具有Allee效应和Holling-IV型功能反应的修正Leslie-Gower模型的分支分析
Hopf Bifurcation of a Modified Leslie-Gower Predator-Prey System with StrongAllee Effect and Holling Type-IV Functional Response
摘要: 本文在带有Allee效应和Holling-IV型功能反应的修正Leslie-Gower 捕食者-食饵模型中, 研究稳 定性与各种分支。 首先讨论平衡点的局部渐近稳定性,然后分析跨临界分支,以及以Allee效应参 数m为分支参数的Hopf分支,给出分支存在的条件, 根据定理得出分支的方向及分支周期解的稳 定性。 最后,通过数据模拟验证结论的准确性。
Abstract: In this paper, we investigate the stability and bifurcations of a modified Leslie-Gower predator-prey system with Holling type-IV functional response and strong Allee effect. First, we use the linearization analysis and bifurcation theory, the local asymptotic stability of the equilibrium points are discussed, and then the condition of the existence of bifurcations is given by choosing m as the bifurcation parameter. On addition, using the canonical theory and the central manifold theorem, the direction of Hopf bifurcation and the stability of periodic solution of bifurcation are analyzed. Finally, the accuracy of the conclusion is verified by numerical simulation.
文章引用:马雅妮. 具有Allee效应和Holling-IV型功能反应的修正Leslie-Gower模型的分支分析[J]. 应用数学进展, 2024, 13(2): 539-553. https://doi.org/10.12677/AAM.2024.132053

参考文献

[1] Shang, Z. and Qiao, Y. (2022) Bifurcation Analysis of a Leslie-Type Predator-Prey System with Simplified Holling Type IV Functional Response and Strong Allee Effect on Prey. Nonlinear Analysis: Real World Applications, 64, Article 103453.
https://doi.org/10.1016/j.nonrwa.2021.103453
[2] Arancibia-Ibarra, C., Flores, J.D., Pettet, G., et al. (2019) A Holling-Tanner Predator-Prey Model with Strong Allee Effect. International Journal of Bifurcation and Chaos, 29, Article 1930032.
https://doi.org/10.1142/S0218127419300325
[3] Anh, T.T., Du, N.H. and Trung, T.T. (2012) On the Permanence of Predator-Prey Model with the Beddington-Deangelis Functional Response in Periodic Environment. Acta Mathematica Vietnamica, 37, 267-280.
[4] Liang, Z. and Pan, H. (2007) Qualitative Analysis of a Ratio-Dependent Holling-Tanner Model. Journal of Mathematical Analysis and Applications, 334, 954-964.
https://doi.org/10.1016/j.jmaa.2006.12.079
[5] Huang, H. (1995) Global Stability for a Class of Predator-Prey Systems. SIAM Journal on Applied Mathematics, 55, 763-783.
https://doi.org/10.1137/S0036139993253201
[6] Chen, S., Shi, J. and Wei, J. (2012) Global Stability and Hopf Bifurcation in a Delayed Diffusive Leslie-Gower Predator-Prey System. International Journal of Bifurcation and Chaos, 22, Article 1250061.
https://doi.org/10.1142/S0218127412500617
[7] Wang, L. and Feng, G. (2014) Global Stability and Hopf Bifurcation of a Predator-Prey Model with Time Delay and Stage Structure. Journal of Applied Mathematics, 2014, Article ID: 431671.
https://doi.org/10.1155/2014/431671
[8] Leslie, P.H. and Gower, J.C. (1960) The Properties of a Stochastic Model for the Predator- Prey Type of Interaction between Two Species. Biometrika, 47, 219-234.
https://doi.org/10.1093/biomet/47.3-4.219
[9] Holling, C.S. (1966) The Functional Response of Invertebrate Predators to Prey Density. Mem- oirs of the Entomological Society of Canada, 98, 5-86.
https://doi.org/10.4039/entm9848fv
[10] Collings, J.B. (1997) The Effects of the Functional Response on the Bifurcation Behavior of a Mite Predator-Prey Interaction Model. Journal of Mathematical Biology, 36, 149-168.
https://doi.org/10.1007/s002850050095
[11] 夏小静. 带Holling N功能反应的Leslie型捕食与被捕食系统的分支分析[D]: [硕士学位论文]. 武汉: 华中师范大学, 2016.
[12] Allee, W.C. (1931) Animal Aggregation: A Study in General Sociology. University of Chicago Press, Chicago.
[13] Stephens, P.A. and Freckleton, W. (1999) What Is the Allee Effect? Oikos, 87, 185-190.
https://doi.org/10.2307/3547011
[14] Maiti, A., Sen, P., Manna, D. and Samanta, G.P. (2016) A Predator-Prey System with Herd Behaviour and Strong Allee Effect. Nonlinear Dynamics and Systems Theory, 16, 86-101.
[15] Saha, S., Maiti, A. and Samanta, G.P. (2018) A Michaelis-Menten Predator-Prey Model with Strong Allee Effect and Disease in Prey Incorporating Prey Refuge. International Journal of Bifurcation and Chaos, 28, Article 1850073.
https://doi.org/10.1142/S0218127418500736
[16] Courchamp, F., Clutton-Brock, T. and Grenfell, B. (1999) Inverse Dependence and the Allee Effect. Trends in Ecology and Evolution, 14, 405-410.
https://doi.org/10.1016/S0169-5347(99)01683-3
[17] Leslie, P.H. (1948) Some Further Notes on the Use of Matrices in Population Mathematics. Biometrika, 35, 213-245.
https://doi.org/10.1093/biomet/35.3-4.213
[18] Chen, M., Takeuchi, Y. and Zhang, J.-F. (2023) Dynamic Complexity of a Modified Leslie- Gower Predator-Prey System with Fear Effect. Communications in Nonlinear Science and Numerical Simulation, 119, Article 107109.
https://doi.org/10.1016/j.cnsns.2023.107109
[19] A´ vila Vales, E., Estrella-Gonza´lez, A´ . and Rivero-Esquivel, E. (2017) Bifurcations of a Leslie Gower Predator Prey Model with Holling Type III Functional Response and Michaelis-Menten Prey Harvesting. ArXiv:1711.08081v1