[1]
|
Singer, M., Deutschman, C.S., Seymour, C.W., et al. (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315, 801-810. https://doi.org/10.1001/jama.2016.0287
|
[2]
|
Weng, L., Xu, Y., Yin, P., et al. (2023) National Incidence and Mortality of Hospitalized Sepsis in China. Critical Care, 27, Article No. 84. https://doi.org/10.1186/s13054-023-04385-x
|
[3]
|
Fleischmann-Struzek, C., Mellhammar, L., Rose, N., et al. (2020) Incidence and Mortality of Hospital- and ICU- Treated Sepsis: Results from an Updated and Expanded Systematic Review and Meta-Analysis. Intensive Care Medicine, 46, 1552-1562. https://doi.org/10.1007/s00134-020-06151-x
|
[4]
|
Song, Q. and Fei, W. (2023) Evaluation of Sepsis-1 and Sep-sis-3 Diagnostic Criteria in Patients with Sepsis in Intensive Care Unit. Journal of Healthcare Engineering, 2023, Article ID: 3794886. https://doi.org/10.1155/2023/3794886
|
[5]
|
Lippi, G. (2019) Sepsis Biomarkers: Past, Present and Future. Clinical Chemistry and Laboratory Medicine, 57, 1281- 1283. https://doi.org/10.1515/cclm-2018-1347
|
[6]
|
Aronson, J.K. and Ferner, R.E. (2017) Biomarkers—A General Re-view. Current Protocols in Pharmacology, 76.
https://doi.org/10.1002/cpph.19
|
[7]
|
Chambliss, A.B., Patel, K., Colón-Franco, J.M., et al. (2023) AACC Guid-ance Document on the Clinical Use of Procalcitonin. The Journal of Applied Laboratory Medicine, 8, 598-634. https://doi.org/10.1093/jalm/jfad007
|
[8]
|
Duan, S., Gu, X., Fan, G., et al. (2021) C-Reactive Protein or Procalcitonin Combined with Rhinorrhea for Discrimination of Viral from Bacterial Infections in Hospitalized Adults in Non-Intensive Care Units with Lower Respiratory Tract Infections. BMC Pulmonary Medicine, 21, Article No. 308. https://doi.org/10.1186/s12890-021-01672-7
|
[9]
|
Maigari, I.M., Jibrin, Y.B., Gwalabe, S.A., et al. (2023) Diag-nostic Usefulness of Serum Procalcitonin in Patients with Bacterial Sepsis. Nigerian Journal of Clinical Practice, 26, 1436-1443. https://doi.org/10.4103/njcp.njcp_250_22
|
[10]
|
Schuetz, P. (2022) How to Best Use Procalcitonin to Diagnose Infections and Manage Antibiotic Treatment. Clinical Chemistry and Laboratory Medicine, 61, 822-828. https://doi.org/10.1515/cclm-2022-1072
|
[11]
|
Chanda, D., Kasanga, M., Chanda, R. and Cobelens, F. (2023) C-Reactive Protein: Another Addition to our Armamentarium against Tuberculosis? The Lancet Global Health, 11, E636-E637.
https://doi.org/10.1016/S2214-109X(23)00175-4
|
[12]
|
Feigin, E., Levinson, T., Witztum, T., et al. (2023) Early Signaling of Bacteremia in Patients Who Present to the Department of Emergency Medicine with Relatively Low C-Reactive Protein (CRP) Concentrations. Clinica Chimica Acta, 547, Article ID: 117451. https://doi.org/10.1016/j.cca.2023.117451
|
[13]
|
Athan, S., Athan, D., Wong, M., et al. (2023) Pathology Stew-ardship in Emergency Departments: A Single-Site, Retrospective, Cohort Study of the Value of C-Reactive Protein in Patients with Suspected Sepsis. Pathology, 55, 673- 679. https://doi.org/10.1016/j.pathol.2023.03.004
|
[14]
|
Liu, Y.M., Gao, Y., Liang, B.M. and Liang, Z.G. (2023) The Prognostic Value of C-Reactive Protein to Albumin Ratio in Patients with Sepsis: A Systematic Review and Meta-Analysis. The Aging Male, 26, Article ID: 2261540.
https://doi.org/10.1080/13685538.2023.2261540
|
[15]
|
Jin, C.X., Hayakawa, T., Ko, S.B.H., et al. (2011) Pancreatic Stone Protein/Regenerating Protein Family in Pancreatic and Gastrointestinal Diseases. Internal Medicine, 50, 1507-1516. https://doi.org/10.2169/internalmedicine.50.5362
|
[16]
|
Brown, G.D., Willment, J.A. and Whitehead, L. (2018) C-Type Lectins in Immunity and Homeostasis. Nature Reviews Immunology, 18, 374-389. https://doi.org/10.1038/s41577-018-0004-8
|
[17]
|
Pugin, J., Daix, T., Pagani, J.L., et al. (2021) Serial Measurement of Pancreatic Stone Protein for the Early Detection of Sepsis in Intensive Care Unit Patients: A Prospective Multicentric Study. Critical Care, 25, Article No. 151.
https://doi.org/10.1186/s13054-021-03576-8
|
[18]
|
De Guadiana-Romualdo, L.G., Albaladejo-Otón, M.D., Berger, M., et al. (2019) Prognostic Performance of Pancreatic Stone Protein in Critically Ill Patients with Sepsis. Biomarkers in Medicine, 13, 1469-1480.
https://doi.org/10.2217/bmm-2019-0174
|
[19]
|
Hu, P., Lu, Y, Hua., Deng, W., et al. (2023) The Critical Role of Pancreatic Stone Protein/Regenerating Protein in Sepsis-Related Multiorgan Failure. Frontiers in Medicine, 10, Article 1172529.
https://doi.org/10.3389/fmed.2023.1172529
|
[20]
|
Grebenciucova, E. and VanHaerents, S. (2023) Interleukin 6: At the Interface of Human Health and Disease. Frontiers in Immunology, 14, Article 1255533. https://doi.org/10.3389/fimmu.2023.1255533
|
[21]
|
Song, J., Park, D.W., Moon, S., et al. (2019) Diagnostic and Prognostic Value of Interleukin-6, Pentraxin 3, and Procalcitonin Levels among Sepsis and Septic Shock Patients: A Prospective Controlled Study according to the Sepsis-3 Definitions. BMC Infectious Diseases, 19, Article No. 968. https://doi.org/10.1186/s12879-019-4618-7
|
[22]
|
Li, Q., Yan, W., Liu, S. and Li, H. (2023) Study on the Correla-tion and Clinical Significance of T-Lymphocyte Subsets, IL-6 and PCT in the Severity of Patients with Sepsis. Pakistan Journal of Medical Sciences, 39, 227.
https://doi.org/10.12669/pjms.39.1.5711
|
[23]
|
Schiff, D.E., Rae, J., Martin, T.R., Davis, B.H. and Curnutte, J.T. (1997) Increased Phagocyte FcγRI Expression and Improved Fcγ-Receptor—Mediated Phagocytosis after in Vivo Re-combinant Human Interferon-γ Treatment of Normal Human Subjects. Blood, 90, 3187-3194. https://doi.org/10.1182/blood.V90.8.3187
|
[24]
|
Goswami, D.G., Garcia, L.F., Dodoo, C., et al. (2021) Evaluating the Timeliness and Specificity of CD69, CD64, and CD25 as Biomarkers of Sepsis in Mice. Shock, 55, 507-518. https://doi.org/10.1097/SHK.0000000000001650
|
[25]
|
Cong, S., Ma, T.G., Di, X., et al. (2021) Diagnostic Value of Neutrophil CD64, Procalcitonin, and Interleukin-6 in Sepsis: A Meta-Analysis. BMC Infectious Diseases, 21, Article No. 384. https://doi.org/10.1186/s12879-021-06064-0
|
[26]
|
Pham, H.M., Nguyen, D.L.M., Duong, M.C., et al. (2023) Neutrophil CD64—A Prognostic Marker of Sepsis in Intensive Care Unit: A Prospective Cohort Study. Fron-tiers in Medicine, 10, Article 1251221.
https://doi.org/10.3389/fmed.2023.1251221
|
[27]
|
Ikegame, A., Kondo, A., Kitaguchi, K., Sasa, K. and Miyoshi, M. (2022) Presepsin Production in Monocyte/Macro- phage-Mediated Phagocytosis of Neutrophil Extracellular Traps. Scientific Reports, 12, Article No. 5978.
https://doi.org/10.1038/s41598-022-09926-y
|
[28]
|
Yamamoto, T., Nishimura, T., Kaga, S., et al. (2019) Diagnostic Accuracy of Presepsin for Sepsis by the New Sepsis-3 Definitions. The American Journal of Emergency Medicine, 37, 1936-1941. https://doi.org/10.1016/j.ajem.2019.01.025
|
[29]
|
Chenevier-Gobeaux, C., Borderie, D., Weiss, N., Mallet-Coste, T. and Claessens Y.E., (2015) Presepsin (SCD14-ST), an Innate Immune Response Marker in Sepsis. Clinica Chimica Acta, 450, 97-103.
https://doi.org/10.1016/j.cca.2015.06.026
|
[30]
|
Drăgoescu, A.N., et al. (2020) Presepsin as a Potential Prognostic Marker for Sepsis According to Actual Practice Guidelines. Journal of Personalized Medicine, 11, Article 2. https://doi.org/10.3390/jpm11010002
|
[31]
|
Hashemian, S.M., Pourhanifeh, M.H., Fadaei, S., et al. (2020) Non-Coding RNAs and Exosomes: Their Role in the Pathogenesis of Sepsis. Nucleic Acids, 21, 51-74. https://doi.org/10.1016/j.omtn.2020.05.012
|
[32]
|
Sygitowicz, G. and Sitkiewicz, D. (2020) Molecular Mechanisms of Organ Damage in Sepsis: An Overview. The Brazilian Journal of Infectious Diseases, 24, 552-560. https://doi.org/10.1016/j.bjid.2020.09.004
|
[33]
|
Shen, X., Zhang, J., Huang, Y., et al. (2020) Accuracy of Circu-lating MicroRNAs in Diagnosis of Sepsis: A Systematic Review and Meta-Analysis. Journal of Intensive Care, 8, Ar-ticle No. 84. https://doi.org/10.1186/s40560-020-00497-6
|
[34]
|
Nour, Z., El-Hamamsy, K., Ehsan, I., et al. (2022) MicroRNAs as Potential Diagnostic New Biomarkers in Diagnosis of Sepsis in Pediatric Patients. Reports of Biochem-istry & Molecular Biology, 11, 327-335.
|
[35]
|
Fatmi, A., Rebiahi, S.A., Chabni, N., et al. (2020) MiRNA-23b as a Biomarker of Culture-Positive Neonatal Sepsis. Molecular Medicine, 26, Article No. 94. https://doi.org/10.1186/s10020-020-00217-8
|
[36]
|
El-Hefnawy, S.M., Mostafa, R.G., Zayat, R.S.E., et al. (2021) Biochemical and Molecular Study on Serum MiRNA- 16a and MiRNA-451 as Neonatal Sepsis Biomarkers. Biochem-istry and Biophysics Reports, 25, Article ID: 100915.
https://doi.org/10.1016/j.bbrep.2021.100915
|
[37]
|
Fouda, E., Midan, D.A.E., Ellaban, R., et al. (2021) The Diag-nostic and Prognostic Role of MiRNA 15b and MiRNA 378a in Neonatal Sepsis. Biochemistry and Biophysics Reports, 26, Article ID: 100988.
https://doi.org/10.1016/j.bbrep.2021.100988
|
[38]
|
Ou, Y., An, R., Wang, H., et al. (2022) Oxidative Stress-Related Circulating MiRNA-27a Is a Potential Biomarker for Diagnosis and Prognosis in Patients with Sepsis. BMC Immunology, 23, Article No. 14.
https://doi.org/10.1186/s12865-022-00489-1
|
[39]
|
Agnello, L., Lo, Sasso, B., Bivona, G., et al. (2020) Reference Interval of Monocyte Distribution Width (MDW) in Healthy Blood Donors. Clinica Chimica Acta, 510, 272-277. https://doi.org/10.1016/j.cca.2020.07.036
|
[40]
|
Huang, Y.H., Chen, C.J., Shao, S.C., et al. (2023) Comparison of the Diagnostic Accuracies of Monocyte Distribution Width, Procalcitonin, and C-Reactive Protein for Sepsis: A Sys-tematic Review and Meta-Analysis. Critical Care Medicine, 51, e106-e114. https://doi.org/10.1097/CCM.0000000000005820
|
[41]
|
Li, M., Qin, Y.J., Zhang, X.L., et al. (2024) A Biomarker Panel of C-Reactive Protein, Procalcitonin and Serum Amyloid a Is a Predictor of Sepsis in Severe Trauma Patients. Scientific Reports, 14, Article No. 628.
https://doi.org/10.1038/s41598-024-51414-y
|
[42]
|
Wei, Y., Xiao, P., Wu, B., Chen, F.X. and Shi, X.F. (2023) Significance of STREM-1 and SST2 Combined Diagnosis for Sepsis Detection and Prognosis Prediction. Open Life Sciences, 18, Article ID: 20220639.
https://doi.org/10.1515/biol-2022-0639
|
[43]
|
Zhao, X.S., Meng, Z.L., Zhang, T., et al. (2023) Combining Serum Procalcitonin Level, Thromboelastography, and Platelet Count to Predict Short-Term Development of Septic Shock in Intensive Care Unit. Current Medical Science, 43, 86-92. https://doi.org/10.1007/s11596-022-2689-y
|
[44]
|
Hausfater, P., Robert Boter, N., Morales Indiano, C., et al. (2021) Monocyte Distribution Width (MDW) Performance as an Early Sepsis Indicator in the Emergency Department: Com-parison with CRP and Procalcitonin in a Multicenter International European Prospective Study. Critical Care, 25, Article No. 227.
https://doi.org/10.1186/s13054-021-03622-5
|
[45]
|
Lin, S.F., Lin, H.A., Pan, Y.H. and Hou, S.K. (2022) A Novel Scoring System Combining Modified Early Warning Score with Biomarkers of Monocyte Distribution Width, White Blood Cell Counts, and Neutrophil-to-Lymphocyte Ratio to Improve Early Sepsis Prediction in Older Adults. Clinical Chemistry and Laboratory Medicine, 61, 162-172.
https://doi.org/10.1515/cclm-2022-0656
|