新型压电材料在压电催化/压电光催化领域的研究进展
Research Progress of Novel Piezoelectric Materials in Piezoelectric Catalysis/Piezoelectric-Photocatalysis
DOI: 10.12677/MS.2024.142020, PDF, HTML, XML, 下载: 94  浏览: 924 
作者: 职晓焱, 冯 嫣, 朱百慧, 宋敬璇, 董方园, 傅仰河*:浙江师范大学含氟新材料研究所,先进催化材料教育部重点实验室,浙江 金华
关键词: 压电催化压电材料压电光催化 Piezocatalysis Piezoelectric Materials Piezo-Photocatalysis
摘要: 压电材料具有改善光电子和空穴分离与迁移的卓越能力,因此逐渐引起了研究人员的兴趣。传统压电材料(如BaTiO3、ZnO)的压电效应产生的交变内置电场为载流子的分离和迁移提供了强大的驱动力。除了传统的压电材料外,某些独特的材料,如层状过渡金属二硫化物、铋层结构材料、纤锌矿基半导体、石墨烯、g-C3N4和金属有机骨架材料,都具有压电特性,被认为是新型压电催化剂。本文综述了这些新型压电材料在压电催化和压电光催化应用方面的最新进展。本文综述有望为深入了解和开发更多新型压电催化剂在新兴能源和环境领域的应用提供全面的指导。
Abstract: Piezoelectric materials have gradually attracted the interest of researchers because of their excellent ability to improve the separation and migration of photoelectrons and holes. The alternating built-in electric field generated by the piezoelectric effect of conventional piezoelectric materials (e.g., BaTiO3, ZnO) provides a strong driving force for carrier separation and migration. In addition to conventional pi-ezoelectric materials, certain unique materials, such as layered transition metal disulfides, bismuth layer-structured materials, fibrillated zincite-based semiconductors, graphene, g-C3N4, and metal-organic frameworks, have piezoelectric properties and are considered as novel piezoelectric catalysts. This paper reviews the recent progress of these novel piezoelectric materials for piezocatalytic and piezophotocatalytic applications. This review is expected to provide a comprehensive guide for in-depth understanding and development of more novel piezoelectric catalysts for emerging energy and environmental applications.
文章引用:职晓焱, 冯嫣, 朱百慧, 宋敬璇, 董方园, 傅仰河. 新型压电材料在压电催化/压电光催化领域的研究进展[J]. 材料科学, 2024, 14(2): 173-184. https://doi.org/10.12677/MS.2024.142020

1. 引言

由于世界各地快速工业化,各种环境污染物开始在水、空气和土壤中积累。这危害了地球的生态环境,环境整治已成为当务之急。在各种环境修复技术中,压电催化技术因其独特地利用了压电效应而备受关注。压电效应可直接降解污染物,同时还能通过减少光生载流子的重组来增强光催化作用。在这篇综述中,我们主要介绍了新型压电材料及其在压电催化/压电光催化中的最新研究进展。预计该综述能够促进新型压电材料在压电催化/压电光催化中的实际应用。

2. 压电催化和压电光催化

2.1. 压电催化

“压电催化”的概念源于压电材料的极化,在没有光激发的情况下,由机械变形引起的压电可以引发各种电化学氧化还原反应 [1] ,如水的分解、有机污染物的降解、细菌的失活 [2] 。极化强度可通过振动(如超声波、机械搅拌或水波)调节,实现对表面空间电荷的吸附和解吸。与光催化或电催化相比,压电催化特别有吸引力,因为它在本质上只利用机械能,这表明对光和电的依赖程度降低了 [3] 。

目前采用的典型压电催化工艺可以描述如下:压电材料在机械应力(搅拌或超声振动)作用下产生内置电场,驱动e和h+向压电材料表面的迁移。这种现象触发氧化还原反应,形成活性氧(ROS),进一步导致水的分解、有机污染物的降解、CO2的还原和细菌的消毒 [2] [4] 。2010年,Hong等人 [5] 首次报道了ZnO微纤维和BaTiO3微晶在超声照射下产生的压电驱动下水分解生成H2,并提出了将机械能直接转化为化学能效应(piezo electrochemical, PZEC)。当施加外部机械能时,会导致压电纤维或枝晶变形,并在表面形成应变感应电势,通过自由表面电荷转移驱动氧化还原反应。随后,Hong等人 [6] 报道了PZEC效应也被应用于在足够的施加电位下,在BaTiO3微晶存在的情况下降解酸性橙(AO7)染料。2013年,Starr等人 [7] 利用压电、半导体、分子轨道和电化学框架对压电催化过程进行了一般的理论分析,表明要实现高电化学活性,需要具有高电压耦合系数、低电导率和适当介电常数的压电材料来平衡压电和电容效应。2015年,Starr等人 [8] 回顾了压电极化与电化学过程耦合效应的基本原理,包括直接利用压电电位驱动电化学反应(压电催化)。2016年 [9] 首次发现了单层和少层MoS2纳米花的压电催化效应,通过引入外部机械应变,在黑暗中表现出超高的降解活性。自2018年以来,许多压电材料,包括NaNbO3 [10] ,Pb(Zr1−xTix)O3 [11] ,BiFeO3 [12] ,ZnSnO3 [13] ,ZnO [14] ,ZnS [15] ,LiNbO3 [16] ,CdS [17] ,相继被研究作为压电催化剂。

2.2. 压电光催化

将压电材料与可见光光催化剂相结合被认为是实现光诱导载流子分离和迁移的有效方法。压电材料在应变作用下会产生内部电场(IEF)。这种IEF为光诱导电荷在体和光催化剂表面的输运提供了驱动力,从而促进了它们的活性分离和抑制它们的重组。这种同时利用太阳能和机械能的新型催化机制被称为“压电光催化”。Li等人 [18] 开发了一种BaTiO3/Ag2O复合催化剂,并通过同时超声波激发和紫外线照射测试了有机染料罗丹明B的可降解性。在周期性超声激发下产生的BaTiO3纳米晶体的自发极化电位可以作为一个交变内嵌电场,将BaTiO3纳米立方体相对两侧的光致载流子与Ag2O分离,从而抑制载流子的重组。这种现象可以显著增强BaTiO3/Ag2O复合物的光催化活性和循环性能。

通常,压电光催化剂的组合采用压电/半导体复合材料的形式,主要是核壳纳米结构,其中核由压电材料(如ZnO,BaTiO3和NaNbO3)组成,而壳由可见光光催化剂(如Cu,FeS和Ag2O)组成。某些具有低带隙的压电材料也具有光催化性能,即光催化和压电性能共存于单一材料中,可以同时产生压电和光致电荷。e和h+不仅在光照下产生,也可在应变诱导的极化电场下产生,以促进电荷分离,进行表面还原和氧化。典型的材料是BiFeO3 [19] 。

关于压电催化和压电光催化的研究还处于早期阶段。图1(a)显示了2013年至2022年关于压电催化和压电光催化的出版物数量。该数字描绘了一个快速上升的趋势,表明在当前全球能源危机下,压电催化和压电–光催化在能源和环境科学领域的普及。虽然调查时间相对较短,但该领域已经取得了很大进展,并逐渐成为研究热点。图2(b)显示了2013年至2022年的压电催化剂种类占比(以百分比计),分为钙钛矿、纤锌矿、压电聚合物等新型压电催化剂。数据显示,钙钛矿、纤锌矿和压电聚合物的比例分别为40.21%、16.37%和3.91%。除了传统的压电材料外,某些新型压电材料作为高效催化剂也在不断涌现。新型压电催化剂占压电催化研究总量的39.5%,表明研究人员对探索和开发新型压电催化剂的兴趣日益浓厚。

Figure 1. (a) Publications on piezocatalysis and piezo-photocatalysis from 2013 to 2022; (b) The proportion in percentage of piezocatalysts type from 2013 to 2022

图1. (a) 2013~2022年关于压电催化和压电光催化的出版物;(b) 2013~2022年压电催化剂类型占比百分比

3. 传统压电材料和新型压电材料

3.1. 传统压电材料

传统压电材料包括ABO3型钙钛矿(A:稀土或碱土金属;B:过渡金属),包括钛酸钡基(BaTiO3)和锆钛酸铅基材料(Pb(Zr1−xTix)O3)。其他例子包括碱金属铌酸盐基材料,例如铌酸钾(KNbO3)、铌酸钾钠((Na1−xKx)NbO3)、铌酸银(AgNbO3)、铁酸铋基(BiFeO3)、由ZnO组成的非钙钛矿类纤锌矿和GaN、压电聚合物聚偏二氟乙烯(PVDF)和PVDF-三氟乙烯(TrFE)) (表1)。

① BaTiO3是铁电ABO3钙钛矿家族的典型例子,居里温度(Tc)为120℃。在BaTiO3晶体结构中,1个Ti原子与6个O原子配位形成八面体簇(TiO6) [20] ,其中Ba2+位于晶胞的角部。BaTiO3中自发极化(Ps)的出现与Ti4+和O2–离子的移动有关。立方相的BaTiO3 (对称群:Pm3m)具有中心对称性,但缺乏压电性,因为Ti4+离子位于TiO6的中心,四方结构(对称群:P4mm)中的Ti4+离子远离晶胞中心,从而赋予该晶胞净偶极矩,并沿[001]方向呈现宏观Ps (图2(b)) [21] 。

Figure 2. (a) The mechanisms of ferroelectricity (inversion of polarization by applied electric field), pyroelectricity (generation of electric signal upon temperature change) and piezoelectricity (generation of electric signal by applied force). (b) Cubic structure of BaTiO3 and tetragonal structure of BaTiO3 with Ps along [001] [21] . (c) Schematic illustrations of atoms and charges distribution in the unit cell of wurtzite-structured ZnO [24] . (d) The α, β, and γ phase structures of PVDF [23]

图2. (a) 铁电性(通过施加电场使极化反转)、热电性(根据温度变化产生电信号)和压电性(通过施加的力产生电信号)的机制。(b) BaTiO3的立方结构和BaTiO3的四方结构,其中Ps沿[001] [21] 。(c) 纤锌矿结构ZnO晶胞中原子和电荷分布的示意图 [24] 。(d) PVDF的α、β和γ相结构 [23]

② 纤锌矿属于六方晶系(空间群:P63mc),具有四面体配位AB型组成。ZnO是一种典型的纤锌矿结构压电材料。在ZnO晶体结构中,Zn2+和O2−沿c轴逐层堆叠,并且它们的中心相互重叠,因此在正常晶体中检测不到偏振。当施加外力时,正负电荷中心反向分离,导致具有压电势的偶极子极化(图2(c))。

③ 此外,某些柔性聚合物由于其不对称的分子结构和取向而表现出压电性。PVDF是最常见的压电聚合物之一,由[-CH2-CF2-]单体组成,存在三种主要多晶型相(α、β和γ) [22] 。PVDF的压电特性可归因于极性晶相的存在,包括β相和γ相。β相中的偶极子平行排列,提供每晶胞最高的偶极矩和优异的压电性能(图2(d)) [23] 。

Table 1. Conventional type piezoelectric materials

表1. 传统型压电材料

3.2. 新型压电材料

目前许多新型压电材料被用于压电催化。例如,层状过渡金属二硫属化物(TMDCs)的块体形式不是压电体,当由于其破坏的反演对称性而还原为单原子层时,就会变成压电体。除了TMDCs之外,各种2D材料,例如黑磷和六方氮化硼,在减薄到几个甚至单个原子层时的压电特性也得到了广泛研究。此外,某些二维材料,例如石墨烯(Gr),在单层形式中本质上是非压电偶数的,但它们的压电性可以通过吸附原子吸附或通过引入非中心对称面内缺陷来有效地设计在Gr中。因此,通过适当的修饰,可以将缺乏压电性的新型材料设计成压电性并用于压电催化。因此,尽管传统压电材料在压电催化方面的研究已经大规模,但最近新型压电材料的出现可能会开辟新的发展方向。

在过去的几年中,已经发表了一些关于压电催化和压电光催化的综述,重点关注传统压电材料的表面化学、合成方法、性能和应用 [25] 。本文还简要介绍了TMDCs、铋层状结构等新型压电催化剂和压电光材料等二维材料。由于该研究领域的快速发展,有必要对其压电原理进行全面综述,以便读者更好地了解最新技术这一动态研究领域的进展。

3.2.1. 二维层状过渡金属二硫属化物基压电催化剂(TMDCs)

自Gr成功发现以来,二维层状TMDCs已成为一种新型范德华材料。2D TMDCs的化学式为MX2 (M = 过渡金属,例如W、Mo,X = Te、Se、S),具有层状晶体结构。根据M的配位环境,TMDCs可以结晶成多种多型结构,例如1T相(三角对称)、2H相(六方对称)和3R相(菱面体对称) [26] ,因其良好的电子、光学、机械性能和无毒性质而引起了科学家的关注。

具有三种不同晶相的二硫化钼(MoS2)的原子结构图如图3(a)所示。从左到右显示了1T-单层MoS2、2H-双层MoS2和3R-双层MoS2的侧视图和俯视图 [27] 。研究最广泛的TMDCs是来自VI族过渡金属(例如MoS2)的2H相,其晶胞结构如图3(b)和图3(c)所示 [28] 。层状MoS2是由Mo (蓝色球体)和S (金色球体)原子堆叠在一起以形成S-Mo-S三明治的六边形排列形成的(图3(b))。每层通过弱范德华力粘合在一起 [29] 。在层内,S和Mo原子通过共价键牢固结合,形成MoS2单层,具有与不锈钢相当的高杨氏模量 [30] ,良好的化学稳定性 [31] ,热稳定性达到1100℃ [32] [33] 。MoS2的带隙很大程度上取决于层数。MoS2是一种块状形式的间接带隙半导体,带隙为1.2 eV,当薄化为带隙为1.8 eV的单层时,它变成直接带隙半导体 [32] [34] [35] 。TMDCs材料的上述特性已在许多领域得到探索,包括场效应晶体管 [33] 、光电探测器 [32] [36] 、谷电子学 [37] [38] 以及许多其他柔性光子和光电器件 [31] [36] [39] 。

Figure 3. (a) Schematic view of MoS2 with 1T, 2H, and 3R phase [37] . (b) Coordination environment of Mo in the structure of MoS2 [38] . (c) A top view of the monolayer MoS2 lattice, the shaded region bounded by dashed lines corresponds to one primitive cell [38] . (d) Calculated clamped and relaxed-ion piezoelectric stress (e11) and piezoelectric strain (d11) coefficients [35]

图3. (a) 具有1T、2H和3R相的MoS2示意图 [37] 。(b) MoS2结构中Mo的配位环境 [38] 。(c) 单层MoS2晶格的顶视图,虚线包围的阴影区域对应于一个原始单元 [38] 。(d) 计算夹持和弛豫离子压电应力(e11)和压电应变(d11)系数 [35]

TMDC材料能够用于压电催化的前提是其必须具有压电特性。2H-MoS2单层没有反转中心。因此,由于晶体结构缺乏反演对称性,2H-MoS2理论上可以在单层结构中表现出压电特性。2012年,Duerloo等人 [40] 首次报道许多2H-TMDC单层实际上是压电的;他们根据广义梯度近似理论水平的密度泛函理论(DFT)计算了材料的压电和弹性刚度系数。然后,布朗斯基等人 [41] 识别出几种表现出压电性的二维TMDC,并采用对称分析和密度泛函微扰理论确定了它们的压电系数,MoS2、MoSe2和MoTe2的压电系数分别为3.65、4.55和7.39 pm/V。随后,许多研究通过DFT理论计算确定了TMDC的压电性和压电系数 [42] [43] [44] 。Alyorük等人 [45] 预测不仅该族的Mo和W基成员,而且M = Cr、Ti、Zr和Sn的其他材料也表现出非常有前途的压电特性。然而,具有四方结构的MoS2的1T金属相不具有压电性 [46] ,而MoS2的3R相由于其持久的非中心对称堆叠模式 [47] ,无论层数奇偶性如何,都可以引起强谷极化并激发强非线性光信号。

二维TMDC的压电性已在理论上得到验证,但缺乏实验结果。2014年,王教授课题组 [48] 首次报道了二维MoS2压电特性的实验研究。他们以机械方式剥离MoS2薄片,并将其转移到聚对苯二甲酸乙二醇酯柔性基板上,开发出具有单层MoS2薄片的柔性器件。当柔性基板被机械弯曲时,单轴应变可以施加到MoS2上,其大小与弯曲半径成正比。通过向器件施加应变来产生诱发极化电荷。他们的工作证实,具有奇数原子层的MoS2薄片的循环拉伸和释放可以产生振荡压电电压和电流输出;然而,对于偶数层的薄片没有观察到输出。张的团队 [49] 通过不同的实验方法提供了独立式单层MoS2薄片中压电性的实验证据,并测量了压电系数e11 = 2.9 × 10−10 C·m−1。此外,测量的压电耦合强度遵循根据晶体三重对称性预测的cos 3θ依赖性。测量这些独立晶体的固有压电性可以避免衬底效应,例如掺杂和寄生电荷。他们还证实,压电性只存在于奇数层中,其中反演对称性可能会破缺,这与缺乏压电性的MoS2块体形式形成鲜明对比。

上述研究表明,相关压电器件,如压电晶体管 [50] 、传感器和压电光电器件 [51] [52] ,可以使用单层MoS2薄片成功制造。这些压电和压电光电器件可能在未来的柔性电子、柔性光电器件、可穿戴设备和人机界面中发挥重要作用。

3.2.2. 铋层状结构材料基压电催化剂

由[Bi2O2]2+片与阴离子和/或阴离子基团交替堆叠而成的层状结构铋层状结构材料具有独特的晶体结构、丰富的原子配位和吸引人或有利的杂化电子能带结构。这种独特的结构配置使得铋层状材料可以很容易地适应晶体结构设计,并获得适合晶面控制、带隙调整和缺陷修饰的晶体取向;这些方法在太阳能催化转化方面显示出巨大的潜力。铋层状结构材料的交错单元可分为Aurivilius型、Sillén型以及Aurivilius或Sillén相关的复合结构。

耦合光照射和超声振动的协同压电光催化是净化废水中有机污染物的一种很有前途的策略。Lei等人 [53] 通过耦合低功率白光LED (9 W)照射和超声振动(120 W),测试了Bi2WO6的压电光催化活性。压电-光催化降解RhB的效率分别是光催化和压电催化的17.5倍和2.1倍。Hu等人 [54] 通过两步水热法合成了厚度约为10 nm、横向长度为100~400 nm的超薄Bi2WO6纳米片,并通过分解RhB研究了其压电光催化活性,在70 min内降解率约为98.39%,分别是单独光催化和单独压电催化的1.59倍和2.01倍。显然,压电催化剂和光催化剂的有效结合是一种更有前途的废水处理方法。

3.2.3. 基于纤锌矿的压电半导体

原子薄型纤锌矿ZnS-NSs由Feng等人 [15] 首次在室温下合成,并首次作为压催化剂用于压催化析氢。得益于高d33 (18 pC/N)和独特的超薄结构(2 nm),ZnS-NSs表现出优异的压电催化性能,析氢速率高达1.08 μmol·h−1·mg−1。Pan等人 [55] 通过在石墨烯上原位生长中空ZnS制备了空心结构H-ZnS@SNG,并通过MB的降解进行了检测。与纯H-ZnS (~58.4%)和固体ZnS@SNG (~89.8%)相比,H-ZnS@SNG表现出优异的染料降解压催化性能(10 min ~100%),这归因于应变诱导极化和独特的空心结构加速了电子转移。此外,异质结构压电光催化剂偶联双功能ZnS纳米粒子和2D g-C3N4纳米片也被用于将CO2还原为CH4 [56] 。在同时振动和可见光照射下,沿ZnS纳米粒子自发极化方向产生的极化电场可以驱动光载流子与g-C3N4的分离,从而提高压电光催化CO2还原性能。

考虑到纤锌矿CdS的固有极性,Zhang等人 [17] 提出,结构畸变加剧可能会增强纤锌矿CdS的宏观极化。采用溶剂热法构建了六方CdS (H-CdS)和立方CdS(C-CdS)之间的CdS相结(H/C-CdS),并将其用于纯水中压电光催化析氢。压电–光催化析H2速率为H/C-CdS (3.19 mmol⋅g−1⋅h−1)分别是H-CdS的1.4倍(2.31 mmol⋅g−1⋅h−1)和C-CdS的5.3倍(0.59 mmol⋅g−1⋅h−1),说明H/C-CdS的宏观极化增强导致了更高的电荷分离效率。合成了Cd0.5Zn0.5S纳米分支,用于H2O2的析出 [57] 。超声振动下,Cd0.5Zn0.5S的H2O2产率均高于原ZnS和CdS,表明其枝晶结构较高压电系数有利于机械能的捕获和转换。此外,许多异质结构络合物如BiFeO3@CdS [58] 、CdS/BiOCl [59] 、CdS@SnS2 [60] 等也在压电催化和压电光催化中得到了广泛的应用。

3.2.4. 基于二维碳材料的压电催化剂

Rodrigues等人 [61] 观察到单层Gr沉积在Si/SiO2校准光栅衬底上的强压电响应。采用PFM测量了整个结构(支撑 + 悬浮Gr)的压电效应。由于Gr的C原子与底层SiO2中的O原子发生化学相互作用,导致了非零净偶极矩和极化,支撑Gr上的负压响应信号比悬浮Gr上的负压响应信号高4倍。Feng等人 [62] 选择掺N Gr (NG)作为超薄压电材料,与MoC量子点(QDs)复配得到MoC@NG组装纳米片,并将其应用于纯水压电催化制氢。根据N掺杂的位置可以得到石墨N、吡啶N和吡咯N。由于N的高电负性,N掺杂(特别是吡啶N和吡咯N)引起了明显的电荷重分布和高密度的偶极子。当机械振动作用于复合材料时,超薄NG层可以提供压电电位,触发MoC QDs上的HER。然而,只观察到微弱的压电性,这是由小的NG中N原子和C原子的电负性差。Hu等人 [63] 通过增加材料的不对称性,特别是通过引入受限单原子Zn来调制原子局部偶极子,形成2D Gr受限Zn-Nx极性中心(ZnNG),从而提高了压电催化性能。Zn与N原子的电负性差越大,Zn-N的键长越长,会产生较大的局域偶极矩,从而增强压电性。

除了Gr外,石墨形式的氮化碳(g-C3N4)作为Gr的类似物,也具有压电性能,据Zelisko等人 [64] 报道g-C3N4相对稳定的结构是具有均匀分布的非中心对称三角形孔的三-s-三嗪重复结构,这导致了三-s-三嗪平面的压电性和强挠曲电性——这是一种在应变梯度存在下产生内部极化的能量成本产生的材料特性。g-C3N4也被应用于压电光催化制氢。Hu等人 [65] 制备了具有原子薄片状结构的g-C3N4,并报道了12.16 mmol⋅g−1⋅h−1的极好析氢速率没有任何负载的共催化剂,因为它们具有较好的压电性,这是由极性三-s-三嗪单元的加性偶极矩引起的面内极化引起的。此外,具有芳原子平面的焦二酰二亚胺与具有三嗪环的g-C3N4之间形成的均结可以诱导π-π相互作用,促进电子迁移,并使g-C3N4平面扭曲成更具极性的多孔结构,增强了压电性,从而提高了压电催化性能,加速了电荷转移 [66] 。

3.2.5. 基于金属有机框架的压电催化剂

Zhang等人 [67] 研究了同结构Zr和Hf基MOFs的压电光催化作用。UiO-66-NH2(Zr)和UiO-66-NH2(Hf),具有相似的物理和化学性质,但压电性质明显不同。两种MOFs在光催化制氢方面的活性差异可以忽略,而UiO-66-NH2(Hf)的光催化活性比UiO-66-NH2(Zr)高2.2倍,这是由于在超声照射下UiO-66-NH2(Hf)的压电效应更强。PFM的结果还表明,Hf-MOF具有比Zr-MOF高得多的压电响应,这可以归因于Hf-O键比Zr-O键的极性更大。超声波辐照不仅可以为压电催化剂提供机械应力,还可以加速反应过程中的传质。在作者的上述研究中,两种MOFs表现出高度相似的物理和化学性质,传质对活性的贡献应该是近似的。因此,UiO-66-NH2(Hf)活性较高的唯一因素应该是Hf-MOF具有较大的压电效应,可以区分加速传质的作用和压电效应对光催化活性的增强作用。

随后,在两种不同形态的铋基MOFs中观察到压电催化活性,即FCAU-17 (片状)和CAU-17 (棒状) [68] 。棒状CAU-17由于其易变形的特性,具有更强的压电响应,从而表现出更有效的压电催化活性。

4. 总结与展望

本文综述了各种新型压电催化剂,包括TMDCs、铋层状结构材料、纤锌矿基压电半导体、Gr、g-C3N4和MOFs,近十年来,新型压电催化材料的蓬勃发展已成为压电催化领域的研究热点,取得了广泛的成果。虽然已经发表了关于新型压电催化材料的优秀作品,但这一领域的研究仍处于起步阶段,需要进一步发展。例如,新型压电催化剂的制备方法比较单一,主要以水热法为主。催化剂的用量、污染物溶液的浓度、超声功率和频率等都没有统一的标准,难以横向比较压电催化性能。催化机理也存在争议 [69] 。且应用主要集中在H2演化和有机污染物降解方面,而在CO2还原、N2固定、杀菌等方面的应用非常有限。这一空白为在催化领域丰富压电材料提供了巨大的空间和千载难逢的机遇。该综述可以为未来开发更多具有优异压电催化或压电光催化性能的新型材料提供有用的参考,进一步提供对其机理的更好理解。该综述还可能激发其他相关领域的工作,例如压电传感器和执行器,最终推动可持续科学的新型压电材料的开发及其在有机物降解、环境修复的潜力。探索新型压电材料对于增强对压电催化和压电光催化过程机制的理解非常重要。这项研究有望为未来开发更多新型压电材料做出贡献。

NOTES

*通讯作者。

参考文献

[1] Wu, J., Qin, N. and Bao, D. (2018) Effective Enhancement of Piezocatalytic Activity of BaTiO3 Nanowires under Ultra-sonic Vibration. Nano Energy, 45, 44-51.
https://doi.org/10.1016/j.nanoen.2017.12.034
[2] Feng, J., Fu, Y., Liu, X., Tian, S., Lan, S. and Xiong, Y. (2018) Significant Improvement and Mechanism of Ultrasonic Inactivation to Esche-richia Coli with Piezoelectric Effect of Hydrothermally Synthesized T-BaTiO3. ACS Sustainable Chemistry & Engineer-ing, 6, 6032-6041.
https://doi.org/10.1021/acssuschemeng.7b04666
[3] Wu, J., Xu, Q., Lin, E., Yuan, B., Qin, N., Thatikonda, S.K. and Bao, D. (2018) Insights into the Role of Ferroelectric Polarization in Piezocatalysis of Nanocrystal-line BaTiO3. ACS Applied Materials & Interfaces, 10, 17842-17849.
https://doi.org/10.1021/acsami.8b01991
[4] Kumar, S., Sharma, M., Kumar, A., Powar, S. and Vaish, R. (2019) Rapid Bacterial Disinfection Using Low Frequency Piezocatalysis Effect. Journal of Industrial and Engineering Chem-istry, 77, 355-364.
https://doi.org/10.1016/j.jiec.2019.04.058
[5] Hong, K.S., Xu, H., Konishi, H. and Li, X. (2010) Direct Water Splitting through Vibrating Piezoelectric Microfibers in Water. The Journal of Physical Chemistry Letters, 1, 997-1002.
https://doi.org/10.1021/jz100027t
[6] Hong, K.S., Xu, H., Konishi, H. and Li, X. (2012) Piezoelectrochemical Ef-fect: A New Mechanism for Azo Dye Decolorization in Aqueous Solution through Vibrating Piezoelectric Microfibers. The Journal of Physical Chemistry C, 116, 13045-13051.
https://doi.org/10.1021/jp211455z
[7] Starr, M.B. and Wang, X. (2013) Fundamental Analysis of Piezocatalysis Process on the Surfaces of Strained Piezoelectric Materials. Scientific Reports, 3, Article No. 2160.
https://doi.org/10.1038/srep02160
[8] Starr, M.B. and Wang, X. (2015) Coupling of Piezoelectric Effect with Electrochemical Processes. Nano Energy, 14, 296-311.
https://doi.org/10.1016/j.nanoen.2015.01.035
[9] Wu, J.M., Chang, W.E., Chang, Y.T. and Chang, C.K. (2016) Piezo-Catalytic Effect on the Enhancement of the Ultra-High Degradation Activity in the Dark by Single- and Few-Layers MoS2 Nanoflowers. Advanced Materials, 28, 3718-3725.
https://doi.org/10.1002/adma.201505785
[10] Singh, S. and Khare, N. (2017) Coupling of Piezoelectric, Semiconducting and Photoexcitation Properties in NaNbO3 Nanostruc-tures for Controlling Electrical Transport: Realizing an Efficient Piezo-Photoanode and Piezo-Photocatalyst. Nano Energy, 38, 335-341.
https://doi.org/10.1016/j.nanoen.2017.05.029
[11] Yuan, B., Wu, J., Qin, N., Lin, E., Kang, Z. and Bao, D. (2019) Sm-Doped Pb(Mg1/3Nb2/3)O3-XPbTiO3 Piezocatalyst: Exploring the Relationship between Piezoelectric Property and Piezocatalytic Activity. Applied Materials Today, 17, 183-192.
https://doi.org/10.1016/j.apmt.2019.07.015
[12] Liu, Y.L. and Wu, J.M. (2019) Synergistically Catalytic Activities of BiFeO3/TiO2 Core-Shell Nanocomposites for Degradation of Organic Dye Molecule through Piezophototronic Effect. Nano Energy, 56, 74-81.
https://doi.org/10.1016/j.nanoen.2018.11.028
[13] Biswas, A., Saha, S. and Jana, N.R. (2019) ZnSnO3 Nanoparti-cle-Based Piezocatalysts for Ultrasound-Assisted Degradation of Organic Pollutants. ACS Applied Nano Materials, 2, 1120-1128.
https://doi.org/10.1021/acsanm.9b00107
[14] Ma, J., Ren, J., Jia, Y., Wu, Z., Chen, L., Haugen, N.O., Huang, H. and Liu, Y. (2019) High Efficiency Bi-Harvesting Light/Vibration Energy Using Piezoelectric Zinc Oxide Nanorods for Dye Decomposition. Nano Energy, 62, 376-383.
https://doi.org/10.1016/j.nanoen.2019.05.058
[15] Feng, W., Yuan, J., Zhang, L., Hu, W., Wu, Z., Wang, X., Huang, X., Liu, P. and Zhang, S. (2020) Atomically Thin ZnS Nanosheets: Facile Synthesis and Superior Piezocatalytic H2 Production from Pure H2O. Applied Catalysis B: Environmental, 277, Article ID: 119250.
https://doi.org/10.1016/j.apcatb.2020.119250
[16] Singh, G., Sharma, M. and Vaish, R. (2020) Exploring the Pie-zocatalytic Dye Degradation Capability of Lithium Niobate. Advanced Powder Technology, 31, 1771-1775.
https://doi.org/10.1016/j.apt.2020.01.031
[17] Zhang, M., Nie, S., Cheng, T., Feng, Y., Zhang, C., Zheng, L., Wu, L., Hao, W. and Ding, Y. (2021) Enhancing the Macroscopic Polarization of CdS for Piezo-Photocatalytic Water Split-ting. Nano Energy, 90, Article ID: 106635.
https://doi.org/10.1016/j.nanoen.2021.106635
[18] Li, H., Sang, Y., Chang, S., Huang, X., Zhang, Y., Yang, R., Jiang, H., Liu, H. and Wang, Z.L. (2015) Enhanced Ferroelectric-Nanocrystal-Based Hybrid Photocatalysis by Ultrason-ic-Wave-Generated Piezophototronic Effect. Nano Letters, 15, 2372-2379.
https://doi.org/10.1021/nl504630j
[19] Mushtaq, F., Chen, X.Z., Hoop, M., Torlakcik, H., Pellicer, E., Sort, J., Gattinoni, C., Nelson, B.J. and Pane, S. (2018) Piezoelectrically Enhanced Photocatalysis with BiFeO3 Nanostructures for Efficient Water Remediation. iScience, 4, 236-246.
https://doi.org/10.1016/j.isci.2018.06.003
[20] Ray, S.K., Cho, J. and Hur, J. (2021) A Critical Review on Strategies for Improving Efficiency of BaTiO3-Based Photocatalysts for Wastewater Treatment. Journal of Environmental Management, 290, Article ID: 112679.
https://doi.org/10.1016/j.jenvman.2021.112679
[21] Zhang, W., Feng, Q., Hosono, E., Asakura, D., Miyawaki, J. and Harada, Y. (2020) Tetragonal Distortion of a BaTiO3/Bi0.5Na0.5TiO3 Nanocomposite Responsible for Anomalous Piezoelectric and Ferroelectric Behaviors. ACS Omega, 5, 22800-22807.
https://doi.org/10.1021/acsomega.0c01845
[22] Lu, L., Ding, W., Liu, J. and Yang, B. (2020) Flexible PVDF Based Piezoelectric Nanogenerators. Nano Energy, 78, Article ID: 105251.
https://doi.org/10.1016/j.nanoen.2020.105251
[23] Kalimuldina, G., Turdakyn, N., Abay, I., Medeubayev, A., Nurpeissova, A., Adair, D. and Bakenov, Z. (2020) A Review of Piezoelectric Pvdf Film by Electrospinning and Its Ap-plications. Sensors, 20, Article 5214.
https://doi.org/10.3390/s20185214
[24] Pan, L., Sun, S., Chen, Y., Wang, P., Wang, J., Zhang, X., Zou, J.J. and Wang, Z.L. (2020) Advances in Piezo-Phototronic Effect Enhanced Photocatalysis and Photoelectrocatalysis. Advanced Energy Materials, 10, Article ID: 2000214.
https://doi.org/10.1002/aenm.202000214
[25] Li, S., Zhao, Z., Zhao, J., Zhang, Z., Li, X. and Zhang, J. (2020) Recent Advances of Ferro-, Piezo-, and Pyroelectric Nanomaterials for Catalytic Applications. ACS Applied Nano Materials, 3, 1063-1079.
https://doi.org/10.1021/acsanm.0c00039
[26] Hu, Z., Wu, Z., Han, C., He, J., Ni, Z. and Chen, W. (2018) Two-Dimensional Transition Metal Dichalcogenides: Interface and Defect Engineering. Chemical Society Reviews, 47, 3100-3128.
https://doi.org/10.1039/C8CS00024G
[27] Shi, J., Yu, P., Liu, F., He, P., Wang, R., Qin, L., Zhou, J., Li, X., Zhou, J., Sui, X., Zhang, S., Zhang, Y., Zhang, Q., Sum, T.C., Qiu, X., Liu, Z. and Liu, X. (2017) 3R MoS2 with Broken Inversion Symmetry: A Promising Ultrathin Nonlinear Optical Device. Advanced Materials, 29, Article ID: 1701486.
https://doi.org/10.1002/adma.201701486
[28] Cao, T., Wang, G., Han, W., Ye, H., Zhu, C., Shi, J., Niu, Q., Tan, P., Wang, E., Liu, B. and Feng, J. (2012) Valley-Selective Circular Dichroism of Monolayer Molybdenum Di-sulphide. Nature Communications, 3, Article No. 887.
https://doi.org/10.1038/ncomms1882
[29] Kadantsev, E.S. and Hawrylak, P. (2012) Electronic Structure of a Single MoS2 Monolayer. Solid State Communications, 152, 909-913.
https://doi.org/10.1016/j.ssc.2012.02.005
[30] Bertolazzi, S., Brivio, J. and Kis, A. (2011) Stretching and Breaking of Ultrathin MoS2. ACS Nano, 5, 9703-9709.
https://doi.org/10.1021/nn203879f
[31] Britnell, L., Ribeiro, R.M., Eckmann, A., Jalil, R., Belle, B.D., Mishchenko, A., Kim, Y.J., Gorbachev, R.V., Georgiou, T., Morozov, S.V., Grigorenko, A.N., Geim, A.K., Casiraghi, C., Neto, A.H.C. and Novoselov, K.S. (2013) Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films. Sci-ence, 340, 1311-1314.
https://doi.org/10.1126/science.1235547
[32] Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A. and Kis, A. (2013) Ultrasensitive Photodetectors Based on Monolayer MoS2. Nature Nanotechnology, 8, 497-501.
https://doi.org/10.1038/nnano.2013.100
[33] Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. and Kis, A. (2011) Single-Layer MoS2 Transistors. Nature Nanotechnology, 6, 147-150.
https://doi.org/10.1038/nnano.2010.279
[34] Mak, K.F., Lee, C., Hone, J., Shan, J. and Heinz, T.F. (2010) Atomi-cally Thin MoS2: A New Direct-Gap Semiconductor. Physical Review Letter, 105, Article ID: 136805.
https://doi.org/10.1103/PhysRevLett.105.136805
[35] Pospischil, A., Furchi, M.M. and Mueller, T. (2014) So-lar-Energy Conversion and Light Emission in an Atomic Monolayer P-N Diode. Nature Nanotechnology, 9, 257-261.
https://doi.org/10.1038/nnano.2014.14
[36] Xie, C., Mak, C., Tao, X. and Yan, F. (2017) Photodetectors Based on Two-Dimensional Layered Materials beyond Graphene. Advanced Functional Materials, 27, Article ID: 1603886.
https://doi.org/10.1002/adfm.201603886
[37] Zeng, H., Dai, J., Yao, W., Xiao, D. and Cui, X. (2012) Valley Po-larization in MoS2 Monolayers by Optical Pumping. Nature Nanotechnology, 7, 490-493.
https://doi.org/10.1038/nnano.2012.95
[38] Mak, K.F., He, K., Shan, J. and Heinz, T.F. (2012) Control of Valley Polarization in Monolayer MoS2 by Optical Helicity. Nature Nanotechnology, 7, 494-498.
https://doi.org/10.1038/nnano.2012.96
[39] Lee, G.H., Yu, Y.J., Cui, X., Petrone, N., Lee, C.H., Choi, M.S., Lee, D.Y., Lee, C., Yoo, W.J., Watanabe, K., Taniguchi, T., Nuckolls, C., Kim, P. and Hone, J. (2013) Flexible and Trans-parent MoS2 Field-Effect Transistors on Hexagonal Boron Nitride-Graphene Heterostructures. ACS Nano, 7, 7931-7936.
https://doi.org/10.1021/nn402954e
[40] Duerloo, K.A.N., Ong, M.T. and Reed, E.J. (2012) Intrinsic Piezoelectric-ity in Two-Dimensional Materials. The Journal of Physical Chemistry Letters, 3, 2871-2876.
https://doi.org/10.1021/jz3012436
[41] Blonsky, M.N., Zhuang, H.L., Singh, A.K. and Hennig, R.G. (2015) Ab Initio Prediction of Piezoelectricity in Two- Dimensional Materials. ACS Nano, 9, 9885-9891.
https://doi.org/10.1021/acsnano.5b03394
[42] Dong, L., Lou, J. and Shenoy, V.B. (2017) Large In-Plane and Ver-tical Piezoelectricity in Janus Transition Metal Dichalchogenides. ACS Nano, 11, 8242-8248.
https://doi.org/10.1021/acsnano.7b03313
[43] Mohanta, M.K. and De Sarkar, A. (2020) Interfacial Hybridization of Janus MoSSe and BX (X= P, As) Monolayers for Ultrathin Excitonic Solar Cells, Nanopiezotronics and Low-Power Memory Devices. Nanoscale, 12, 22645-22657.
https://doi.org/10.1039/D0NR07000A
[44] Ahammed, R., Jena, N., Rawat, A., Mohanta Dimple, M.K. and De Sarkar, A. (2020) Ultrahigh Out-of-Plane Piezoelectricity Meets Giant Rashba Effect in 2D Janus Monolayers and Bi-layers of Group IV Transition-Metal Trichalcogenides. The Journal of Physical Chemistry C, 124, 21250-21260.
https://doi.org/10.1021/acs.jpcc.0c05134
[45] Alyorük, M.M., Aierken, Y., Çakır, D., Peeters, F.M. and Sevik, C. (2015) Promising Piezoelectric Performance of Single Layer Transition-Metal Dichalcogenides and Dioxides. The Jour-nal of Physical Chemistry C, 119, 23231-23237.
https://doi.org/10.1021/acs.jpcc.5b06428
[46] Hinchet, R., Khan, U., Falconi, C. and Kim, S.W. (2018) Piezoelectric Properties in Two-Dimensional Materials: Simulations and Experi-ments. Materials Today, 21, 611-630.
https://doi.org/10.1016/j.mattod.2018.01.031
[47] Yang, D., Hu, X., Zhuang, M., Ding, Y., Zhou, S., Li, A., Yu, Y., Li, H., Luo, Z., Gan, L. and Zhai, T. (2018) Inversion Symmetry Broken 2D 3R-MoTe2. Advanced Functional Materials, 28, Article ID: 1800785.
https://doi.org/10.1002/adfm.201800785
[48] Wu, W., Wang, L., Li, Y., Zhang, F., Lin, L., Niu, S., Chenet, D., Zhang, X., Hao, Y., Heinz, T.F., Hone, J. and Wang, Z.L. (2014) Piezoelectricity of Single-Atomic-Layer MoS2 for En-ergy Conversion and Piezotronics. Nature, 514, 470-474.
https://doi.org/10.1038/nature13792
[49] Zhu, H., Wang, Y., Xiao, J., Liu, M., Xiong, S., Wong, Z.J., Ye, Z., Ye, Y., Yin, X. and Zhang, X. (2015) Observation of Piezoelectric-ity in Free-Standing Monolayer MoS2. Nature Nanotechnology, 10, 151-155.
https://doi.org/10.1038/nnano.2014.309
[50] Liu, W., Zhang, A., Zhang, Y. and Wang, Z.L. (2015) Density Func-tional Studies on Edge-Contacted Single-Layer MoS2 Piezotronic Transistors. Applied Physics Letters, 107, Article ID: 083105.
https://doi.org/10.1063/1.4929726
[51] Wu, W., Wang, L., Yu, R., Liu, Y., Wei, S.H., Hone, J. and Wang, Z.L. (2016) Piezophototronic Effect in Single-Atomic- Layer MoS2 for Strain-Gated Flexible Optoelectronics. Advanced Materials, 28, 8463-8468.
https://doi.org/10.1002/adma.201602854
[52] Zhang, K., Peng, M., Wu, W., Guo, J., Gao, G., Liu, Y., Kou, J., Wen, R., Lei, Y., Yu, A., Zhang, Y., Zhai, J. and Wang, Z.L. (2017) A Flexible P-CuO/N-MoS2 Heterojunction Photo-detector with Enhanced Photoresponse by the Piezo-Phototronic Effect. Materials Horizons, 4, 274-280.
https://doi.org/10.1039/C6MH00568C
[53] Lei, H., Wu, M., Liu, Y., Mo, F., Chen, J., Ji, S., Zou, Y. and Dong, X. (2021) Built-In Piezoelectric Field Improved Photocatalytic Performance of Nanoflower-Like Bi2WO6 Using Low-Power White LEDs. Chinese Chemical Letters, 32, 2317-2321.
https://doi.org/10.1016/j.cclet.2020.12.019
[54] Hu, K., Wang, R., Maimaitituersun, M., Sun, H., Liu, X. and Zhang, Y. (2022) Synergetic Piezo-Photocatalytic Effect in Ul-trathin Bi2WO6 Nanosheets for Decomposing Organic Dye. Journal of Materials Science: Materials in Electronics, 33, 9845-9857.
https://doi.org/10.1007/s10854-022-07966-8
[55] Pan, M., Liu, S., Pan, B. and Chew, J.W. (2021) Directionally Tailoring the Macroscopic Polarization of Piezocatalysis for Hollow Zinc Sulfide on Dual-Doped Graphene. Nano Energy, 88, Article ID: 106312.
https://doi.org/10.1016/j.nanoen.2021.106312
[56] Hu, C., Sun, H.Y., Jia, X.M., Lin, H.L., Cao, J. and Chen, S.F. (2022) Piezoelectric Polarization and Empty Conduction Band of Zinc Sulfide: Structure Modulation on Graphitic Carbon Nitride for Carbon Dioxide Reduction to Methane. ChemPhotoChem, 6, e202200150.
https://doi.org/10.1002/cptc.202200150
[57] Lin, S., Wang, Q., Huang, H. and Zhang, Y. (2022) Piezocatalytic and Photocatalytic Hydrogen Peroxide Evolution of Sulfide Solid Solution Nano-Branches from Pure Water and Air. Small, 18, Article ID: 2200914.
https://doi.org/10.1002/smll.202200914
[58] Long, J., Ren, T., Han, J., Li, N., Chen, D., Xu, Q., Li, H. and Lu, J. (2022) Heterostructured BiFeO3@CdS Nanofibers with Enhanced Piezoelectric Response for Efficient Piezocatalytic Degradation of Organic Pollutants. Separation and Purification Technology, 290, Article ID: 120861.
https://doi.org/10.1016/j.seppur.2022.120861
[59] Hao, P., Cao, Y., Ning, X., Chen, R., Xie, J., Hu, J., Lu, Z. and Hao, A. (2023) Rational Design of CdS/BiOCl S-Scheme Heterojunction for Effective Boosting Piezocatalytic H2 Evolu-tion and Pollutants Degradation Performances. Journal of Colloid and Interface Science, 639, 343-354.
https://doi.org/10.1016/j.jcis.2023.02.075
[60] Xiong, R., Song, Y., Li, K., Xiao, Y., Cheng, B. and Lei, S. (2023) A Novel 1D/2D Core/Shell CdS@SnS2 Heterostructure for Efficient Piezocatalytic Hydrogen Evolution and Pollutant Degradation. Journal of Materials Chemistry A, 11, 18398-18408.
https://doi.org/10.1039/D3TA03003B
[61] Da Cunha Rodrigues, G., Zelenovskiy, P., Romanyuk, K., Luchkin, S., Kopelevich, Y. and Kholkin, A. (2015) Strong Pie-zoelectricity in Single-Layer Graphene Deposited on SiO2 Grating Substrates. Nature Communications, 6, Article No. 7572.
https://doi.org/10.1038/ncomms8572
[62] Feng, W., Yuan, J., Gao, F., Weng, B., Hu, W., Lei, Y., Huang, X., Yang, L., Shen, J., Xu, D., Zhang, X., Liu, P. and Zhang, S. (2020) Piezopotential-Driven Simulated Electrocatalytic Nanosystem of Ultrasmall MoC Quantum Dots Encapsulated in Ultrathin N-Doped Graphene Vesicles for Superhigh H2 Production From Pure Water. Nano Energy, 75, Article ID: 104990.
https://doi.org/10.1016/j.nanoen.2020.104990
[63] Hu, P., Xu, Y., Lei, Y., Yuan, J., Lei, R., Hu, R., Chen, J., Xu, D., Zhang, S., Liu, P., Zhang, X., Qiu, X. and Feng, W. (2022) Piezoelectric Nanofoams with the Interlaced Ultrathin Graphene Confining Zn-N-C Dipoles for Efficient Piezocatalytic H2 Evolution under Low-Frequency Vibration. Journal of Energy Chemistry, 69, 115-122.
https://doi.org/10.1016/j.jechem.2022.01.009
[64] Zelisko, M., Hanlumyuang, Y., Yang, S., Liu, Y., Lei, C., Li, J., Ajayan, P.M. and Sharma, P. (2014) Anomalous Piezoelectricity in Two-Dimensional Graphene Nitride Nanosheets. Nature Communications, 5, Article No. 4284.
https://doi.org/10.1038/ncomms5284
[65] Hu, C., Chen, F., Wang, Y., Tian, N., Ma, T., Zhang, Y. and Huang, H. (2021) Exceptional Cocatalyst-Free Photo- Enhanced Piezocatalytic Hydrogen Evolution of Carbon Nitride Nanosheets from Strong In-Plane Polarization. Advanced Materials, 33, Article ID: 2101751.
https://doi.org/10.1002/adma.202101751
[66] Tang, R., Gong, D., Zhou, Y., Deng, Y., Feng, C., Xiong, S., Huang, Y., Peng, G. and Li, L. (2022) Unique G-C3N4/ PDI-G-C3N4 Homojunction with Synergistic Piezo-Photocatalytic Effect for Aquatic Contaminant Control and H2O2 Generation under Visible Light. Applied Catalysis B: Environmental, 303, Article ID: 120929.
https://doi.org/10.1016/j.apcatb.2021.120929
[67] Zhang, C., Lei, D., Xie, C., Hang, X., He, C. and Jiang, H.L. (2021) Piezo-Photocatalysis over Metal-Organic Frameworks: Promoting Photocatalytic Activity by Piezoelectric Effect. Advanced Materials, 33, Article ID: 2106308.
https://doi.org/10.1002/adma.202106308
[68] Dong, S., Wang, L., Lou, W., Shi, Y., Cao, Z., Zhang, Y. and Sun, J. (2022) Bi-MOFs with Two Different Morphologies Promoting Degradation of Organic Dye under Simultaneous Pho-to-Irradiation and Ultrasound Vibration Treatment. Ultrasonics Sonochemistry, 91, Article ID: 106223.
https://doi.org/10.1016/j.ultsonch.2022.106223
[69] Ma, J., Xiong, X., Wu, D., Wang, Y., Ban, C., Feng, Y., Meng, J., Gao, X., Dai, J.Y., Han, G., Gan, L.Y. and Zhou, X. (2023) Band Position-Independent Piezo-Electrocatalysis for Ultrahigh CO2 Conversion. Advanced Materials, 35, Article ID: 2300027.
https://doi.org/10.1002/adma.202300027