,其安全性、可行性、有效性需要进一步研究。

5. 纳米碳示踪剂负显影技术定位

纳米碳是目前一种常见的淋巴结示踪剂,具有高度的淋巴系统趋向性 [36] ;已经广泛应用于胃癌、乳腺癌以及甲状腺癌等手术中淋巴结定位以及清扫或活检 [37] [38] [39] 。纳米碳混悬注射液颗粒直径在150 nm,而毛细血管内皮细胞间隙为20~50 nm,毛细淋巴管内皮细胞间隙120~500 nm;因此纳米碳颗粒不会进入血管,从而不会对人体产生较大影响 [36] 。在甲状腺手术中,将纳米碳颗粒注入甲状腺组织中,甲状腺及引流的淋巴结将被染黑,而甲状旁腺不会被染黑,从而识别甲状旁腺。国内学者 [37] 研究表明,使用纳米碳后负显影甲状旁腺,可有效辨别甲状旁腺及其营养血管,减少了手术操作对其不良刺激或永久损害;特别是A1、A2型甲状旁腺 [18] 。另外国内严守一及其团队将102位患者分组为术前和术中注射纳米碳,在术中时对甲状旁腺进行识别;研究结果表示,术前组与术中组相比,甲状旁腺自体移植比率较低(39.3% vs 50.62%, P = 0.003),术前组的PTH水平高于术前组(2.60 ± 1.00 vs 2.19 ± 0.72, P =0.021);表明了术前1月注射纳米碳颗粒比术中时注射更有优势,需要注意的是,我们必须确保针头不应该被染成黑色,以防止皮肤被染成黑色。在向甲状腺注射完纳米碳后要负压退针,以防止组织间隙被染成黑色 [40] 。

6. 术中吲哚菁绿荧光染色定位

吲哚菁绿(ICG)是一种惰性水溶性有机染料,最大吸收光谱为805 nm,再发射为835 nm,静脉注射时与血浆脂蛋白结合,不会外泄到血管外,首过效应通过肝胆系统清除 [41] [42] 。它的半衰期为3~5分钟,可以重复应用 [43] 。ICG首次应用于检测黄斑变性 [44] ,随后广泛应用于胆管造影、胃肠道吻合灌注评估、组织皮瓣重建等 [45] [46] [47] 。2016年,Vidal Fortuny等在甲状腺术中使用ICG血管造影识别甲状旁腺及其营养血管,避免了术后甲状旁腺功能减退发生;该研究报告了36名患者在甲状腺手术期间接受了ICG血管造影。在一名患者中确定了1个PG,在11名患者中确定了2个PG,在18名患者中确定了3个PG,在6名患者中确定了4个PG。在6名患者中,ICG血管造影没有显示血管良好的PG,其中2人显示短暂性甲状旁腺功能减退。所有至少有一个血管良好的PG的患者的术后PTH水平都是正常的 [48] 。随后国外学者Yu [49] 、Lang [50] 、Jin [51] 等人及其各自的团队研究结果也表明了术中ICG血管造影能更好的识别和保护甲状旁腺。近年来国内费媛等对60例患者术中ICG血管造影对照研究结果表明,术后住院时间研究组较对照组更短(P = 0.035);术后暂时性甲状旁腺功能低下发生率研究组低于对照组(P = 0.024);ICG 荧光显像技术可于术中实时地判断已原位保留的甲状旁腺血供,为甲状旁腺的处理提供客观依据 [52] 。随后皮启飞 [53] 、欧阳慧 [54] 等人也证实了该观点。必须注意的是,注射部位出血时会导致ICG泄漏到手术场,这可能会影响荧光甲状旁腺的可视化 [55] 。据报道,ICG过敏或荨麻疹反应的发生率为0.00167% (4/240 000例);在34年内,报告了17种不良反应 [56] 。近年来以 ICG 为代表的荧光剂因其安全、无创、便捷的独特优势在术中甲状旁腺的保护上具有广阔的应用前景,通过其对甲状旁腺的精准定位和血流灌注的评估达到预防及预测术后甲状旁腺功能减退的目的 [55] 。

另外,Rubinstein等人介绍了一种非侵入性高分辨率成像技术,光学相干断层扫描(OCT),该技术为厚度高达2毫米的结构提供了微架构表 [57] 。OCT图像显示了甲状腺、甲状旁腺、淋巴结和脂肪组织的特征,有助于一致的识别。然而,由于技术问题和难以处理覆盖无菌护套的OCT探针,体内应用试验没有取得类似的有利结果 [30] [58] 。近年来,Yamamoto等人描述了一种新方法,即纱布印迹技术,用于在甲状腺手术期间以免疫化学方式识别甲状旁腺。这项研究包括23名接受甲状腺叶切除术的患者;在术中肉眼识别甲状旁腺的候选结节后,在每个组织上放置一块干纱布(5毫米 × 10毫米),直到被组织中的渗出液浸湿,另外的纱布也放置在远离候选结节的甲状腺和脂肪组织上;然后将纱布浸泡在生理盐水中,并测量渗出液的完整PTH (i-PTH)水平。甲状旁腺的中位PTH水平为1060 pg/mL,明显高于甲状腺(34 pg/mL)和脂肪组织(28 pg/mL) (P < 0.001)。区分甲状旁腺和其他组织的临界值为68 pg/mL,阳性预测值、阴性预测值、灵敏度和特异性分别为84.6%、88.8%、86.8%和86.7%。建议将实际临界值 > 250 pg/mL用于甲状旁腺的准确识别。新的纱布印迹技术可以在甲状腺手术中识别甲状旁腺,而不会损害组织。然而存在以下几个方面局限性:在没有快速PTH测量设施的情况下,无法在手术中获得结果;通过这种技术可以确认被识别的组织是甲状旁腺,但其功能状态无法确认;纱布碎片必须小心处理,以免落在手术现场。此外,候选组织要暴露在外,否则不能使用纱布印迹法 [59] [60] 。

7. 结论

综上所述,在甲状腺或颈部手术中,为了尽量避免术后甲状旁腺功能减退发生,术中识别及保护非常重要;或者在甲状旁腺手术中精准定位切除。以上几种定位方法,各有利弊,可个性化选择。笔者认为目前同轴投影成像系统与甲状旁腺自动荧光检测探针相结合,是一种潜在非常大价值的辅助定位技术,但需要进一步探索研究。

NOTES

*通讯作者。

参考文献

[1] Taterra, D., Wong, L.M., Vikse, J., et al. (2019) The Prevalence and Anatomy of Parathyroid Glands: A Meta-Analysis with Implications for Parathyroid Surgery. Langenbeck’s Archives of Surgery, 404, 63-70.
https://doi.org/10.1007/s00423-019-01751-8
[2] 朱精强. 甲状腺手术中甲状旁腺保护专家共识[J]. 中国实用外科杂志, 2015, 35(7): 731-736.
[3] Petranović Ovčariček, P., Giovanella, L., Carrió Gasset, I., et al. (2021) The EANM Practice Guidelines for Parathyroid Imaging. European Journal of Nuclear Medicine and Molecular Imaging, 48, 2801-2822.
https://doi.org/10.1007/s00259-021-05334-y
[4] Stephen, A.E., Mannstadt, M. and Hodin, R.A. (2017) Indica-tions for Surgical Management of Hyperparathyroidism: A Review. JAMA Surgery, 152, 878-882.
https://doi.org/10.1001/jamasurg.2017.1721
[5] 徐国栋, 凌煜玮, 朱江, 等. 甲状腺癌术后迁延性甲状旁腺功能减退风险的列线图预测模型研究[J]. 中国普外基础与临床杂志, 2022, 29(1): 24-31.
[6] 张丽, 高太虎. 甲状腺切除术后甲状旁腺功能减退的临床研究[J]. 肿瘤研究与临床, 2020, 32(11): 790-793.
[7] 郑建伟, 蔡淑艳, 宋慧敏, 等. 甲状腺全切除术后第一天血清全段甲状旁腺激素水平评估术后发生永久性甲状旁腺功能减退症的价值[J]. 中华外科杂志, 2020, 58(8): 626-630.
[8] Lorenz, K., Schneider, R. and Elwerr, M. (2020) Intraoperative Measurement of Parathyroid Hormone in Hyperparathyroidism. Chirurg, 91, 448-455.
https://doi.org/10.1007/s00104-020-01123-9
[9] 陈安举, 王田田, 薄少军, 等. 术中甲状旁腺激素测定在继发性甲状旁腺功能亢进手术中的临床应用价值[J]. 临床耳鼻咽喉头颈外科杂志, 2019, 33(12): 1168-1172.
[10] Nussbaum, S.R., Thompson, A.R., Hutcheson, K.A., et al. (1988) Intraoperative Measurement of Par-athyroid Hormone in the Surgical Management of Hyperparathyroidism. Surgery, 104, 1121-1127.
[11] Irvin, G.L., Dembrow, V.D. and Prudhomme, D.L. (1991) Operative Monitoring of Parathyroid Gland Hyperfunction. The Ameri-can Journal of Surgery, 162, 299-302.
https://doi.org/10.1016/0002-9610(91)90135-Z
[12] Sartori, P.V., Saibene, A.M., Leopaldi, E., et al. (2019) Intraoperative Parathyroid Hormone Testing in Primary Hyperparathyroidism Surgery: Time for Giving up? European Archives of Oto-Rhino-Laryngology, 276, 267-272.
https://doi.org/10.1007/s00405-018-5179-x
[13] Barczynski, M., Konturek, A., Hubalewska-Dydejczyk, A., et al. (2009) Evaluation of Halle, Miami, Rome, and Vienna Intraoperative IPTH Assay Criteria in Guiding Minimally Invasive Parathyroidectomy. Langenbeck’s Archives of Surgery, 394, 843-849.
https://doi.org/10.1007/s00423-009-0510-z
[14] Quinn, A.J., Ryan, É.J., Garry, S., et al. (2021) Use of Intraopera-tive Parathyroid Hormone in Minimally Invasive Parathyroidectomy for Primary Hyperparathyroidism: A Systematic Re-view and Meta-Analysis. JAMA Otolaryngology—Head & Neck Surgery, 147, 135-143.
https://doi.org/10.1001/jamaoto.2020.4021
[15] Dudley, N.E. (1971) Methylene Blue for Rapid Identification of the Parathyroids. British Medical Journal, 3, 680-681.
https://doi.org/10.1136/bmj.3.5776.680
[16] Schell, S.R. and Dudley, N.E. (2003) Clinical Outcomes and Fiscal Consequences of Bilateral Neck Exploration for Primary Idiopathic Hyperparathyroidism without Preoperative Radionu-clide Imaging or Minimally Invasive Techniques. Surgery, 133, 32-39.
https://doi.org/10.1067/msy.2003.88
[17] Kuriloff, D.B. and Sanborn, K.V. (2004) Rapid Intraoperative Localiza-tion of Parathyroid Glands Utilizing Methylene Blue Infusion. Otolaryngology—Head and Neck Surgery, 131, 616-622.
https://doi.org/10.1016/j.otohns.2004.04.026
[18] 郭卫东, 吴立刚. 甲状旁腺染色定位在甲状腺手术中的应用[J]. 宁夏医学杂志, 2009, 31(7): 633-634.
[19] Kartha, S.S., Chacko, C.E., Bumpous, J.M., et al. (2006) Toxic Meta-bolic Encephalopathy after Parathyroidectomy with Methylene Blue Localization. Otolaryngology—Head and Neck Sur-gery, 135, 765-768.
https://doi.org/10.1016/j.otohns.2006.05.026
[20] Martindale, S.J. and Stedeford, J.C. (2003) Neurological Seque-lae Following Methylene Blue Injection for Parathyroidectomy. Anaesthesia, 58, 1041-1042.
https://doi.org/10.1046/j.1365-2044.2003.03415_23.x
[21] 赵烨, 赵菁, 张俐娜, 等. 显影技术在甲状腺癌术中对甲状旁腺的保护作用[J]. 新医学, 2018, 49(12): 847-852.
[22] Das, K., Stone, N., Kendall, C., et al. (2006) Raman Spectroscopy of Parathyroid Tissue Pathology. Lasers in Medical Science, 21, 192-197.
https://doi.org/10.1007/s10103-006-0397-7
[23] Paras, C., Keller, M., White, L., et al. (2011) Near-Infrared Auto-fluorescence for the Detection of Parathyroid Glands. Journal of Biomedical Optics, 16, Article ID: 067012.
https://doi.org/10.1117/1.3583571
[24] Solórzano, C.C., Thomas, G., Berber, E., et al. (2021) Current State of In-traoperative Use of Near Infrared Fluorescence for Parathyroid Identification and Preservation. Surgery, 169, 868-878.
https://doi.org/10.1016/j.surg.2020.09.014
[25] Thomas, G., Mcwade, M.A., Paras, C., et al. (2018) Developing a Clinical Prototype to Guide Surgeons for Intraoperative Label-Free Identification of Parathyroid Glands in Real Time. Thyroid, 28, 1517-1531.
https://doi.org/10.1089/thy.2017.0716
[26] Falco, J., Dip, F., Quadri, P., et al. (2017) Increased Identification of Parathyroid Glands Using Near Infrared Light during Thyroid and Parathyroid Surgery. Surgical Endoscopy, 31, 3737-3742.
https://doi.org/10.1007/s00464-017-5424-1
[27] De Leeuw, F., Breuskin, I., Abbaci, M., et al. (2016) Intraopera-tive Near-Infrared Imaging for Parathyroid Gland Identification by Auto-Fluorescence: A Feasibility Study. World Jour-nal of Surgery, 40, 2131-2138.
https://doi.org/10.1007/s00268-016-3571-5
[28] Mcwade, M.A., Sanders, M.E., Broome, J.T., et al. (2016) Estab-lishing the Clinical Utility of Autofluorescence Spectroscopy for Parathyroid Detection. Surgery, 159, 193-202.
https://doi.org/10.1016/j.surg.2015.06.047
[29] Falco, J., Dip, F., Quadri, P., et al. (2016) Cutting Edge in Thyroid Surgery: Autofluorescence of Parathyroid Glands. Journal of the American College of Surgeons, 223, 374-380.
https://doi.org/10.1016/j.jamcollsurg.2016.04.049
[30] Demarchi, M.S., Karenovics, W., Bédat, B., et al. (2022) Near-Infrared Fluorescent Imaging Techniques for the Detection and Preservation of Parathyroid Glands during Endo-crine Surgery. Innovative Surgical Sciences, 7, 87-98.
https://doi.org/10.1515/iss-2021-0001
[31] Sarder, P., Gullicksrud, K., Mondal, S., et al. (2013) Dynamic Optical Projection of Acquired Luminescence for Aiding Oncologic Surgery. Journal of Biomedical Optics, 18, Article ID: 120501.
https://doi.org/10.1117/1.JBO.18.12.120501
[32] Mcwade, M.A., Thomas, G., Nguyen, J.Q., et al. (2019) En-hancing Parathyroid Gland Visualization Using a Near Infrared Fluorescence-Based Overlay Imaging System. Journal of the American College of Surgeons, 228, 730-743.
https://doi.org/10.1016/j.jamcollsurg.2019.01.017
[33] Gan, Q., Wang, D., Ye, J., et al. (2016) Benchtop and An-imal Validation of A Projective Imaging System for Potential Use in Intraoperative Surgical Guidance. PLOS ONE, 11, e0157794.
https://doi.org/10.1371/journal.pone.0157794
[34] Chen, W., Ma, X., Shao, P., et al. (2022) Autofluo-rescence Detection and Co-Axial Projection for Intraoperative Localization of Parathyroid Gland. BioMedical Engineering OnLine, 21, Article No. 37.
https://doi.org/10.1186/s12938-022-01004-8
[35] Zhang, F., Zhu, X., Gao, J., et al. (2019) Coaxial Projective Im-aging System for Surgical Navigation and Telementoring. Journal of Biomedical Optics, 24, Article ID: 105002.
https://doi.org/10.1117/1.JBO.24.10.105002
[36] Yan, S., Zhao, W., Wang, B., et al. (2018) A Novel Technology for Localization of Parathyroid Adenoma: Ultrasound-Guided Fine Needle Aspiration Combined with Rapid Parathyroid Hormone Detection and Nano-Carbon Technology. Surgical Innovation, 25, 357-363.
https://doi.org/10.1177/1553350618779703
[37] Sun, Z., Zhao, Z. and Jiang, H. (2020) Analysis of the Factors for the Lymph Node Metastasis in RVIB Region of Thyroid Micropapillary Carcinoma and the Application Value of In-traoperative Nano-Carbon. Journal of Clinical Otorhinolaryngology, Head, and Neck Surgery, 34, 355-359.
[38] Zhang, L., Huang, Y., Yang, C., et al. (2018) Application of a Carbon Nanoparticle Suspension for Sentinel Lymph Node Map-ping in Patients with Early Breast Cancer: A Retrospective Cohort Study. World Journal of Surgical Oncology, 16, Arti-cle No. 112.
https://doi.org/10.1186/s12957-018-1414-6
[39] Yang, P., Tian, Y., Tan, B., et al. (2021) Clinical Application of Nano-Carbon to Improve the Accuracy of Lymph Node Staging in Patients with Advanced Gastric Cancer Receiving Neoadjuvant Chemotherapy: A Prospective Randomized Controlled Trial. Journal of Gastrointestinal Oncol-ogy, 12, 2052-2060.
https://doi.org/10.21037/jgo-21-457
[40] Yan, S., Zhao, W., Wang, B., et al. (2018) Preopera-tive Injection of Carbon Nanoparticles Is Beneficial to the Patients with Thyroid Papillary Carcinoma: From a Prospective Study of 102 Cases. Medicine (Baltimore), 97, e11364.
https://doi.org/10.1097/MD.0000000000011364
[41] Boni, L., David, G., Mangano, A., et al. (2015) Clinical Ap-plications of Indocyanine Green (ICG) Enhanced Fluorescence in Laparoscopic Surgery. Surgical Endoscopy, 29, 2046-2055.
https://doi.org/10.1007/s00464-014-3895-x
[42] Vidal Fortuny, J., Karenovics, W., Triponez, F., et al. (2016) Intra-Operative Indocyanine Green Angiography of the Parathyroid Gland. World Journal of Surgery, 40, 2378-2381.
https://doi.org/10.1007/s00268-016-3493-2
[43] Sadowski, S.M., Vidal Fortuny, J. and Triponez, F. (2017) A Reappraisal of Vascular Anatomy of the Parathyroid Gland Based on Fluorescence Techniques. Gland Surgery, 6, S30-S37.
https://doi.org/10.21037/gs.2017.07.10
[44] De Boer, E., Harlaar, N.J., Taruttis, A., et al. (2015) Op-tical Innovations in Surgery. British Journal of Surgery, 102, E56-E72.
https://doi.org/10.1002/bjs.9713
[45] Ris, F., Hompes, R., Lindsey, I., et al. (2014) Near Infra-Red Laparoscopic Assessment of the Adequacy of Blood Perfusion of Intestinal Anastomosis—A Video Vignette. Colorectal Disease, 16, 646-647.
https://doi.org/10.1111/codi.12593
[46] Halle, B.M., Poulsen, T.D. and Pedersen, H.P. (2014) Indocyanine Green Plasma Disappearance Rate as Dynamic Liver Function Test in Critically Ill Patients. Acta Anaesthesiologica Scandina-vica, 58, 1214-1219.
https://doi.org/10.1111/aas.12406
[47] Eguchi, T., Kawaguchi, K., Basugi, A., et al. (2017) Intraoperative Re-al-Time Assessment of Blood Flow Using Indocyanine Green Angiography after Anastomoses in Free-Flap Reconstruc-tions. British Journal of Oral and Maxillofacial Surgery, 55, 628-630.
https://doi.org/10.1016/j.bjoms.2017.03.011
[48] Vidal Fortuny, J., Belfontali, V., Sadowski, S.M., et al. (2016) Parathyroid Gland Angiography with Indocyanine Green Fluorescence to Predict Parathyroid Function after Thyroid Surgery. British Journal of Surgery, 103, 537-543.
https://doi.org/10.1002/bjs.10101
[49] Yu, H.W., Chung, J.W., Yi, J.W., et al. (2017) Intraoperative Localization of the Parathyroid Glands with Indocyanine Green and Firefly(R) Technology during BABA Robotic Thyroidectomy. Surgical Endoscopy, 31, 3020-3027.
https://doi.org/10.1007/s00464-016-5330-y
[50] Lang, B.H., Wong, C.K., Hung, H.T., et al. (2017) Indocyanine Green Fluorescence Angiography for Quantitative Evaluation of in Situ Parathyroid Gland Perfusion and Function after Total Thyroidectomy. Surgery, 161, 87-95.
https://doi.org/10.1016/j.surg.2016.03.037
[51] Jin, H., Dong, Q., He, Z., et al. (2019) Research on Indocyanine Green Angiography for Predicting Postoperative Hypoparathyroidism. Clinical Endocrinology (Oxford), 90, 487-493.
https://doi.org/10.1111/cen.13925
[52] 费媛, 赵婉君, 苏安平, 等. 吲哚菁绿荧光显像技术在甲状腺手术中对甲状旁腺血供判断的应用[J]. 中国普外基础与临床杂志, 2020, 27(9): 1094-1099.
[53] 皮启飞, 殷素鹏, 孙乙曾, 等. 吲哚菁绿荧光成像技术用于甲状腺全切除术中甲状旁腺血供判断的研究[J]. 中国普外基础与临床杂志, 2022, 29(10): 1313-1317.
[54] Ouyang, H., Wang, B., Sun, B., et al. (2022) Application of Indocyanine Green Angi-ography in Bilateral Axillo-Breast Approach Robotic Thyroidectomy for Papillary Thyroid Cancer. Frontiers in Endo-crinology (Lausanne), 13, Article ID: 916557.
https://doi.org/10.3389/fendo.2022.916557
[55] Spartalis, E., Nto-kos, G., Georgiou, K., et al. (2020) Intraoperative Indocyanine Green (ICG) Angiography for the Identification of the Parathyroid Glands: Current Evidence and Future Perspectives. In Vivo, 34, 23-32.
https://doi.org/10.21873/invivo.11741
[56] Perry, D., Bharara, M., Armstrong, D.G., et al. (2012) Intraoperative Fluorescence Vascular Angiography: During Tibial Bypass. Journal of Diabetes Science and Technology, 6, 204-208.
https://doi.org/10.1177/193229681200600125
[57] Podoleanu, A.G. (2012) Optical Coherence Tomography. Journal of Microscopy, 247, 209-219.
[58] Sommerey, S., Al Arabi, N., Ladurner, R., et al. (2015) Intraoperative Opti-cal Coherence Tomography Imaging to Identify Parathyroid Glands. Surgical Endoscopy, 29, 2698-2704.
https://doi.org/10.1007/s00464-014-3992-x
[59] Yamamoto, M., Onoda, N., Miyauchi, A., et al. (2022) Gauze Blotting Technique: A Novel Method to Identify Parathyroid Glands during Thyroid Surgery without Tissue Damage. Endocrine Journal, 69, 1329-1333.
https://doi.org/10.1507/endocrj.EJ22-0043
[60] 彭钰蓓, 叶梦醒, 马可欣, 等. 甲状旁腺功能亢进症术前和术中定位病变甲状旁腺的研究进展[J]. 中国普通外科杂志, 2022, 31(11): 1518-1526.