CXCL16与大动脉粥样硬化性脑梗死及预后的关系
Relationship between CXCL16 and Large Atherosclerotic Cerebral Infarction and Prognosis
DOI: 10.12677/ACM.2024.142557, PDF, HTML, XML, 下载: 34  浏览: 74 
作者: 崔雪晨, 李 奔, 马爱军*:青岛大学医学院,山东 青岛;青岛大学附属医院神经内科,山东 青岛
关键词: CXCL16动脉粥样硬化缺血性脑卒中CXCL16 Atherosclerosis Ischemic Stroke
摘要: 大动脉粥样硬化型脑梗死的发病率约占缺血性脑梗死的50%,近年来,一系列实验及临床数据表明,炎症反应参与了动脉粥样硬化的形成,CXCL16可能在动脉粥样硬化相关病变中发挥重要作用,然而CXCL16与大动脉粥样硬化型脑梗死及预后的相关性尚不清楚。我们旨在讨论CXCL16在大动脉粥样硬化型脑梗死中的价值。方法:纳入273例大动脉粥样硬化型脑梗死患者和198例健康对照组。将大动脉粥样硬化型脑梗死患者按出院后3个月mRS评分分为两组,血清CXCL16水平通过ELISA进行定量。结果:大动脉粥样硬化型脑梗死患者血清CXCL16水平明显升高。是大动脉粥样硬化型脑梗死的独立危险因素。mRS评分 ≥ 3分组CXCL16水平高于mRS评分 < 3分组。
Abstract: The incidence of large atherosclerotic cerebral infarction accounts for about 50% of ischemic cere-bral infarction. In recent years, a series of experimental and clinical data have shown that inflam-mation is involved in the formation of atherosclerosis, and CXCL16 may play an important role in athetosis-related lesions. However, the correlation between CXCL16 and atherosclerotic cerebral infarction and prognosis remains unclear. We aim to discuss the value of CXCL16 in large athero-sclerotic cerebral infarction. Methods: 273 patients with large atherosclerotic cerebral infarction and 198 healthy controls were included. Patients with large atherosclerotic cerebral infarction were divided into two groups according to mRS Score 3 months after discharge. Serum CXCL16 levels were quantified by ELISA. Results: The level of serum CXCL16 was significantly increased in patients with large atherosclerotic cerebral infarction. It is an independent risk factor for large atheroscle-rotic cerebral infarction. Groups with mRS Score ≥ 3 had higher CXCL16 levels than groups with mRS Score < 3.
文章引用:崔雪晨, 李奔, 马爱军. CXCL16与大动脉粥样硬化性脑梗死及预后的关系[J]. 临床医学进展, 2024, 14(2): 4012-4022. https://doi.org/10.12677/ACM.2024.142557

1. 引言

缺血性脑卒中也称为脑梗死,是最常见的脑血管疾病,其特点是高患病率、高发病率、高死亡率 [1] 。根据TOAST (Trial of ORG 10172 in Acute Stroke Treatment)分型 [2] ,缺血性脑卒中可分为大动脉粥样硬化型脑梗死(LAA),小血管闭塞型脑梗死(SAO),心源性栓塞(CE),其他原因型(SOE),不明原因型(SUE) [3] 。大动脉粥样硬化是缺血性脑卒中最常见的病因之一 [4] 。大动脉粥样硬化型脑梗死定义为大脑大动脉(颈动脉或椎动脉)或皮层动脉分支(大脑前动脉、中动脉或后动脉)严重狭窄或闭塞的临床和大脑成像结果 [5] [6] 。近年来,一系列实验及临床数据表明,炎症反应不仅参与了动脉粥样硬化的发展和演变 [7] [8] [9] [10] ,而且决定性地促成动脉粥样硬化的急性血栓性并发症 [11] 。

Masa-Aki Shibata等人通过建立动脉粥样硬化小鼠模型发现,在动脉粥样硬化病变组织中CXCL16及相关炎症趋化因子表达水平增加 [12] 。C-X-C基序趋化因子配体16 (CXCL16)具有趋化因子、粘附分子和清除剂受体的功能 [13] [14] 。Thomas等人通过PLATO实验分析CXCL16水平与心血管死亡,自发性心肌梗死之间的关系发现,CXCL16可作为独立危险因素增加心血管疾病的患病风险 [15] 。然而,在大动脉粥样硬化型脑梗死中的作用仍存在争议。到目前为止,还没有研究证明CXCL16与大动脉粥样硬化型脑梗死及预后之间的关系。因此,我们的目的是探讨CXCL16是否对大动脉粥样硬化型脑梗死及其预后存在影响。

2. 参与者和方法

2.1. 研究人群

2018年至2019年我们在青岛大学附属医院招募了469名参与者,其中包括273名急性大动脉粥样硬化型脑梗死患者和196名性别和年龄匹配的对照组,他们都是中国人,所有患者均在青岛大学附属医院神经内科住院,大动脉粥样硬化型脑梗死(LAA)的定义遵循了世界卫生组织的标准,脑磁共振成像(MRI)和计算机断层扫描(CT)确定了LAA的诊断,排除被诊断为心力衰竭,严重感染,慢性炎症,自身免疫性疾病,恶性肿瘤,严重肝肾功能不全,病因不明的脑卒中的受试者,所有患者均接受心电图,脑CT,脑MRI检查,包括T1,T2,flair,DWI,ADC,MRA,颈动脉超声,心脏超声,胸部CT,脑CTA,颈部CTA以及数字全脑血管造影(如有必要),以确定病因分类,所有健康对照者均从我院体检中心登记并接受体检。脑补核磁共振成像证实他们没有新发或既往的缺血性脑卒中,其他排除标准与适用于LAA患者的标准相同。

2.2. 伦理批准

我们的研究是根据赫尔辛基宣言设计的,并经青岛大学附属医院伦理委员会批准,我们在研究前收集了所有患者或其直系亲属的知情同意书。

2.3. 数据收集

所有受试者的基本临床数据由2名专业神经科医生和2名训练有素的护士获得,包括年龄,性别,高血压,糖尿病,冠心病,血脂异常,吸烟,饮酒,入院血压。我们在早晨6点到8点之间收集了所有受试者的空腹血样,禁食条件至少持续8小时,在4摄氏度下3000 g离心15 min后获得血清,并在化验前保存在−80度的冰箱内,常规入院生化(包括空腹血糖,胆固醇,甘油三酯,LDL,HDL,纤维蛋白原,CRP)均来自青岛大学附属医院生物化学实验室。

2.4. ELISA实验

通过ELISA分析血清CXCL16。我们用96孔板人CXCL16 ELISA试剂盒测定人血清CXCL16,水平,并根据试剂盒说明书进行。

2.5. 随访

对所有LAA患者进行了为期3个月的随访,功能状态通过mRS评分进行评估,mRS评分 < 3分被认为是良好的功能结果,mRS评分为3~6分被认为是较差的功能结果,结果评估由一位经验丰富的神经学家通过电话采访或在诊所进行面对面的随访进行,他对医疗细节一无所知。

2.6. 数据统计和分析

对于连续变量,根据统计数据的分布,汇总统计数据以平均值±标准差或中位数(四分位数间距)表示。频率(百分比)用于表示分类变量。具有正态分布的连续变量通过独立样本t检验进行分析,Wilcoxon (Mann-Whitney)检验分析不具有正态分布的连续变量。使用多变量logistic回归分析来确定大动脉粥样硬化型脑卒中的独立危险因素,并绘制列线图及ROC曲线。所有数据均采用SPSS26.0软件进行统计分析,p < 0.05表示具有统计学意义。

3. 结果

3.1. 基线特征

本研究共有310名筛查参与者,其中298名患者确诊为LAA,281名患者被纳入初步分析(排除了8名血清样本丢失,2名自身免疫性疾病患者,3名恶性肿瘤患者,4名3个月内有急性心肌梗死病史,创伤或手术史的患者),273名患者被列入最终分析(排除了3例颅脑MRI图像质量差,4名血液样本溶血和1名随访丢失的患者)。表1总结了所有参与者的基线特征(见表1)。包括273名LAA患者和196名健康对照在内共469名受试者被纳入我们的研究。在血管危险因素,实验室检验和CXCL16水平方面我们可以看到显著差异。LAA患者中位年龄67岁,69.23%为男性,与健康对照组相比,LAA组的男性、吸烟史、饮酒史、高血压史、既往TIA/卒中、收缩压、舒张压、血糖、甘油三酯、LDL、纤维蛋白原、CXCL16水平比较高(p < 0.05),两组其他临床参数无统计学意义(p > 0.05)。

Table 1. Baseline demographic and clinical data for all participants

表1. 所有参与者的基线人口统计和临床数据

缩写:IQR:四分位间距;LDL:低密度脂蛋白;CRP:C-反应蛋白;CXCL16:C-X-C基序趋化因子配体16。

3.2. CXCL16对大动脉粥样硬化型脑梗死的预测价值

表1我们使用单变量logistic回归分析筛选出包括饮酒史、高血压史、收缩压、舒张压、血糖、甘油三脂、LDL、CRP、纤维蛋白原、CXCL16在内的指标及作为LAA的危险因素。将上述指标纳入多变量logistic回归分析(见表2)。我们发现,在对性别、年龄、糖尿病史、高尿酸血症史、高脂血症史、冠心病史、胆固醇、甘油三酯、CRP进行调整后,CXCL16可作为LAA的独立危险因素。

3.3. 大动脉粥样硬化型脑梗死危险因素列线图

根据上述logistic回归分析结果,绘制了大动脉粥样硬化型脑卒中危险因素列线图(见图1)。结果显示,CXCL16每增加0.5 ng/ml,列线图模型评分增加10分,收缩压每增加40 mmHg,列线图评分增加10分,尿素氮每增加10 mmol/L,列线图模型评分增加25分,有饮酒史的患者较无饮酒史的患者模型评分增加12分,有高血压病史的患者较无高血压病史的患者模型评分增加10分。

Table 2. Multivariate logistic regression analysis of LAA risk factors

表2. LAA危险因素的多变量logistic回归分析

缩写:IQR:四分位间距;LDL:低密度脂蛋白;BUN:尿素氮;CXCL16:C-X-C基序趋化因子配体16。

Figure 1. Risk profile of patients with large atherosclerotic cerebral infarction

图1. 大动脉粥样硬化型脑梗死患者风险列线图

3.4. 列线图验证

为验证列线图模型对CXCL16作为危险因素对大动脉粥样硬化型脑梗死预测的准确性,本研究绘制了该模型的ROC曲线。ROC曲线(见图2)结果显示,该模型的AUC为0.888,(p < 0.001, 95% CI: 0.776~0.861)。表明该模型能较大程度预测大动脉粥样硬化型脑梗死的发生。在此基础上,对该模型进行校准并绘制校准曲线(见图3)。校准曲线斜率近1,说明模型预测大动脉粥样硬化型脑梗死发生风险与实际发生风险一致性较好。

Figure 2. ROC curve of large atherosclerotic cerebral infarction risk model

图2. 大动脉粥样硬化型脑梗死风险模型ROC曲线

Figure 3. Risk model calibration curve for patients with large atherosclerotic cerebral infarction

图3. 大动脉粥样硬化型脑梗死患者风险模型校准曲线

3.5. 5折交叉验证

为了评估该统计分析的结果是否与独立的数据集一致,我们进行了5折交叉验证(见图4)。五折交叉验证即随机分为5个等量子样本。在5个子样本中,4个子样本作为训练数据用于训练模型,1个子样本作为验证数据用于测试模型。图1显示5次交叉验证的AUC分别为0.91,0.87,0.93,0.87,0.82,平均AUC为0.88,表明构建的预测模型具有较高的区分度和校准能力,可用于大动脉粥样硬化型脑梗死的早期预测。

Figure 4. 5 fold cross verification

图4. 5折交叉验证

3.6. CXCL16与出院3个月后的恢复情况

经过3个月的随访,脑梗死组根据功能结果分为两组(见表3),包括预后良好组(mRS评分 < 3分)和预后较差组(mRS评分 ≥ 3分)。共有70名LAA患者出现不良的功能结果。这些患者的血清CXCL16水平高于预后良好的患者。此外与预后良好组相比,预后较差组男性,年龄,糖尿病史,血糖具有较高水平。其他临床参数两组间无统计学意义(p > 0.05)。

4. 讨论

我们的研究证明了CXCL16与大动脉粥样硬化型脑梗死之间的关系,在对性别、年龄、糖尿病史、高尿酸血症史、高脂血症史、冠心病史、胆固醇、CRP进行调整后,证明CXCL16是大动脉粥样硬化型脑梗死的独立危险因素。CXCL16也与LAA患者的预后有关,不良预后组血清CXCL16的水平高于预后良好组。

Table 3. Single factor analysis of mRS

表3. mRS单因素分析

缩写:IQR:四分位间距;LDL:低密度脂蛋白;CRP:C-反应蛋白;CXCL16:C-X-C基序趋化因子配体16。

大动脉粥样硬化型脑梗死是缺血性脑卒中最常见的类型 [4] 。动脉粥样硬化既往曾被认为是脂质在大、中动脉壁内沉积所致。然而,近年来,越来越多的证据表明,动脉粥样硬化不仅是脂质积聚的过程,也是一种炎症病变 [16] [17] [18] [19] 。炎症和高脂血症诱导了血管内皮的功能障碍,导致内皮细胞通透性增加,并释放粘附分子与趋化因子等炎症介质 [5] [17] 。炎症介质募集白细胞与内皮细胞结合,促进内皮细胞及平滑肌细胞迁移、增殖,进一步增强内皮细胞炎症反应,从而促进动脉粥样硬化 [16] [18] ,并进一步导致大动脉粥样硬化型脑梗死。

CXCL16具有趋化因子、粘附分子和清除剂受体的功能 [13] ,是CXC趋化因子家族近年来新发现的炎性因子,在类风湿性关节炎,肾小球肾炎及前列腺癌等炎性疾病中均发现其可作为炎症介质参与病变 [20] 。相关文献报道,CXCL16在类风湿性关节炎和肿瘤微环境中,对内皮细胞的趋化性和新生血管的生成均起到了重要作用 [21] - [26] 。动脉粥样硬化相关的研究指出,动脉粥样硬化斑块内的炎症细胞,如巨噬细胞、树突状细胞、平滑肌细胞等均存在CXCL16的表达 [20] [27] [28] 。急性冠脉综合征的相关研究指出,CXCL16可作为冠状动脉粥样硬化进展的正相关标识物 [29] ,且CXCL16对急性冠脉综合征的发病及其相关的心血管死亡事件具有相关性驱动作用 [15] [30] 。我们的研究表明,CXCL16与大动脉粥样硬化型脑梗死具有相关性,且可作为大动脉粥样硬化型脑梗死的独立预测因素,这表明CXCL16可能是大动脉粥样硬化型脑梗死等潜在危险因素。

急性缺血性脑卒中患者治疗后的改良兰金量表(mRS)评分是脑卒中临床试验中使用最广泛的结果测量方法 [31] [32] ,用于评估患者的残疾程度 [33] ,尤其是缺血性脑卒中后90天进行评分更具有价值 [34] 。我们的研究表明血清CXCL16水平与患者出院90天后的mRS评分具有相关性,这表明,CXCL16有可能对预测大动脉粥样硬化型脑梗死患者的预后及残疾程度具有重要意义。

我们的研究同样存在一些局限性。首先,这是一项单中心研究,入组人数相对不足,因此需要纳入更大样本量的多中心研究来证实我们的结论。其次,仅在入院时测量一次血清CXCL16水平,在疾病的的进展过程中CXCL16的变化无法估计,这需要在未来的多个时间点进行测量。此外,我们只采集了血液样本,并未进行基础实验进行验证,因此CXCL16对动脉粥样硬化及对动脉粥样硬化型脑梗死的具体机制仍需进一步研究。

5. 结论

我们的研究可以证明血清CXCL16可作为预测大动脉粥样硬化型脑梗死的检验指标。CXCL16与大动脉粥样硬化型脑梗死的患者的预后也具有相关性。我们的研究对大动脉粥样硬化型脑梗死的诊断及预防具有重要意义。

NOTES

*通讯作者Email: drmaj@qdu.edu.cn

参考文献

[1] Zhang, T., Jiang, Y., Zhang, S., et al. (2020) The Association between Homocysteine and Ischemic Stroke Subtypes in Chinese: A Meta-Analysis. Medicine (Baltimore), 99, e19467.
https://doi.org/10.1097/MD.0000000000019467
[2] Saba, L., Cau, R., Spinato, G., et al. (2024) Carotid Stenosis and Cryptogenic Stroke: The Evidence from the Imaging-Based Studies Carotid Stenosis and Cryptogenic Stroke. Jour-nal of Vascular Surgery.
https://doi.org/10.1016/j.jvs.2024.01.004
[3] Ma, Y.Z.X., Zhang, W., Liu, L., Wang, Y., Fang, R. and Wang, Y. (2010) Homocysteine and Ischemic Stroke Subtype: A Relationship Study in Chinese Patients. Neurological Research, 32, 636-641.
https://doi.org/10.1179/016164109X12445616596445
[4] Wang, Y., Bai, L., Li, X., Yi, F., et al. (2023) Fibrino-gen-to-Albumin Ratio and Clinical Outcomes in Patients with Large Artery Atherosclerosis Stroke. Journal of the Amer-ican Heart Association, 12, e030837.
https://doi.org/10.1161/JAHA.123.030837
[5] Rosário, M. and Fonseca, A. (2023) Update on Biomarkers Asso-ciated with Large-Artery Atherosclerosis Stroke. Biomolecules, 13, Article No. 1251.
https://doi.org/10.3390/biom13081251
[6] Chaturvedi, S. (2023) Diagnosis and Management of Large Artery Atherosclerosis. Continuum (Minneapolis, Minn.), 29, 486-500.
https://doi.org/10.1212/CON.0000000000001212
[7] Libby, P., Loscalzo, J., Ridker, P.M., et al. (2018) Inflam-mation, Immunity, and Infection in Atherothrombosis: JACC Review Topic of the Week. Journal of the American Col-lege of Cardiology, 72, 2071-2081.
https://doi.org/10.1016/j.jacc.2018.08.1043
[8] Libby, P. (2021) Inflammation in Atherosclerosis—No Longer a Theory. Clinical Chemistry, 67, 131-142.
https://doi.org/10.1093/clinchem/hvaa275
[9] Libby, P. (2021) The Changing Landscape of Atherosclerosis. Na-ture, 592, 524-533.
https://doi.org/10.1038/s41586-021-03392-8
[10] Björkegren, J. and Lusis, A. (2022) Atherosclerosis: Recent De-velopments. Cell, 185, 1630-1645.
https://doi.org/10.1016/j.cell.2022.04.004
[11] Butcher, M., Wu, C., Waseem, T. and Galkina, E.V. (2016) CXCR6 Regulates the Recruitment of Pro-Inflammatory IL-17A-Producing T Cells into Atherosclerotic Aortas. International Immunology, 28, 255-261.
https://doi.org/10.1093/intimm/dxv068
[12] Shibata, M.A., Shibata, E., Maemura, K., Kondo, Y. and Harada-Shiba, M. (2017) Pathological and Molecular Analyses of Atherosclerotic Lesions in ApoE-Knockout Mice. Medical Molecular Morphology, 50, 130-144.
https://doi.org/10.1007/s00795-017-0154-y
[13] Petit, S.J., Wise, E.L., Chambers, J.C., Sehmi, J., Chayen, N.E., Kooner, J.S. and Pease, J.E. (2011) The CXCL16 A181V Mutation Selectively Inhibits Monocyte Adhesion to CXCR6 but Is Not Associated with Human Coronary Heart Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 31, 914-920.
https://doi.org/10.1161/ATVBAHA.110.220558
[14] Jovanovic, I.Z.M., Djuric, T., Popovic, M., Alavantic, D. and Stankovic, A. (2015) CXCL16 in Vascular Pathology Research: From Macro Effects to microRNAs. Journal of Atherosclerosis and Thrombosis, 22, 1012-1024.
https://doi.org/10.5551/jat.29942
[15] Andersen, T., Ueland, T., Ghukasyan, L.T., Akerblom, A., et al. (2019) C-X-C Ligand 16 Is an Independent Predictor of Cardiovascular Death and Morbidity in Acute Coronary Syndromes. Arteriosclerosis, Thrombosis, and Vascular Biology, 39, 2402-2410.
https://doi.org/10.1161/ATVBAHA.119.312633
[16] Libby, P., Ridker, P.M. and Maseri, A. (2002) Inflammation and Atherosclerosis. Circulation, 105, 1135-1143.
https://doi.org/10.1161/hc0902.104353
[17] Fredman, G. and MacNamara, K.C. (2021) Atherosclerosis Is a Major Human Killer and Non-Resolving Inflammation Is a Prime Suspect. Cardiovascular Research, 117, 2563-2574.
https://doi.org/10.1093/cvr/cvab309
[18] Geovanini, G. and Libby, P. (2018) Atherosclerosis and Inflammation: Overview and Updates. Clinical Science (London, England: 1979), 132, 1243-1252.
https://doi.org/10.1042/CS20180306
[19] Engelen, S.E., Robinson, A.J.B., Zurke, Y.X. and Monaco, C. (2022) Therapeutic Strategies Targeting Inflammation and Immunity in Atherosclerosis: How to Proceed? Nature Reviews Car-diology, 19, 522-542.
https://doi.org/10.1038/s41569-021-00668-4
[20] Borst, O., Munzer, P., Gatidis, S., Schmidt, E.M., et al. (2012) The Inflammatory Chemokine CXC Motif Ligand 16 Triggers Platelet Activation and Adhesion via CXC Motif Receptor 6-Dependent Phosphatidylinositide 3-Kinase/Akt Signaling. Circulation Research, 111, 1297-1307.
https://doi.org/10.1161/CIRCRESAHA.112.276444
[21] Kim, M.J., Sun, H.J., Song, Y.S., Yoo, S.K., Kim, Y.A., Seo, J.S., Park, Y.J. and Cho, S.W. (2019) CXCL16 Positively Correlated with M2-Macrophage Infiltration, Enhanced Angiogenesis, and Poor Prognosis in Thyroid Cancer. Scientific Reports, 9, Article No. 13288.
https://doi.org/10.1038/s41598-019-49613-z
[22] Han, E.C., Lee, J., Ryu, S.W. and Choi, C. (2014) Tu-mor-Conditioned Gr-1(+)CD11b(+) Myeloid Cells Induce Angiogenesis through the Synergistic Action of CCL2 and CXCL16 in Vitro. Biochemical and Biophysical Research Communications, 443, 1218-1225.
https://doi.org/10.1016/j.bbrc.2013.12.117
[23] Gao, Q., Zhao, Y.J., Wang, X.Y., Qiu, S.J., et al. (2012) CXCR6 Upregulation Contributes to a Proinflammatory Tumor Microenvironment That Drives Metastasis and Poor Patient Out-comes in Hepatocellular Carcinoma. Cancer Research, 72, 3546-3556.
https://doi.org/10.1158/0008-5472.CAN-11-4032
[24] Isozaki, T., Arbab, A.S., Haas, C.S., Amin, M.A., Arendt, M.D., Koch, A.E. and Ruth, J.H. (2013) Evidence That CXCL16 Is a Potent Mediator of Angiogenesis and Is Involved in Endothelial Progenitor Cell Chemotaxis: Studies in Mice with K/BxN SERUM-INDUCED ARTHRITis. Arthritis and Rheumatism, 65, 1736-1746.
https://doi.org/10.1002/art.37981
[25] Li, C.H., Xu, L.L., Zhao, J.X., Sun, L., Yao, Z.Q., Deng, X.L., Liu, R., Yang, L., Xing, R. and Liu, X.Y. (2016) CXCL16 Upregulates RANKL Expression in Rheumatoid Arthritis Synovial Fibroblasts through the JAK2/STAT3 and p38/MAPK Signaling Pathway. Inflammation Research, 65, 193-202.
https://doi.org/10.1007/s00011-015-0905-y
[26] Korbecki, J., Bajdak-Rusinek, K., Kupnicka, P., et al. (2021) The Role of CXCL16 in the Pathogenesis of Cancer and Other Diseases. International Journal of Molecular Sciences, 22, Article No. 3490.
https://doi.org/10.3390/ijms22073490
[27] Darwish, M.A., Abo-Youssef, A.M., Messiha, B.A.S., Abo-Saif, A.A. and Abdel-Bakky, M.S. (2021) Resveratrol Inhibits Macrophage Infiltration of Pancreatic Islets in Streptozoto-cin-Induced Type 1 Diabetic Mice via Attenuation of the CXCL16/NF-kappaBeta p65 Signaling Pathway. Life Sciences, 272, Article ID: 119250.
https://doi.org/10.1016/j.lfs.2021.119250
[28] Lee, S.C., Lee, Y.J., Choi, I., Kim, M. and Sung, J.S. (2021) CXCL16/CXCR6 Axis in Adipocytes Differentiated from Human Adipose Derived Mesenchymal Stem Cells Regulates Macrophage Polarization. Cells, 10, Article No. 3410.
https://doi.org/10.3390/cells10123410
[29] Mitsuoka, H., Toyohara, M., Kume, N., Hayashida, K., Jinnai, T., Tanaka, M. and Kita, T. (2009) Circulating Soluble SR-PSOX/CXCL16 as a Biomarker for Acute Coronary Syn-drome-Comparison with High-Sensitivity C-Reactive Protein. Journal of Atherosclerosis and Thrombosis, 16, 586-593.
https://doi.org/10.5551/jat.1081
[30] Jansson, A.M., Aukrust, P., Ueland, T., Smith, C., Omland, T., Hartford, M. and Caidahl, K. (2009) Soluble CXCL16 Predicts Long-Term Mortality in Acute Coronary Syndromes. Circulation, 119, 3181-3188.
https://doi.org/10.1161/CIRCULATIONAHA.108.806877
[31] Brake, A., Heskett, C., Alam, N., Fry, L., Le, K., Mahnken, J.D. and Abraham, M. (2024) Glycoprotein Inhibitors as a First Line Rescue Treatment after Unsuccessful Recanalization of Endovascular Thrombectomy: A Systematic Review and Meta-Analysis. Interventional Neuroradiology: Journal of Peritherapeutic Neuroradiology, Surgical Procedures and Related Neurosciences.
https://doi.org/10.1177/15910199241226470
[32] Li, Y., Chen, S., Bao, Q., Yang, M. and Li, J. (2023) Re-al-World Safety and Efficacy Endovascular Treatment versus Standard Medical Treatment for Basilar Artery Occlusion: A Systematic Review and Meta-Analysis. Clinical Neurology and Neurosurgery, 236, Article ID: 108096.
https://doi.org/10.1016/j.clineuro.2023.108096
[33] Wang, M., Rajan, S.S., Jacob, A.P., Singh, N., Parker, S.A., Bowry, R., Grotta, J.C. and Yamal, J.M. (2020) Retrospective Collection of 90-Day Modified Rankin Scale Is Accurate. Clinical Trials (London, England), 17, 637-643.
https://doi.org/10.1177/1740774520942466
[34] ElHabr, A.K., Katz, J.M., Wang, J., Bastani, M., Martinez, G., Gribko, M., Hughes, D.R. and Sanelli, P. (2021) Predicting 90-Day Modified Rankin Scale Score with Discharge In-formation in Acute Ischaemic Stroke Patients Following Treatment. BMJ Neurology Open, 3, e000177.
https://doi.org/10.1136/bmjno-2021-000177