PEDOT:PSS在压阻式柔性压力传感器中的应用研究进展
Research Progress of PEDOT:PSS Application in Piezoresistive Flexible Pressure Sensor
DOI: 10.12677/JAPC.2024.131010, PDF, HTML, XML, 下载: 65  浏览: 156 
作者: 郑金虎:上海理工大学机械工程学院,上海
关键词: 柔性压阻传感器PEDOT:PSS导电聚合物Flexible Piezoresistive Sensors PEDOT:PSS Conductive Polymers
摘要: 随着智能化技术及物联网的不断发展,柔性压力传感器作为可穿戴电子设备和电子皮肤的核心器件,拥有了越来越广阔的市场。为了获得高性能的柔性压力传感器,研究者们在传感器的材料、结构及器件设计等方面进行一系列的创新型研究工作。聚(3,4-乙撑二氧噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)是一种应用广泛的导电聚合物。由于其高导电性,易于加工和生物相容性而受到了极大的关注。作为一种灵活的多用途材料,PEDOT:PSS可以发展成各种形式,并对新兴的传感应用产生了重大影响。本文综述了近年来PEDOT:PSS在柔性压阻传感器中的应用研究的最新进展,并介绍了PEDOT:PSS在压阻传感器中的应用及这些传感器性能提高的方法和机理。
Abstract: With the continuous advancement of intelligent technology and the Internet of Things, flexible pressure sensors have gained a significantly broader market as they serve as core components in wearable electronic devices and electronic skin. In order to achieve high-performance flexible pressure sensors, researchers have conducted innovative research in sensor materials, structures, and device designs. Poly(3,4-ethylenedioxythiophene):Polystyrene sulfonate (PEDOT:PSS) is a widely utilized conductive polymer that has garnered considerable attention due to its exceptional electrical conductivity, ease of processing, and biocompatibility. As a versatile and flexible material, PEDOT:PSS can be developed into various forms with significant implications for emerging sensing applications. This paper provides an overview of recent advancements in utilizing PEDOT:PSS for flexible piezoresistive sensors while also discussing its application in such sensors along with methods and mechanisms employed to enhance their performance.
文章引用:郑金虎. PEDOT:PSS在压阻式柔性压力传感器中的应用研究进展[J]. 物理化学进展, 2024, 13(1): 74-86. https://doi.org/10.12677/JAPC.2024.131010

1. 引言

基于金属导体或半导体等刚性材料的传统机械压力传感器虽然经过长时期的发展已经能够精确测量各个量程的压力以及压力信号。但是其体积与重量较大以及只能测量光滑平面上的压力,这无法满足现代社会对于轻薄、便携、测量复杂曲面以及特殊接触面间压力的需求。

柔性压力传感器以其超薄、低模量、重量轻、高灵敏度和可伸缩性等独特的特性而受到人们的广泛关注,其在健康监测 [1] [2] [3] 、人机交互 [4] [5] [6] [7] 、可穿戴设备 [8] [9] [10] 和智能机器人 [11] [12] [13] 等领域具有广阔的发展前景。随着社会信息化的进一步发展,基于柔性压力传感器的各种新型设备正在逐渐应用于娱乐、游戏、汽车、消费电子、工业和医疗保健等领 [14] 。尤其是生物医疗及仿生机器人与柔性传感技术的结合,已经成为了近些年的研究热点。

2. 柔性压力传感器简介

2.1. 柔性压力传感器原理

柔性压力传感器是柔性和可穿戴电子设备中最重要的部件之一,简单地从测量原理上划分,分为压阻式、电容式及压电式。与传统压力传感器相同,压力的变化分别会引起上述传感器的电阻、电容及电压的变化,如图1所示。

在上述三种不同结构的传感器中,电容式压力传感器具有结构简单、准确度高、信号漂移少等优点,但其稳定性较差,在长期工作中易引起灵敏度下降。压电式压力传感器因其自身驱动的优势,可在某些苛刻条件下对信号进行长期监测,节约了大量的人力和物力,但需要特殊的材料、复杂的结构和繁琐的加工过程,且不能实现对动态力的测量。相对于其它类型的传感器,压阻式压力传感器具有制备工艺简单,能耗低,性能稳定,抗干扰能力强,灵敏度高,应用范围广,易于成阵,可实现系统集成和智能化。由于这些优点,压阻式柔性压力传感器成为近年来的研究热点,并广泛应用于可穿戴领域。

Figure 1. Schematic diagram of the three principles of sensors (a) Piezoresistive; (b) Capacitive; (c) Piezoelectric

图1. 传感器三种原理示意图(a) 压阻型;(b) 电容型;(c) 压电型

2.2. 压阻式传感器

柔性压阻传感器是根据半导体材料的压阻效应在半导体材料的基片上经扩散电阻而制成的器件,压阻效应是指压当传感器收到外界的压力或拉力时,内部的敏感材料状态或者与电极的接触状态发生改变,从而导致电阻和电流产生变化。根据电阻的定义

R = ρ L S (1)

式中:R——导体的电阻(Ω);

ρ——导体的电阻率(Ω·m);

L——导体的长度(m);

S——导体的横截面积(m2)。

因为柔性压阻传感器具备结构简单、灵敏度高、检测范围广和稳定性高等优点,所以已经被大量的应用在可穿戴电子设备、医疗健康等领域。

2018年,Shi [15] 等人通过将荷叶的表面复制到PDMS基底上来制造分级结构。如图2所示,荷叶具有多尺度层次表面,赋予PDMS表面微观和纳米尺度的图案,使用喷涂的石墨烯膜作为活性电极,制备出了柔性压阻传感器。传感器的分层结构使得载荷接触面积的快速稳定增加。制备的压力传感器具有0~25 KPa的宽线性范围,灵敏度为1.2 k/Pa,检测限为5 Pa,并且具有良好的稳定性(>1000个循环)。柔性压阻压力传感器已被证明用于检测手指按压、手腕脉冲与声波等。

2022年,Tai [16] 等人开发了具备交叉电电极(CPE)结构的1 × 1阵列的PEDOT:PSS/PPy压阻传感器,此压阻传感器具备0.58 k/Pa的高灵敏度和0.74 s的快速响应时间。随后还制备了3 × 3阵列的压阻传感器,如图3所示为传感器的示意图及在生物医学领域的应用,此传感器成功演示了手指按压的压力分布和牙齿填充过程前后的咬合压力映射,这意味着具有读出电路的PEDOT:PSS/PPy压阻压力传感器阵列可用于实时压力监测,以及未来的生物医学应用。

综上所述,随着人们对健康意识的提高,可穿戴压阻传感器的开发引起了人们极大的关注,与传统的传感器相比,柔性可穿戴压阻传感器具备灵敏度高、拉伸性大、传感范围宽、柔性好,可贴合复杂曲面进行大面积监测等优点,因此可以更广泛的应用于健康监测、运动检测、机器人、人机交互等领域,但是目前的研究主要是针对提高传感器的单一性能,如何能够实现具备高灵敏度、宽检测范围的传感器,并且实现多功能化,仍是一个巨大的挑战 [17] 。

Figure 2. Flexible piezoresistive pressure sensor with a hierarchical structure. (a) SEM image of a lotus leaf. Scale bar: 40 µm. (b) Schematic illustration of the fabrication process of a pressure-sensor device. (c) SEM image of a patterned graphene/PDMS. Scale bar: 50 µm. Inset: Photograph of the patterned graphene/PDMS. Scale bar: 5 mm. (d) SEM image of a single papilla on the graphene/PDMS surface. Scale bar: 5 µm. (e) 3D confocal image of the graphene/PDMS

图2. 具有分层结构的柔性压阻式压力传感器。(a) 荷叶的SEM图像,比例尺:40 µm。(b) 压力传感器装置的制造过程示意图。(c) 图像化石墨烯/PDMS的SEM图像,比例尺:50 µm。插图:图案化石墨烯/PDMS的照片,比例尺:5毫米。(d) 石墨烯/PDMS表面单个乳头的SEM图像,比例尺:5 µm。(e) 石墨烯/PDMS的三维共聚焦图像

Figure 3. Schematic diagram of 3 × 3 piezoresistive sensor array and its biomedical application

图3. 3 × 3压阻传感器阵列示意图及生物医学应用

3. PEDOT:PSS作为压阻传感器材料

PEDOT和PSS的化学结构如图4(a)所示。通过3,4-乙烯二氧噻吩(EDOT)单体在PSS基体存在下的氧化聚合,可以得到不同比例PEDOT和PSS的PSS水相分散体。在理想条件下,完全氧化的PEDOT链每三个单体具有一个载流子。带负电荷的PSS作为一种反离子来平衡PEDOT的正电荷,并与PEDOT基质一起形成均匀稳定的水相分散体。

PEDOT:PSS水溶液分散体呈现典型的三级结构。如图4(b)所示,PEDOT和苯乙烯磺酸单元代表了聚合物的主要结构。相对较短的带正电的PEDOT链通过静电作用与较长的带负电的PSS链结合,形成二级结构。多离子配合物最终以胶体颗粒的形式分散在水中,具有亲水的富PSS壳和疏水的富PEDOT核(三级结构)。

PEDOT:PSS的主要优点包括可调节的电导率 [18] [19] [20] [21] [22] ,对可见光的良好透明度 [23] [24] [25] [26] ,优异的热稳定性 [27] ,和高水平的生物相容性,由于商用PEDOT:PSS通常以水性分散体的形式存在,它与许多基于溶液的制造工艺兼容,因此近年来,基于PEDOT:PSS的传感应用器件的研究数量急剧增加,而这便为柔性压阻传感器高灵敏度、高电导率、高柔性以及更低成本提供了更多的可能。

Figure 4. (a) Chemical structures of PEDOT and PSS. (b) Hierarchical structure of PEDOT:PSS

图4. (a) PEDOT和PSS的化学结构。(b) PEDOT:PSS的层次结构

3.1. 导电添加剂/PEDOT:PSS体系提高压阻传感器性能

通常,石墨烯、碳纳米管(CNT)和金属纳米材料等单一导电元件 [28] [29] [30] 由于其出色的导电性,已广泛应用于柔性导电材料中 [31] [32] [33] 。为了进一步提高传感器的性能,近年来还构建了具有导电材料双组分的复合材料。例如,Ma 等人 [34] 展示了Mxene/还原氧化石墨烯混合三维结构气凝胶,具有丰富的多孔结构,具有极高的灵敏度(22.56 KPa−1在0~20 KPa下)、快速响应时间(<200 ms)和10,000次循环后稳定性好,可以致力于检测微小的变化,从而检测人体健康信号。Zhang等 [35] 将银纳米颗粒(AgNPs)嵌入导电CNT基体中,得到具有优异弹性和循环稳定性(0~60 KPa以下)的高弹性压阻式传感器,在运动性能检测和人机界面领域具有越来越大的应用前景。因此,在PEDOT:PSS中引入第二个导电单元有望积极促进压阻式传感器的传感性能。与其他导电材料的结合,可以进一步增加PEDOT:PSS的导电性,从而提高压阻传感器的灵敏度和精度,也能进一步提高压阻传感器的韧性和机械强度以适应更多更复杂的应用场景。

2019年Wang [36] 等人在生物医学应用的柔性基板上将掺入氧化石墨烯的PEDOT:PSS复合薄膜的压阻式压力传感器小型化。对于电池尺寸为0.2 cm的器件,PEDOT:PSS/GO复合膜样品的灵敏度从0.016增加到0.428 KPa−1,适合生物医学应用。使用PEDOT:PSS薄膜与浓度为50% (v/v)的氧化石墨烯混合,在1.6 cm的器件上实现了0.548 KPa−1的最高压阻灵敏度。该装置可再6 KPa的压力下保持300次以上的稳定装卸作业。考虑到PEDOT:PSS/GO复合膜压阻式压力传感器具有良好的灵敏度、优异的响应性能和高重复性,如图5所示,小型化的压阻式压力传感器应该是未来生物医学应用的理想候选者,如手术过程中的压力监测和声音振动的检测。

Figure 5. (a) Real-time photograph of intracranial surgery of a rat with the fabricated PEDOT:PSS/GO pressure sensor. (b) R-P curve of the fabricated pressure sensor on the rat’s brain surface without creating any major damage. (c) Photograph of the testing for the detection of sound vibrations with the fabricated PEDOT:PSS/GO piezoresistive pressure sensor and an ear endoscope. The photographs of the fabricated pressure sensor (d) in the ear canal and (e) covered on the ear drum. (f) Detecting signals of different styles of music, that is, classical and heavy metal music, respectively

图5. (a) 使用制造的PEDOT:PSS/GO压力传感器对大鼠进行颅内手术的实时照片。(b) 制造的压力传感器在大鼠脑表面的R-P曲线,而不会造成任何重大损伤。(c) 使用制造的PEDOT:PSS/GO压阻式压力传感器和耳内窥镜检测声音振动的测试照片。制造的压力传感器(d)在耳道中和(e)覆盖在耳膜上的照片。(f) 检测不同风格音乐的信号,即分别是古典音乐和重金属音乐

2022年,Gao [37] 等人用PEDOT:PSS和羧化单壁碳纳米管(CNTs)浸涂三聚氰胺海绵开发了一种自供电和多功能的双模传感器(如图6所示)。通过将热电和导电PEDOT:PSS/CNT组件与亲水性和弹性多孔海绵集成在一起,所得传感器可以有效地独立检测温度和压力变化。温度和压力刺激可以分别根据塞贝克效应和压阻效应独立转换为电压和电阻信号。该传感器具有35.9 μVK−1的高塞贝克系数,最低温度检测限为0.4 K,压力灵敏度为−3.35% KPa−1最小压力检测限值为4 Pa。有趣的是,传感器也可以在照明时自供电。这些多功能性使该传感器成为电子皮肤、软体机器人、太阳能转换和个人健康监测等应用的有前途的工具。

Figure 6. (a) Schematic illustration of the fabrication of the PEDOT:PSS/CNT@melamine sponge sensor. (b) Compression stress-strain curves of the PCM with the PEDOT:PSS/CNT ratio (1/4) at different compression strains. (c) Cyclic compression stress-strain curves of the PCM with the PEDOT:PSS/CNT ratio (1/4) at a strain of 40% for 500 cycles. SEM images of ((d), (e)) pristine sponge and ((f), (g)) PCM with PEDOT:PSS/CNT (1/4)

图6. (a) PEDOT:PSS/CNT@melamine海绵传感器的制造示意图。(b) 不同压缩应变下PCM的压缩应力–应变曲线,PEDOT:PSS/CNT比值(1/4)。(c) 在应变为40%的应变下,PCM的循环压缩应力–应变曲线(1/4),应变为40%,持续500次循环。((d), (e))原始海绵和((f), (g)) PCM的SEM图像与PEDOT:PSS/CNT (1/4)

2020年,Zhao [38] 等人将聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)与聚酰亚胺(PI)结合,通过冷冻干燥和热退火制备了一种可压缩的导电气凝胶。如图7所示,该复合材料呈现出有序且相互连接的多孔结构,由“层–支柱”骨架和连接的原纤维组成。得益于两种聚合物之间独特的结构和协同效应,

Figure 7. (a) Schematic illustration of the fabrication process of PEDOT:PSS/PI aerogels with the photos of as-prepared products; (b) the chemical structures of PEDOT:PSS and PAA with the hydrogen bonds formed between them; and (c) photographs of PEDOT:PSS/PI aerogels with various shapes and their states on a flower and Setaria viridis

图7. (a) PEDOT:PSS/PI气凝胶制备工艺示意图及制备后产品照片;(b) PEDOT:PSS和PAA的化学结构及其之间形成的氢键;(c) 不同形状的PEDOT:PSS/PI气凝胶在花和狗尾草上的照片

PEDOT:PSS/PI气凝胶在各种压缩应变下表现出优异的可压缩性,稳定的线性压阻响应,并且在200多个循环中具有良好的再现性。2022年,Wang [39] 等人在此基础上通过铸造和热退火将具有高柔性和高导电性的银纳米线引入PEDOT:PSS/PI三维结构中,成功制备了具有高灵敏度和良好循环稳定性的超轻、高弹性、柔性压阻式传感器。结果表明,具有较大可逆压缩性的弹性气凝胶表现出良好的压缩灵敏度,为0.31 KPa−1。在0~1.25 KPa−1的压力范围内,压缩应变和阻力变化率线性度高,抗疲劳性强(在1000%应变/分钟时高度保持率为98%~99%)和较大的可逆压缩性(200次压缩循环后高度保持率为90%)。综合性能优于对压阻式传感器寄予厚望的PEDOT:PSS/PI气凝胶。

不同导电添加剂/PEDOT:PSS体系性能的提升的具体数据见表1

Table 1. Piezoresistive properties of different conductive additives/PEDOT:PSS systems

表1. 不同导电添加剂/PEDOT:PSS体系的压阻性能

3.2. 弹性基底/PEDOT:PSS体系提高压阻传感器性能

PEDOT:PSS的导电性极高,与弹性基体相结合,不仅可以有效响应小范围的压力变化,使得传感器可以检测到微弱的压力变化,同时也可以使传感器具有很好的弹性,可以经过大量的压缩与恢复过程而不损失性能。弹性基体可以是聚乙烯醇(PVA)、聚二甲基硅氧烷(PDMS)等。

2011年,Liu [40] 及其研究团队采用静电纺丝法在卡普顿衬底上制备了一种新型的基于聚(3,4-乙烯二氧噻吩)聚苯乙烯磺酸酯–聚乙烯醇(PEDOT:PSS-PVA)纳米纤维的应变传感器,并采用聚二甲基硅氧烷层封装。通过控制添加剂二甲亚砜的浓度,纺丝后的PEDOT:PSS-PVA纳米纤维网络的电导率在4.8 × 10−8~1.7 × 10−5 S cm−1。这种应变传感器稳定性好,响应快,测量因子(GFs)可达396左右。与此同时,该设备可以由太阳能电池驱动,并且可以检测如弯曲手指等微小而快速的人类动作。

过去的很多研究已经为高灵敏度压阻式压力传感器提出了不同的材料和结构。Bao [41] 等人使用多相凝胶合成方法设计并合成了具有导电聚合物聚吡咯(PPy)的空心球微结构,以实现结构衍生的弹性和超低的有效弹性模量。基于这些微结构PPy空心球的电阻式压力传感器具有133 KPa−1的高灵敏度,除了有机导体外,Cheng [42] 及其同事还提出了一种平面内可穿戴电阻压力传感器,方法是使用Ti/Au叉指电极将浸渍有高纵横比金纳米线的薄纸夹在两片薄聚二甲基硅氧烷(PDMS)片之间。采用此设计时,灵敏度为1.14 KPa−1。而在2016年,Wang [43] 等人通过将聚二甲基硅氧烷(PDMS)侵在碳化硅砂纸上使其具备微峰图案,并通过在图案化的PDMS上旋涂PEDOT:PSS来开发研制了一种具备不规则驼峰的压力传感器 (如图8所示)。该传感器的灵敏度高达851 KPa−1,工作压力范围为0~20 KPa,除了0.1 V的低工作功率之外,还实现了50 Hz的低负载和6.7 KHz的高负载下的高响应频率。

2023年Li [44] 等人同样通过聚二甲基硅氧烷(PDMS)加固工艺,引导PEDOT:PSS内的分子运动并引入多壁碳纳米管(MWCNT)来自组装稳定的互穿聚合物网络(IPN)。结合临界表面去除、定向冷冻干,制备了一种具有高取向多孔结构和高强度的疏水性PDMS@MWCNTs/PEDOT:PSS气凝胶。在MWCNTs/PEDOT:PSS电活性支架的协同作用下,复合气凝胶表现出高达16.603 KPa−1的高灵敏度在0~2 KPa时,响应时间为74 ms,具有出色的可重复性。

Figure 8. (a) Schematic diagram of the pressure device fabrication process; (b) 45˚ view SEM of #1200 grit sandpaper; (c) PDMS cross-section

图8. (a) 压力装置制作工艺示意图;(b) #1200砂纸的45˚视图扫描电镜;(c) PDMS横截面

2021年,Varij [45] 等人通过溶剂铸造法合成TER/PEDOT:PSS弹性体–电子聚合物共混物(如图9所示)。TER/PEDOT:PSS聚合物混合物的最佳比例为40/60,其测量因子达到约680,拥有高达221%的机械应变。在0.009的弯曲应变下,TER/PEDOT:PSS聚合物混合物呈现出稳定且可重复的响应传感信号,能够经受6500次弯曲循环,且能在60天的持续时间内保持稳定。

Figure 9. Schematic diagram of the Ag coated TER/PEDOT:PSS membrane sensor

图9. Ag涂层TER/PEDOT:PSS膜传感器示意图

2023年Zhang [46] 等人设计了一种柔性导电MXene纳米片/PEDOT:PSS@Melamine泡沫(MPMF),使用PEDOT:PSS可以紧密固定MXene纳米片,并在它们之间构建协同导电网络,从而获得稳定而坚固的导电涂层。使用PEDOT:PSS可以紧密固定MXene纳米片,并在它们之间构建协同导电网络,从而获得稳定而坚固的导电涂层。基于相邻导电骨架之间的接触效应,所制备的MPMF传感器表现出优异的压阻传感性能,包括宽工作范围(高达80%压缩应变,60 KPa压力),高灵敏度(在12~60 KPa压力范围内为0.30 KPa−1),以及超过1000次压缩循环的稳定传感模式。

不同弹性基体/PEDOT:PSS体系性能的提升的具体数据见表2

Table 2. Piezoresistive properties of different elastic matrix/PEDOT:PSS systems

表2. 不同弹性基体/PEDOT:PSS体系的压阻性能

3.3. 其他提升PEDOT:PSS压阻传感器性能的方法

上述介绍的提升PEDOT:PSS柔性压阻传感器性能的研究多聚焦材料分子组成层面,近年来一些其他方法也被应用于提升压阻PEDOT:PSS的压阻性能研究中。2020年,Verpoorten [47] 等人研究了一种基于交联电纺纳米纤维的敏感元件,该纤维直接收集并在柔性和生物相容性的聚二甲基硅氧烷(PDMS)基底上热处理。基于掺杂有PEO和PEDOT:PSS的共混物获得了PEO/PEDOT:PSS电纺纳米纤维垫,制备了以纳米纤维垫为传感单元的压阻传感器得到了高达90%的电阻增加,测量因子牵引模式下为45.84,在压缩模式下为208.55。2022年,Xia [48] 等人利用甲酰胺和甲醇共溶剂的方法将PEDOT:PSS薄膜的电导率从0.3 S/cm提高到1287 S/cm,并将处理过的PEDOT:PSS薄膜制成柔性压阻传感器,发现该传感器表现出良好的性能,特别是在检测手指关节运动时具有灵敏度高,稳定性好、检测范围广和快速响应能力等特点,表明所研制的传感器在人体运动检测方面具有良好的应用前景。

4. 结论与展望

近年来,许多科研工作者围绕柔性压阻传感器展开了研究,并取得了重大进展。在此基础上我们总结PEDOT:PSS在压阻式柔性压力传感器中的应用研究进,重点阐述了压阻传感器的工作原理,又介绍了PEDOT:PSS应用于压阻传感器的主要优势,最后介绍了不同材料与PEDOT:PSS体系下对压阻传感器性能的提升。

随着研究的深入,将赋予柔性压阻传感器更多的功能,包括自愈合和生物兼容性等。未来的主要问题是不同领域需要的柔性压阻传感器各有不同,这对还未标准化的压阻传感器提出了一定的考验。最重要的是,柔性压阻传感器目前仍旧受限于材料与结构,在测量精度方面还无法与传统成熟的金属及半导体传感器相比拟。因此,今后压阻式柔性压力传感器最重要的研究目标仍旧是不断探索新材料与新结构制备各种高性能的压力传感器,尤其是具有较高测量精度的压

阻式柔性压力传感器。同时,未来的压阻式柔性压力传感器会朝着小型化、多功能化、集成化和低成本化等方向继续发展,并在智能机器人、物联网、生物医疗及人机交互等领域会拥有越来越重要的地位。

参考文献

[1] Lin, X.Z., Gao, S., Fei, T., et al. (2019) Study on a Paper-Based Piezoresistive Sensor Applied to Monitoring Human Physiological Signals. Sensors and Actuators A: Physical, 292, 66-70.
https://doi.org/10.1016/j.sna.2019.04.009
[2] Lin, X.Z., Zhang, T., Cao, J.H., et al. (2020) Flexible Piezoresistive Sensors Based on Conducting Polymer-Coated Fabric Applied to Human Physiological Signals Monitoring. Journal of Bionic Engineering, 17, 55-63.
https://doi.org/10.1007/s42235-020-0004-9
[3] Zhao, Y.N., Liu, L., Li, Z., et al. (2021) Facile Fabrication of Highly Sensitive and Durable Cotton Fabric-Based Pressure Sensors for Motion and Pulse Monitoring. Journal of Materials Chemistry C, 9, 12605-12614.
https://doi.org/10.1039/D1TC02251B
[4] Choi, S., Yoon, K., Lee, S., et al. (2019) Conductive Hierarchical Hairy Fibers for Highly Sensitive, Stretchable, and Water-Resistant Multimodal Gesture-Distinguishable Sensor, VR Applications. Advanced Functional Materials, 29, e1905808.
https://doi.org/10.1002/adfm.201905808
[5] Sakhuja, N., Kumar, R., Katare, P. and Bhat, N. (2022) Structure-Driven, Flexible, Multilayered, Paper-Based PressureSensor for Human—Machine Interfacing. ACS Sustainable Chemistry & Engineering, 10, 9697-9706.
https://doi.org/10.1021/acssuschemeng.1c08491
[6] Xu, Y.D., Sun, B.H., Ling, Y., et al. (2020) Multiscale Porous Elastomer Substrates for Multifunctional On-Skin Electronics with Passive-Cooling Capabilities. Proceedings of the National Academy of Sciences of the United States of America, 117, 205-213.
https://doi.org/10.1073/pnas.1917762116
[7] Yang, J., Li, H., Cheng, J.L., et al. (2021) Nanocellulose Intercalation to Boost the Performance of MXene Pressure Sensor for Human Interactive Monitoring. Journal of Materials Science, 56, 13859-13873.
https://doi.org/10.1007/s10853-021-05909-y
[8] Li, L., Fu, X.Y., Chen, S., et al. (2020) Hydrophobic and Stable MXene-Polymer Pressure Sensors for Wearable Electronics. ACS Applied Materials & Interfaces, 12, 15362-15369.
https://doi.org/10.1021/acsami.0c00255
[9] Shu, J., Gao, L., Li, Y., et al. (2022) MXene/Tissue Paper Composites for Wearable Pressure Sensors and Thermothe-Rapy Electronics. Thin Solid Films, 743, Article ID: 139054.
https://doi.org/10.1016/j.tsf.2021.139054
[10] Tan, Y.S., Ivanov, K., Mei, Z.Y., et al. (2021) A Soft Wearable and Fully-Textile Piezoresistive Sensor for Plantar Pressure Capturing. Micromachines, 12, Article 110.
https://doi.org/10.3390/mi12020110
[11] Chang, T.H., Tian, Y., Li, C.S., et al. (2019) Stretchable Graphene Pressure Sensors with Shar-Pei-Like Hierarchical Wrinkles for Collision-Aware Surgical Robotics. ACS Applied Materials & Interfaces, 11, 10226-10236.
https://doi.org/10.1021/acsami.9b00166
[12] Guo, Y., Guo, Z.Y., Zhong, M.J., et al. (2018) A Flexible Wearable Pressure Sensor with Bioinspired Microcrack and Interlocking for Full-Range Human-Machine Interfacing. Small, 14, e1803018.
https://doi.org/10.1002/smll.201803018
[13] Wang, F.X., Wang, M.J., Liu, H.C., et al. (2020) Multifunctional Self-Powered E-Skin with Tactile Sensing and Visual Warning for Detecting Robot Safety. Advanced Materials Interfaces, 7, e2000536.
https://doi.org/10.1002/admi.202000536
[14] Xu, F., Li, X., Shi, Y., et al. (2018) Recent Developments for Flexible Pressure Sensors: A Review. Micromachines, 9, Article 580.
https://doi.org/10.3390/mi9110580
[15] Shi, J., Wang, L., Dai, Z., et al. (2018) Multiscale Hierarchical Design of a Flexible Piezoresistive Pressure Sensor with High Sensitivity and Wide Linearity Range. Nano Micro Small, 14, Article ID: 1800819.
https://doi.org/10.1002/smll.201800819
[16] Tai, H., Chen, B., Liu, Y., et al. (2022) Submillimeter-Scaled PEDOT: PSS/PPy Piezoresistive Pressure Sensor Array and Its Applications in Biomedicine. IEEE Sensors Journal, 22, 6418-6425.
https://doi.org/10.1109/JSEN.2022.3153002
[17] 郭茹月, 鲍艳. 二维导电材料/柔性聚合物复合材料基可穿戴压阻式应变传感器的研究进[J]. 精细化工, 2021, 38(4): 649-661, 859.
[18] Badre, C., Marquant, L., Alsayed, A.M., et al. (2012) Highly Conductive Poly(3,4-Ethylenedioxythiophene):Poly(Sty- renesulfonate) Films Using 1-Ethyl-3-Methylimidazolium Tetracyanoborate Ionic Liquid. Advanced Functional Materials, 22, 2723-2727.
https://doi.org/10.1002/adfm.201200225
[19] Kim, N., Kee, S., Lee, S.H., et al. (2014) Highly Conductive PEDOT:PSS Nanofibrils Induced by Solution-Processed Crystallization. Advanced Materials, 26, 2268-2272.
https://doi.org/10.1002/adma.201304611
[20] Lee, S.H., Park, H., Son, W., et al. (2014) Novel Solution-Processable, Dedoped Semiconductors for Application in Thermoelectric Devices. Journal of Materials Chemistry A, 2, 13380-3387.
https://doi.org/10.1039/C4TA01839G
[21] Mengistie, D.A., Wang, P.C. and Chu, C.W. (2013) Highly Conductive PEDOT:PSS Electrode Treated with Polyethylene Glycol for ITO-Free Polymer Solar Cells. ECS Transactions, 58, 49-56.
https://doi.org/10.1149/05811.0049ecst
[22] Wichiansee, W. and Sirivat, A. (2009) Electrorheological Properties of Poly(Dimethylsiloxane) and Poly(3,4-Ethylene- dioxy Thiophene)/Poly(Stylene Sulfonic Acid)/Ethylene Glycol Blends. Materials Science and Engineering: C, 29, 78-84.
https://doi.org/10.1016/j.msec.2008.05.018
[23] Cai, G., Darmawan, P., Cui, M., et al. (2016) Highly Stable Transparent Conductive Silver Grid/PEDOT:PSS Electrodes for Integrated Bifunctional Flexible Electrochromic Supercapacitors. Advanced Energy Materials, 6, Article ID: 1501882.
https://doi.org/10.1002/aenm.201501882
[24] Hong, W., Xu, Y., Lu, G., et al. (2008) Transparent Graphene/PEDOT-PSS Composite Films as Counter Electrodes of Dye-Sensitized Solar Cells. Electrochemistry Communications, 10, 1555-1558.
https://doi.org/10.1016/j.elecom.2008.08.007
[25] Liu, Y., Feng, J., Ou, X., et al. (2016) Ultrasmooth, Highly Conductive and Transparent PEDOT:PSS/Silver Nanowire Composite Electrode for Flexible Organic Light-Emitting Devices. Organic Electronics, 31, 247-252.
https://doi.org/10.1016/j.orgel.2016.01.014
[26] Liu, Z., Parvez, K., Li, R., et al. (2015) Transparent Conductive Electrodes from Graphene/PEDOT:PSS Hybrid Inks for Ultrathin Organic Photodetectors. Advanced Materials, 27, 669-675.
https://doi.org/10.1002/adma.201403826
[27] Hokazono, M., Anno, H., Toshima, N., et al. (2014) Thermoelectric Properties and Thermal Stability of PEDOT:PSS Films on a Polyimide Substrate and Application in Flexible Energy Conversion Devices. Journal of Electronic Materials, 43, 2196-2201.
https://doi.org/10.1007/s11664-014-3003-y
[28] Ricohermoso, E., Rosenburg, F., Klug, F., et al. (2021) Piezoresistive Carbon-Containing Ceramic Nanocomposites—A Review. Open Ceramics, 5, Article ID: 100057.
https://doi.org/10.1016/j.oceram.2021.100057
[29] Tang, Z.H., Li, Y.Q., Huang, P., et al. (2021) Comprehensive Evaluation of the Piezoresistive Behavior of Carbon Nanotube-Based Composite Strain Sensors. Compos. Composites Science and Technology, 208, Article ID: 108761.
https://doi.org/10.1016/j.compscitech.2021.108761
[30] Li, W., Dong, W., Shen, L., et al. (2020) Conductivity and Piezoresistivity of Nano-Carbon Black (NCB) Enhanced Functional Cement-Based Sensors Using Polypropylene Fibres. Materials Letters, 270, Article ID: 127736.
https://doi.org/10.1016/j.matlet.2020.127736
[31] Khalifa, M., Wuzella, G., Lammer, H., et al. (2020) Smart Paper From Graphene Coated Cellulose for High-Performance Humidity and Piezoresistive Force Sensor. Synthetic Metals, 266, Article ID: 116420.
https://doi.org/10.1016/j.synthmet.2020.116420
[32] Zheng, Q., Lee, J.H., Shen, X., et al. (2020) Graphene-Based Wearable Piezoresistive Physical Sensors. Materials Today, 36, 158-179.
https://doi.org/10.1016/j.mattod.2019.12.004
[33] Yang, C., Gu, H., Lin, W., et al. (2011) Silver Nanowires: From Scalable Synthesis to Recyclable Foldable Electronics. Advanced Materials, 23, 3052-3056.
https://doi.org/10.1002/adma.201100530
[34] Ma, Y., Yue, Y., Zhang, H., et al. (2018) 3D Synergistical MXene/Reduced Graphene Oxide Aerogel for a Piezoresistive Sensor. ACS Nano, 12, 3209-3216.
https://doi.org/10.1021/acsnano.7b06909
[35] Zhang, H., Liu, N., Shi, Y., et al. (2016) Piezoresistive Sensor with High Elasticity Based on 3D Hybrid Network of Sponge@CNTs@Ag NPs. ACS Applied Materials & Interfaces, 8, 22374-22381.
https://doi.org/10.1021/acsami.6b04971
[36] Wang, J.C., Rajat, S.K., Lu, Y.J., et al. (2019) Miniaturized Flexible Piezoresistive Pressure Sensors: Poly(3,4-Ethylen- edioxythiophene):Poly(Styrenesulfonate) Copolymers Blended with Graphene Oxide for Biomedical Applications. ACS Applied Materials & Interfaces, 11, 34305-34315.
https://doi.org/10.1021/acsami.9b10575
[37] Gao, X.Z., Gao, F.L., Liu, J., et al. (2022) Self-Powered Resilient Porous Sensors with Thermoelectric Poly(3,4-Ethy- lenedioxythiophene):Poly(Styrenesulfonate) and Carbon Nanotubes for Sensitive Temperature and Pressure Dual- Mode Sensing. ACS Applied Materials & Interfaces, 14, 43783-43791.
https://doi.org/10.1021/acsami.2c12892
[38] Zhao, X., Wang, W.L., Wang, Z., et al. (2020) Flexible PEDOT:PSS/Polyimide Aerogels with Linearly Responsive and Stableproperties for Piezoresistive Sensor Applications. Chemical Engineering Journal, 395, Article ID: 125115.
https://doi.org/10.1016/j.cej.2020.125115
[39] Wang, J.N., Yue, X.Y., Li, X.T., et al. (2022) Lightweight and Elastic Silver Nanowire/PEDOT:PSS/Polyimide Aerogels for Piezoresistive Sensors. ACS Applied Polymer Materials, 4, 3205-3216.
https://doi.org/10.1021/acsapm.1c01765
[40] Liu, N., Fang, G.J., Wan, J.W., et al. (2011) Electrospun PEDOT: PSS-PVA Nanofiber Based Ultrahigh-Strain Sensors with Controllable Electrical Conductivity. Materials Chemistry, 21, 18962-18966.
https://doi.org/10.1039/c1jm14491j
[41] Pan, L., Chortos, A., Yu, G., Wang, Y., Isaacson, S., Allen, R., Shi, Y., Dauskardt, R. and Bao, Z. (2014) An Ultra-Sensitive Resistive Pressure Sensor Based on Hollow-Sphere Microstructure Induced Elasticity in Conducting Polymer Film. Nature Communications, 5, Article No. 3002.
https://doi.org/10.1038/ncomms4002
[42] Gong, S., Schwalb, W., Wang, Y., Chen, Y., Tang, Y., Si, J., Shirinzadeh, B. and Cheng, W. (2014) A Wearable and Highly Sensitive Pressure Sensor with Ultrathin Gold Nanowires. Nature Communications, 5, Article No. 3132.
https://doi.org/10.1038/ncomms4132
[43] Wang, Z.R., Wang, S., Zeng, J.F., et al. (2016) High Sensitivity, Wearable, Piezoresistive Pressure Sensors Based on Irregular Microhump Structures and Its Applications In Body Motion Sensing. Small, 12, 3827-3836.
https://doi.org/10.1002/smll.201601419
[44] Zhang, M.Y., Yang, W.K., Wang, Z.Q., et al. (2023) Highly Compressible and Thermal Insulative Conductive MXene/PEDOT:PSS@Melamine Foam for Promising Wearable Piezoresistive Sensor. Applied Physics Letters, 122, Article ID: 043507.
https://doi.org/10.1063/5.0137571
[45] Varij, P. and Gopinathan, A. (2021) Flexible Piezoresistive Strain Sensor Based on Optimized Elastomer-Electronic Polymer Blend. Measurement, 168, Article ID: 108406.
https://doi.org/10.1016/j.measurement.2020.108406
[46] Li, H.B., Luo, R.B., Hu, J.B., et al. (2023) Self-Assembled Gel-Assisted Preparation of High-Performance Hydrophobic PDMS@MWCNTs/PEDOT: PSS Composite Aerogels for Wearable Piezoresistive Sensors. Journal of Materials Science & Technology, 182, 22-32.
https://doi.org/10.1016/j.jmst.2023.09.037
[47] Verpoorten, E., Massaglia, G., Ciardelli, G., et al. (2020) Design and Optimization of PiezoresistivePEO/PEDOT:PSS Electrospun Nanofibers for Wearable Flex Sensors. Nanomaterials, 10, Article 2166.
https://doi.org/10.3390/nano10112166
[48] Xia, Y., Cui, Y., Huang, P., et al. (2022) Highly Conductive Film of PEDOT:PSS Treated with Cosolvent of Formamide and Methanol for Flexible Piezoresistive Sensor Applications. Applied Physics Letters, 120, Article ID: 203302.
https://doi.org/10.1063/5.0088913