全身因素影响角膜生物力学的研究进展
Advances in the Study of Systemic Factors Affecting Corneal Biomechanics
DOI: 10.12677/ACM.2024.142560, PDF, HTML, XML, 下载: 51  浏览: 87 
作者: 张又丹, 杜之渝*:重庆医科大学附属第二医院眼科,重庆
关键词: 角膜生物力学年龄糖尿病甲状腺疾病结缔组织疾病Corneal Biomechanics Age Diabetes Thyroid Disease Connective Tissue Disease
摘要: 作为眼的重要组成部分,角膜不仅具有屈光特性,还有着独特的生物力学特性。既往角膜生物力学特性主要用于排除角膜手术相关禁忌症,预测角膜手术疗效和预后、扩张性角膜疾病的发生和发展,协助诊治青光眼及近视等眼科疾病,随着国内外团队的研究不断深入,研究者们将角膜生物力学与临床相结合,发现全身因素的改变也可能影响角膜的生物力学特性,如年龄、糖尿病、甲状腺疾病、性激素、结缔组织疾病等。本文将已发表的关于角膜生物力学与全身因素改变的研究结果进行了综述。
Abstract: As an important part of the eye, the cornea has not only refractive properties but also unique bio-mechanical properties. Previously, corneal biomechanical properties were mainly used to rule out contraindications related to corneal surgery, predict the efficacy and prognosis of corneal surgery, the occurrence and development of dilated corneal disease, and assist in the diagnosis and treat-ment of ophthalmic diseases such as glaucoma and myopia, etc. As the research of the domestic and international teams continues to deepen, researchers have combined corneal biomechanics with clinical, and found that the changes in the systemic factors may also affect the cornea’s biomechani-cal properties, such as age, diabetes mellitus, thyroid disease, connective tissue disease, and so on. This article summarizes the results of published studies on corneal biomechanics and systemic changes.
文章引用:张又丹, 杜之渝. 全身因素影响角膜生物力学的研究进展[J]. 临床医学进展, 2024, 14(2): 4038-4043. https://doi.org/10.12677/ACM.2024.142560

1. 引言

作为眼的重要组成部分,角膜不仅具有屈光特性,还有着独特的生物力学特性。任何改变角膜结构的因素都可能影响角膜的生物力学特性 [1] 。角膜生物力学不仅在近视 [2] 、青光眼 [3] [4] [5] 、圆锥角膜 [6] 等眼科疾病患者中存在显著差异,在许多全身疾病患者中也存在差异。本文围绕年龄、糖尿病、甲状腺疾病、性激素、结缔组织疾病等全身因素对角膜生物力学的影响进行综述。

2. 角膜生物力学的临床测量方式

临床上,角膜生物力学常通过眼反应分析仪(Ocular Response Analyzer, ORA)及可视化角膜生物力学分析仪(Corneal Visualization Scheimpflug Technology, Corvis ST)进行在体测量 [7] [8] [9] 。ORA通过喷气式压平角膜后,测量及记录了角膜的变形及恢复,使用角膜两次压平时的眼内压计算出两个独立参数—角膜滞后量(Corneal Hysteresis, CH)及角膜阻力因子(Corneal Resistance Factor, CRF),具有良好的精确性及一致性,其中CH被认为是与角膜黏性阻力有关,代表了角膜吸收及消散能量的能力;CRF是一个衡量角膜黏弹性的参数,代表了整体角膜抵抗外力的能力。Corvis ST喷出恒定脉冲气流,运用高速Scheimpflg技术完整记录角膜变形过程,获得动态反应参数,从而计算和获得了生物力学参数,其中基于初代的参数(第1/2压平时间、第1/2压平长度、第1/2压平速率、最大压陷时间、最大压陷曲率半径、最大压陷屈膝峰间距、最大形变幅度、眼压、中央角膜厚度)研发得出的新参数(如角膜形变幅度比值(Deformation Amplitude Ratio at 2 mm, DAR)、综合半径(Integrated Radius, IR)、硬度指数(Applanation 1 Stiffness Parameter, SP-A1)、Corvis生物力学指数(Corvis Biomechanical Index, CBI)目前得到更为广泛的应用。

3. 年龄

随着年龄的增长,角膜结构发生改变,可能引起了硬度的增加,从而角膜滞后降低 [10] [11] 。Ahmed Abdel Karim El Massry等人开展了一项针对大型横断面研究,利用ORA对20至70岁及以上正常人不同年龄组的角膜生物力学特性进行测量,得出年龄与CH和CRF均呈显著负相关 [12] 。动物实验研究结果与上述结果相一致 [13] 年龄与圆锥角膜发生、发展的风险及LASIK术后角膜扩张症的风险增加也呈负相关 [14] 。

4. 糖尿病

糖尿病以高血糖为特征,而长期高血糖会导致各个器官功能紊乱和衰竭,就眼部而言,其角膜生物力学会显著改变。一项共纳入15项研究的大型荟萃分析研究,综合了糖尿病组1506只眼及对照健康组2190只眼的临床数据,结果显示糖尿病组的CH、CRF值均显著高于对照健康组 [15] ,这提示着糖尿病眼可能具有更高的角膜硬度,与临床上糖尿病患者发生圆锥角膜、角膜扩张性疾病的风险较低相一致。Bing Zhang等研究者使用英国数据库的相关数据,进行大型队列研究,结果示糖尿病患者的CH较高 [16] 。也有研究结果显示控制不佳(HbA1c ≥ 7%)的糖尿病患者其CH及CRF显著高于健康对照组及控制良好的糖尿病患者,且健康对照组及控制良好的糖尿病患者之间的角膜生物力学特性没有明显差异,这提示着血糖水平的稳定性可能在糖尿病患者的角膜生物力学特性的改变中起着关键作用 [17] 。

糖尿病患者角膜力学特性改变的潜在机制主要为以下几个假说:① 持续的高血糖引起的氧化应激导致高级糖化终末产物(Advanced Glycation End-products, AGEs)的形成,角膜基质、基底膜、弹力层中可能存在AGEs的积聚;② 基质的蛋白多糖和糖胺多糖的糖基化,可能会改变角膜的粘度,增加角膜吸收及消散能量的能力;③ 角膜上皮细胞和内皮细胞的功能障碍会改变对角膜水化的控制,引起亚临床水肿症,但这可能会通过导致角膜生物力学特性的改变 [15] 。

5. 性激素

既往研究证明角膜存在性类固醇激素受体,性激素通过血液循环进入组织,通过受体对角膜发挥作用并产生影响 [18] 。性激素包括雌激素、孕激素和雄激素,其中雌激素被认为是影响角膜生物力学的重要因素。Walter E对比了猪角膜在不同培养条件(雌激素、孕激素、对照组)下的拉伸试验结果,认为雌激素对猪角膜有降低组织硬度的作用,而孕激素无明显影响 [19] ,这与Spoerl E得出的结果相似 [20] 。

在女性群体中,性激素虽然随月经周期、妊娠、绝经而波动,其生物力学特性的改变尚不明确 [21] ,也有可能是因为多种激素的平衡作用。Goldich等研究者通过用ORA检测22名女性月经周期期间卵泡期、排卵期、黄体期的CH和CRH,其中排卵时CH和CRF暂时降低 [22] ,而Bahadir等研究者分析了21名女性在月经周期的不同阶段的角膜生物力学特性,结果在统计学上没有显著变化 [23] 。屈光手术后继发性圆锥角膜以及原发性圆锥角膜进展可能与妊娠状态有关 [24] [25] [26] 然而Bujor IA等研究者通过荟萃分析对比晚期妊娠妇女与非妊娠女性的角膜生物力学特性,CH、CRF均未观察到统计学显著性变化 [27] 。

6. 甲状腺疾病

在发育过程中,甲状腺激素对眼睛的发育起着重要作用,而在成年人中,一些病理性甲状腺疾病会影响眼睛的正常功能。甲状腺眼病是常见的由病理性甲状腺疾病引起的眼部病变。甲状腺眼病患者生物力学的改变被认为与角膜基质的微结构变化、胶原排列、炎症因子(如IL-1、IL-6、TNF-α)的表达、白细胞的激活有关。Zhang等研究者对甲状腺眼部的患者角膜生物力学使用Corvis ST进行评估,发现了角膜硬度的降低以及角膜扩张的易感性,同时根据活动性及疾病严重程度进行分组,发现中重度甲状腺眼病患者组的角膜生物力学稳定性低于轻度组,这可能与疾病后期软组织纤维化有关 [28] 。而Comert MC等研究者虽然研究认为甲状腺眼病患者与健康对照组患者的CH、CRF组间无明显差异性,但仍发现其临床严重度评分与CRF呈负相关 [29] 。

7. 结缔组织病

结缔组织病是一种累及多系统、多脏器的自身免疫性疾病,其发病机制一般认为是在遗传、免疫、环境等多因素共同作用下,多种炎症介质和细胞因子导致的免疫损伤。就眼部而言,临床工作中多关注结缔组织病相关的葡萄膜炎、巩膜炎等疾病,而对角膜结构的影响也会引起生物力学的改变,也被视作屈光手术的相对禁忌症。

Bing Zhang等人进行的英国生物库内的横断面研究中分析了角膜滞后量与多种自我报告的系统性疾病(如系统性红斑狼疮、干燥综合症、类风湿性关节炎等)的相关性,其中仅系统性红斑狼疮与CH显著相关,且CH显著升高,然而这与病例对照研究中报告的结缔组织病患者的角膜力学特性改变相矛盾 [16] 。Yazici等人研究了系统性红斑狼疮(SLE)患者的角膜生物力学,并与相同年龄组的对照组进行了比较,结果显示SLE组的CH和CRF值显著降低 [30] 。干燥综合征患者可能因局部的抗原抗体反应引起胶原溶解及角膜水合作用受到影响从而影响其生物力学 [31] 。

Qin Long等研究者通过CorVis ST比较了干燥综合征和非干燥综合征干眼患者的角膜生物力学,发现干燥综合征干眼患者的刚度较低 [32] 。类风湿关节炎患者的角膜病变可分为基质炎症、胶原溶解、边缘沟和溃疡性角膜炎等阶段。促炎细胞因子的上调,触发角膜细胞产生蛋白水解酶,导致细胞外基质的分解,继而胶原溶解,使CH、CRF降低,且无论疾病的炎症期、缓解期,其角膜生物力学特性都可能受到影响 [33] 。成骨不全和Ehlers Danlos综合征都通过影响胶原合成,继而影响角膜生物力学,其中成骨不全是与I型前胶原的原发性缺陷和I型前胶原生物合成的失调有关,而Ehlers Danlos综合征是特定胶原蛋白突变(I型、III型或V型)或参与胶原蛋白产生或加工的基因中的其他突变引起 [34] [35] 。黏多糖贮积症(MPS)的患者除了进行性的角膜混浊外,与健康对照组相比,MPS组的生物力学测量值CH和CRF显著较高。该疾病主要是由于负责糖胺聚糖分解的酶缺乏或功能障碍,而在病理检查中也发现了角膜基质中糖胺聚糖的积聚,这可能使该疾病患者角膜力学特性改变的原因 [36] 。

8. 小结

总之,角膜生物力学可能受到各种全身因素的影响,了解这些影响对于眼睛健康和疾病管理至关重要,这些因素会影响角膜的结构完整性和对外力的反应,使其成为眼科诊断和治疗,以及全身疾病筛查的重要考虑因素。

NOTES

*通讯作者。

参考文献

[1] Ma, J., Wang, Y., Wei, P. and Jhanji, V. (2018) Biomechanics and Structure of the Cornea: Implications and Association with Corneal Disorders. Survey of Ophthalmology, 63, 851-861.
https://doi.org/10.1016/j.survophthal.2018.05.004
[2] Tubtimthong, A., Chansangpetch, S., Ratprasatporn, N., Manassakorn, A., Tantisevi, V., Rojanapongpun, P., et al. (2020) Comparison of Corneal Biomechanical Properties among Axial Myopic, Nonaxial Myopic, and Nonmyopic Eyes. BioMed Research International, 2020, Article ID: 8618615.
https://doi.org/10.1155/2020/8618615
[3] Brazuna, R., Alonso, R.S., Salomão, M.Q., Fernandes, B.F. and Ambrósio, R. (2023) Ocular Biomechanics and Glaucoma. Vision (Basel), 7, Article No. 36.
https://doi.org/10.3390/vision7020036
[4] Liu, M.X., Zhou, M., Li, D.L., Dong, X.X., Liang, G. and Pan, C.W. (2023) Corneal Biomechanics in Primary Open Angle Glaucoma and Ocular Hypertension: A Systematic Review and Meta-Analysis. Journal of Glaucoma, 32, E24-E32.
https://doi.org/10.1097/IJG.0000000000002170
[5] Sit, A.J., Chen, T.C., Takusagawa, H.L., Rosdahl, J.A., Hoguet, A., Chopra, V., et al. (2023) Corneal Hysteresis for the Diagnosis of Glaucoma and Assessment of Progression Risk: A Report by the American Academy of Ophthalmology. Ophthalmology, 130, 433-442.
https://doi.org/10.1016/j.ophtha.2022.11.009
[6] Padmanabhan, P. and Elsheikh, A. (2023) Keratoconus: A Bio-mechanical Perspective. Current Eye Research, 48, 121-129.
https://doi.org/10.1080/02713683.2022.2088798
[7] Elsheikh, A., Joda, A., Abass, A. and Garway-Heath, D. (2015) Assessment of the Ocular Response Analyzer as an Instrument for Measurement of Intraocular Pressure and Corneal Biomechanics. Current Eye Research, 40, 1111-1119.
https://doi.org/10.3109/02713683.2014.978479
[8] Terai, N., Raiskup, F., Haustein, M., Pillunat, L.E. and Spoerl, E. (2012) Identification of Biomechanical Properties of the Cornea: The Ocular Response Analyzer. Current Eye Re-search, 37, 553-562.
https://doi.org/10.3109/02713683.2012.669007
[9] Lanza, M., Cennamo, M., Iaccarino, S., Romano, V., Bifani, M., Irregolare, C., et al. (2015) Evaluation of Corneal Deformation Analyzed with a Scheimpflug Based Device. Contact Lens and Anterior Eye, 38, 89-93.
https://doi.org/10.1016/j.clae.2014.10.002
[10] Yang, K., Xu, L., Fan, Q., Zhao, D. and Ren, S. (2019) Repeatabil-ity and Comparison of New Corvis ST Parameters in Normal and Keratoconus Eyes. Scientific Reports, 9, Article No. 15379.
https://doi.org/10.1038/s41598-019-51502-4
[11] Leung, C.K., Ye, C. and Weinreb, R.N. (2013) An Ul-tra-High-Speed Scheimpflug Camera for Evaluation of Corneal Deformation Response and Its Impact on IOP Measure-ment. Investigative Ophthalmology & Visual Science, 54, 2885-2892.
https://doi.org/10.1167/iovs.12-11563
[12] El Massry, A.A.K., Said, A.A., Osman, I.M., Bessa, A.S., Elmasry, M.A., Elsayed, E.N., et al. (2020) Corneal Biomechanics in Different Age Groups. International Ophthalmology, 40, 967-974.
https://doi.org/10.1007/s10792-019-01273-8
[13] Zhang, H., Qin, X., Cao, X., Zhang, D. and Li, L. (2017) Age-Related Variations of Rabbit Corneal Geometrical and Clinical Biomechanical Parameters. BioMed Research Inter-national, 2017, Article ID: 3684971.
https://doi.org/10.1155/2017/3684971
[14] Blackburn, B.J., Jenkins, M.W., Rollins, A.M. and Dupps, W.J. (2019) A Review of Structural and Biomechanical Changes in the Cornea in Aging, Disease, and Photochemical Crosslinking. Frontiers in Bioengineering and Biotechnology, 7, Article No. 66.
https://doi.org/10.3389/fbioe.2019.00066
[15] Wang, X., Xu, G., Wang, W., Wang, J., Chen, L., He, M., et al. (2020) Changes in Corneal Biomechanics in Patients with Diabetes Mellitus: A Systematic Review and Meta-Analysis. Acta Diabetologica, 57, 973-981.
https://doi.org/10.1007/s00592-020-01481-0
[16] Zhang, B., Shweikh, Y., Khawaja, A.P., Gallacher, J., Bau-ermeister, S. and Foster, P.J. (2019) Associations with Corneal Hysteresis in a Population Cohort: Results from 96010 UK Biobank Participants. Ophthalmology, 126, 1500-1510.
https://doi.org/10.1016/j.ophtha.2019.06.029
[17] Ramm, L., Herber, R., Spoerl, E., Pillunat, L.E. and Terai, N. (2019) Measurement of Corneal Biomechanical Properties in Diabetes Mellitus Using the Ocular Response Analyzer and the Corvis ST. Cornea, 38, 595-599.
https://doi.org/10.1097/ICO.0000000000001879
[18] Suzuki, T., Kinoshita, Y., Tachibana, M., Matsushima, Y., Kobayashi, Y., Adachi, W., et al. (2001) Expression of Sex Steroid Hormone Receptors in Human Cornea. Current Eye Research, 22, 28-33.
https://doi.org/10.1076/ceyr.22.1.28.6980
[19] Walter, E., Matlov Kormas, R., Marcovich, A.L., Lior, Y., Sui, X., Wagner, D., et al. (2019) The Effect of Estrogen and Progesterone on Porcine Corneal Biomechanical Properties. Grae-fe’s Archive for Clinical and Experimental Ophthalmology, 257, 2691-2695.
https://doi.org/10.1007/s00417-019-04490-0
[20] Spoerl, E., Zubaty, V., Raiskup-Wolf, F. and Pillunat, L.E. (2007) Oestrogen-Induced Changes in Biomechanics in the Cornea as a Possible Reason for Keratectasia. British Journal Oph-thalmology, 91, 1547-1550.
https://doi.org/10.1136/bjo.2007.124388
[21] Bahadir Kilavuzoglu, A.E., Cosar, C.B., Bildirici, I., Cetin, O. and Ozbasli, E. (2018) Estrogen- and Progesterone-Induced Variation in Corneal Parameters According to Hormonal Status. Eye & Contact Lens, 44, S179-S184.
https://doi.org/10.1097/ICL.0000000000000376
[22] Goldich, Y., Barkana, Y., Pras, E., Fish, A., Mandel, Y., Hirsh, A., et al. (2011) Variations in Corneal Biomechanical Parameters and Central Corneal Thickness during the Men-strual Cycle. Journal of Cataract & Refractive Surgery, 37, 1507-1511.
https://doi.org/10.1016/j.jcrs.2011.03.038
[23] Seymenoğlu, G., Baser, E.F., Zerdeci, N. and Gülhan, C. (2011) Corneal Biomechanical Properties during the Menstrual Cycle. Current Eye Research, 36, 399-403.
https://doi.org/10.3109/02713683.2011.553307
[24] Huang, T.Z. and Jin, H.Y. (2022) Case Report: Bilateral Cor-neal Ectasia Developed during Pregnancy after Small-Incision Lenticule Extraction. Optometry and Vision Science, 99, 528-533.
https://doi.org/10.1097/OPX.0000000000001877
[25] Soeters, N., Tahzib, N.G., Bakker, L. and Van Der Lelij, A. (2012) Two Cases of Keratoconus Diagnosed after Pregnancy. Optometry and Vision Science, 89, 112-116.
https://doi.org/10.1097/OPX.0b013e318238c3f2
[26] Bilgihan, K., Hondur, A., Sul, S. and Ozturk, S. (2011) Pregnancy-Induced Progression of Keratoconus. Cornea, 30, 991-994.
https://doi.org/10.1097/ICO.0b013e3182068adc
[27] Bujor, I.A., Iancu, R.C., Istrate, S.L., Ungureanu, E. and Iancu, G. (2021) Corneal Biomechanical Changes in Third Trimester of Pregnancy. Medicina (Kaunas), 57, Article No. 600.
https://doi.org/10.3390/medicina57060600
[28] Zhang, T., Ye, H., Xiao, W., Chen, R. and Huasheng, Y. (2023) Corneal Morphological and Biomechanical Changes in Thyroid-Associated Ophthalmopathy. Cornea.
https://doi.org/10.1097/ICO.0000000000003357
[29] Comert, M.C., Yilmaz, S., Tas, A.Y. and Sahin, A. (2022) The Effect of Thyroid Eye Disease on Corneal Biomechanical Properties. Beyoglu Eye Journal, 7, 193-198.
https://doi.org/10.14744/bej.2022.08941
[30] Yazici, A.T., Kara, N., Yüksel, K., Altinkaynak, H., Baz, O., Bozkurt, E., et al. (2011) The Biomechanical Properties of the Cornea in Patients with Systemic Lupus Erythematosus. Eye (Lon-don), 25, 1005-1009.
https://doi.org/10.1038/eye.2011.99
[31] Borrego-Sanz, L., Sáenz-Francés, San Baldomero, F., Díaz Valle, D., Santos Bueso, E., Sánchez Jean, R., Martínez De La Casa, J.M., et al. (2018) Comparison of Corneal Biomechanical Properties of Patients with Dry Eye Secondary to Sjögren’s Syndrome and Healthy Subjects. Journal Français d’Ophtalmologie, 41, 802-808.
https://doi.org/10.1016/j.jfo.2018.02.015
[32] Long, Q., Wang, J.Y., Xu, D. and Li, Y. (2017) Comparison of Corneal Biomechanics in Sjögren’s Syndrome and Non-Sjögren’s Syndrome Dry Eyes by Scheimpflug Based Device. International Journal of Ophthalmology, 10, 711-716.
[33] Nossair, A.A., Kassem, M.K., Eltanamly, R.M. and Alah-madawy, Y.A. (2021) Corneal Hysteresis, Central Corneal Thickness, and Intraocular Pressure in Rheumatoid Arthritis, and Their Relation to Disease Activity. Middle East African Journal of Ophthalmology, 28, 174-179.
https://doi.org/10.4103/meajo.meajo_434_20
[34] Rolvien, T., Kornak, U., Linke, S.J., Amling, M. and Oheim, R. (2020) Whole-Exome Sequencing Identifies Novel Compound Heterozygous ZNF469 Mutations in Two Siblings with Mild Brittle Cornea Syndrome. Calcified Tissue International, 107, 294-299.
https://doi.org/10.1007/s00223-020-00721-3
[35] Chou, C.C., Shih, P.J., Jou, T.S., Hsu, M.Y., Chen, J.P., Hsu, R.H., et al. (2023) Corneal Biomechanical Characteristics in Osteogenesis Imperfecta with Collagen Defect. Translation-al Vision Science & Technology, 12, 14.
https://doi.org/10.1167/tvst.12.1.14
[36] Wasielica-Poslednik, J., Schuster, A.K., Politino, G., Marx-Gross, S., Bell, K., Pfeiffer, N., et al. (2019) Corneal Topometric, Aberrometric and Biomechanical Parameters in Mucopolysaccharidosis Patients. PLOS ONE, 14, e0218108.
https://doi.org/10.1371/journal.pone.0218108