多位点起搏的研究现状及进展
Current Status and Progress of Research on Multipoint Pacing
DOI: 10.12677/ACREM.2024.121006, PDF, HTML, XML, 下载: 33  浏览: 55 
作者: 杨素霞, 李耀东:新疆医科大学第一附属医院心脏起搏电生理科,新疆 乌鲁木齐
关键词: 多位点起搏(MPP)心脏再同步化治疗(CRT)心力衰竭(HF) Multipoint Pacing (MPP) Cardiac Resynchronization Therapy (CRT) Heart Failure (HF)
摘要: 心脏再同步化治疗(CRT)是心力衰竭(HF)治疗的基石之一,但是30%~40%的患者没有表现出任何血流动力学参数的改善或者左心室的反向重塑,对CRT的反应取决于许多因素,包括QRS持续时间、左束支传导阻滞形态、左心室(LV)起搏部位和瘢痕组织数量、程控参数、同期药物治疗等。多位起搏(MPP)是一种新的技术,它旨在通过植入单个四极导联并在LV导联的4个电极中的2个电极上进行刺激,来确定比传统的单部位LV刺激更迅速、更具生理性的激活。与双极LV电极相比,在CRT中植入四极LV电极已经显示出无可争议的临床优势,与传统的BIV起搏相比,它还显示出在收缩能力、血流动力学和心肌收缩协调性等方面的显著改善。在本文中,我们阐述了多点起搏(MPP)技术的主要原理及目前临床应用的研究进展,介绍了其主要算法及其应用局限。
Abstract: Cardiac resynchronization therapy (CRT) is one of the cornerstones of heart failure (HF) treatment, but 30%~40% of patients do not show any improvement in hemodynamic parameters or reverse LV remodeling. The response to CRT depends on many factors, including QRS duration, left bundle branch block mor-phology, left ventricular (LV) pacing site and amount of scar tissue, programming parameters, con-comitant pharmacological therapy, etc. Multipoint pacing (MPP) is a new technique that aims to determine a more rapid and physiological activation than conventional single-site LV stimulation by implanting a single quadripolar lead and stimulating 2 of the 4 electrodes in the LV lead. Implantation of quadripolar LV electrodes in CRT has shown undisputed clinical advantages over bipolar LV electrodes, and has also shown significant improvements in contractility, hemodynamics and coordination of myocardial contraction compared with conventional BIV pacing. In this paper, we describe the main principles of the multipoint pacing (MPP) technique and current research advances in its clinical application, presenting its main algorithms and its application limitations.
文章引用:杨素霞, 李耀东. 多位点起搏的研究现状及进展[J]. 亚洲急诊医学病例研究, 2024, 12(1): 43-48. https://doi.org/10.12677/ACREM.2024.121006

1. MPP基本原理及技术特点

1.1. 基本原理

1.1.1. 电刺激的同步性

多位点起搏技术通过在左室的多个部位同时进行电刺激,可以使心室收缩更加同步,减少心室异步收缩和机械不协调 [1] 。这主要是因为在正常心室搏动时,心肌的激动从基底向尖端传导,传统的双位点起搏技术只能在一个部位进行电刺激,无法模拟心室自然起搏的同步性,MPP技术通过在左室的多个部位同时进行电刺激,可以使心室收缩更加同步,减少心室异步收缩和机械不协调 [2] 。

1.1.2. 心肌激活序列的优化

多位点起搏技术可以优化心肌激活序列,使心室按照从基底向尖端的顺序激活。正常的心肌激活序列有助于心室的收缩功能,而在心脏疾病或心脏手术后,心肌的激动传导路径可能会受到影响,导致心室异位激活序列的出现。心室异位激活序列会导致心室收缩力减弱,降低心室的射血功能 [3] ,MPP技术可以通过在左室的多个部位进行电刺激,可以使其恢复正常的心肌激活序列,从而改善心室收缩功能 [4] 。

1.1.3. 机械协调性的改善

MPP技术可以减少心室异步收缩和机械不协调,提高心室的射血功能和排血能力。心室异步收缩和机械不协调会导致心室射血功能下降和心力衰竭症状加重,机械协调性是心室起搏的重要指标之一,它反映了心室在心搏周期中的收缩状态和心室射血功能 [5] ,通过在左室的多个部位进行电刺激,可以使心室收缩更加同步,减少机械不协调,从而提高心室的射血功能和排血能力 [4] 。

1.2. 技术特点

1.2.1. 导线设计的改进

左室四级导线是多位点起搏技术的关键,它具有多个电极,可以在左室的多个部位进行电刺激 [6] 。与传统的双位点起搏技术使用的导线相比,左室四级导线的设计更加复杂,需要有良好的导管操作技巧和丰富的经验。此外,导线的选择和材料的选择也对多位点起搏技术的效果和安全性起着重要作用。导线的材料需要具有良好的导电性和耐久性,以确保电刺激的传导和导线的长期稳定性 [7] 。

1.2.2. 起搏器参数的调节

多位点起搏技术需要根据患者的个体特点和心脏解剖结构,调节起搏参数以实现最佳的起搏效果。起搏参数的调节包括起搏位置 [8] 、起搏电极的选择、起搏频率和脉宽等。起搏位置的选择是多位点起搏技术中最为关键的参数,一般来说,起搏位置应选择在心室基底部和心室中部,以实现最佳的心肌激活序列 [9] 。起搏频率和脉宽的调节需要根据患者的心脏情况和起搏效果进行个体化调整,以实现最佳的起搏效果。

1.2.3. 心脏同步性的评估工具

心脏同步性的评估是多位点起搏技术中非常重要的一环。心脏同步性的评估需要借助心电图、心脏超声、心脏磁共振等多种方法 [10] 。心电图可以评估心室的激动和收缩功能,通过观察QRS波群的形态和时间来判断心室的同步性。心脏超声可以评估心室的射血功能和收缩功能,通过观察心室的射血分数、射血时间和射血速度来判断心室的同步性 [11] 。心脏磁共振可以评估心室的结构和功能,通过观察心室的体积、质量和运动来判断心室的同步性 [12] 。

2. MPP算法

以下是不同设备使用MPP 技术时的主要算法:

2.1. 雅培设备

通过CRT Toolkit™和VectSelect Quartet™ 算法,雅培设备会自动测量RVP至LVS或RVS至LVS延迟和LV阈值,帮助选择适当的起搏电极。Multipoint pacing™不仅适用于心率 ≤ 110次/分钟(BPM),还可自动将传统BIV起搏从111次/分钟切换到较高的起搏频率,该设备还允许RV和LV起搏,反之亦然。

2.2. 百多力设备

百多力设备在自动测量RVP至LVS延迟后,会手动测量带有PNS阈值和阻抗的LV阈值,而通过Multipoint pacing™,该设备还可以优先对RV或LV进行起搏但是,其中,LV载体选择只能手动选择。

2.3. 波士顿设备

波士顿设备的MPP算法主要包括LV Vectorguide™、Smart Vector™和Smart Offset™。对于每个选定的向量,LV Vectorguide™可以在RVS到LVS延迟在几个心动周期(至少3个RV事件,最多10个)中取平均值,消除任何不稳定的RV间期(>20% RV-RV)并测量每个选定向量的左心室阻抗,并由医生为每个选定向量以确定膈神经刺激。Smart Vector™激活序列的选择取决于RVS-LVS延迟:如果≥−20 ms,则LV1 → LV2 → RV,如果<−20ms,则RV → LV1 → LV2,值得一提的是,向量的选择是在消除具有极端阻抗、LV阈值 > 4.5 V和缺失数据的向量之后做出的。Smart Offset™可以根据RVS至LVS延迟(0至10 ms)自动调整心室内起搏延迟。心室间起搏延迟为5 ms。也可以进行完全手动编程。

2.4. 美敦力设备

SonR™是一种基于心内膜峰值加速度的优化方法。心内膜峰值加速度(PEA)传感器嵌入RA导联的顶端,允许调整PEA以确定最佳LV配置(最高PEA值,与所有扫描配置的LV dP/dtmax密切相关) [13] [14] 。

3. MPP应用的进展

心脏再同步治疗(CRT)为中、重度心力衰竭(HF)、QRS持续时间延长和射血分数(EF)降低的患者提供了显著的长期益处 [15] [16] 。多点左心室起搏是改善常规的双室起搏反应的关键策略之一 [17] - [22] ,下面简要阐述MPP研究的相关进展。

一项迄今为止关于MPP使用的最大规模的mate分析 [23] 指出:MPP在非随机研究中表现出比传统CRT更大的超声心动图指标的改善(OR:5.33,95%可信区间[CI]:[3.05~9.33],P < 0.001),但在随机研究中并不显著(OR:1.86,95%CI:[0.91~3.79],P = 0.086)。值得一提的是,先前对MPP的Meta分析包括11项研究,其结论是MPP减少了心衰住院时间(优势比[OR]:0.41,95%可信区间[CI]:[0.33~0.5],P < 0.001),增加了CRT反应(OR:3.64,95%CI:[1.68~7.87],P = 0.001),并降低了心血管死亡率(OR:0.21,95%CI:[0.11~0.4],P < 0.001) [24] ,最新的一项临床试验发现了类似的结果:与优化的CRT相比,优化的MPP显示HF患者的血流动力学参数和心室功能有显着改善,有益效果在男性和LVEF相当降低的患者中更为突出 [25] 。

另外一项多中心、前瞻性、开放标签和非随机研究共纳入105名植入CRT的患者,并在植入后早期激活了MPP功能,随访6个月后发现,有效率为64.6% (97.5%的置信下限为53%)。左心室收缩末期容积(LVESV)的平均相对降低率为25.3%,LVEF的平均绝对增加为9.4%,6个月死亡率和/或全因住院的综合发生率为12.4%,作者由此得出结论:MPP的早期激活与增加CRT超声心动图反应者的优势无关。然而,使用最宽起搏阴极编程的患者在数值上具有更高的反应率,并且MPP的早期激活与6个月随访时临床终点的低发生率相关 [26] 。

中东地区首次进行了对MPP和BIV进行比较的前瞻性的多中心研究,该研究依赖于一种基于程序员的自动化工具,患者被植入CRT-D设备,并随机接受BIV起搏或MPP,142例患者(61岁,男性68%,NYHAII/III/IV级19%/75%/6%,缺血性33%,高血压57%,糖尿病52%,QRS 158 ms,射血分数25.8%)随机分为BIV组(69例)和MPP组(73例)。6个月后,MPP比BIV患者的左心室收缩末期容量(ESV)下降幅度更大(25.0%比15.3%,P = 0.08),EF改善更大(11.9%比8.6%,P = 0.36),ESV应答率显著提高(68.5%比50.7%,P = 0.04),这表明,与传统的BIV起搏相比,使用MPP和自动左心室向量选择,可以使更多的CRT患者得到反向重构和临床症状的改善 [27] 。

最有意思的是一项通过虚拟四极电极模拟患者体内所有电极的起搏组合并估其反应性,电同步性通过90%的心室肌激活的时间来定义,在所有可能的单电极和双电极位置的HF队列中,LV起搏使90%的心室肌被激活的时间缩短14.48 ± 5.01 ms (11.92% ± 3.51%),采用单一最佳导联设计的起搏在HF组心室肌被激活的时间比反向重塑组多(12.68% ± 3.29%比10.81% ± 2.34%),采用单一组合高频和RR群体优化导联设计的起搏实现了电再同步;此项研究显示了虚拟临床试验作为比较现有和探索新的领先设计的工具的巨大潜力并且回答了以下问题:首先,确定单个最佳四极导联设计,以实现跨不同潜在LV静脉位置的所有HF解剖结构的同步心室激动。其次,评估在每个患者中量身定做导联设计的益处以及在HF解剖中的导联位置。最后,使用健康受试者的双心室计算模型来近似RR解剖,以测试在心脏对CRT有反应的情况下,最佳导联设计是否改变 [28] 。

4. MPP的局限

首先,如何选择MPP或BVP仍是一个问题,患者对MPP的反应性有个体差异,如何预测MPP反应性,仍缺乏相关研究。其次MPP后续随访程控仍是一项耗时且复杂的问题,患者的CRT反应性 [15] [17] [18] 与起搏器编程更相关还是起搏器植入位置更相关需要进一步研究鉴别,另外MPP技术相关的算法仍待进一步优化 [27] 。

5. 展望

总之,多位点起搏技术对左室功能改善的临床意义和前景十分广阔。通过改善心脏起搏和同步收缩,多位点起搏技术可以提高左心室功能,改善心脏整体的功能。未来的研究方向和发展趋势包括多位点起搏技术的机制研究、临床应用研究、机器学习和人工智能应用以及远程监测和管理研究。通过进一步的研究和应用,可以进一步优化和改进多位点起搏技术,提高治疗效果和预后,为心脏病患者带来更好的临床效果和生活质量。

参考文献

[1] Bodin, A., Bisson, A., Andre, C., Pierre, B., Fauchier, L., Babuty, D., et al. (2019) Multisite Pacing via a Quadripolar Lead for Cardiac Resynchronization Therapy. Journal of Interventional Cardiac Electrophysiology : An International Journal of Arrhythmias and Pacing, 56, 117-125.
https://doi.org/10.1007/s10840-019-00592-1
[2] 华伟, 顾敏, 宿燕岗, 等. 中国慢性心力衰竭患者中左心室多位点起搏有效性和安全性的观察和评价[J]. 中华心律失常学杂志, 2022, 26(2): 152-158.
[3] Kirk, J. and Kass, D. (2013) Electromechanical Dyssynchrony and Resynchronization of the Failing Heart. Circulation Research, 113, 765-776.
https://doi.org/10.1161/CIRCRESAHA.113.300270
[4] Schiedat, F., Schöne, D., Aweimer, A., Bösche, L., Ew-ers, A., Gotzmann, M., et al. (2020) Multipoint Left Ventricular Pacing with Large Anatomical Separation Improves Re-verse Remodeling and Response to Cardiac Resynchronization Therapy in Responders and Non-Responders to Conven-tional Biventricular Pacing. Clinical Research in Cardiology: Official Journal of the German Cardiac Society, 109, 183-193.
https://doi.org/10.1007/s00392-019-01499-7
[5] Risum, N. (2014) Assessment of Mechanical Dyssyn-chrony in Cardiac Resynchronization Therapy. Danish Medical Journal, 61, B4981.
[6] Van Everdingen, W.M., Cramer, M.J., Doevendans, P.A. and Meine, M. (2015) Quadripolar Leads in Cardiac Resynchronization Therapy. JACC Clinical Electrophysiology, 1, 225-237.
https://doi.org/10.1016/j.jacep.2015.07.004
[7] 孙喆, 宿燕岗. 心室多点起搏及其现状[J]. 中华心律失常学杂志, 2016, 20(5): 448-451.
[8] Ciconte, G., Ćalović, Ž., McSpadden, L.C., Ryu, K., Mangual, J., Caporaso, I., et al. (2019) Multipoint Left Ventricular Pacing Improves Response to Cardiac Resynchro-nization Therapy with and without Pressure-Volume Loop Optimization: Comparison of the Long-Term Efficacy of Two Different Programming Strategies. Journal of Interventional Cardiac Electrophysiology: An International Journal of Ar-rhythmias and Pacing, 54, 141-149.
https://doi.org/10.1007/s10840-018-0480-6
[9] Butter, C., Georgi, C. and Stockburger, M. (2021) Optimal CRT Implantation-Where and How to Place the Left-Ventricular Lead? Current Heart Failure Reports, 18, 329-344.
https://doi.org/10.1007/s11897-021-00528-9
[10] Zanon, F., Marcantoni, L., Baracca, E., Pastore, G., Lanza, D., Fraccaro, C., et al. (2016) Optimization of Left Ventricular Pacing Site plus Multipoint Pacing Improves Remodeling and Clinical Response to Cardiac Resynchronization Therapy at 1 Year. Heart Rhythm, 13, 44-51.
https://doi.org/10.1016/j.hrthm.2016.05.015
[11] Chan, W.X., Zheng, Y., Wiputra, H., Leo, H.L. and Yap, C.H. (2021) Full Cardiac Cycle Asynchronous Temporal Compounding of 3D Echocardiography Images. Medical Image Analysis, 74, 22-29.
https://doi.org/10.1016/j.media.2021.102229
[12] Rajiah, P.S., François, C.J. and Leiner, T. (2023) Cardiac MRI: State of the Art. Radiology, 307, 122-131.
https://doi.org/10.1148/radiol.223008
[13] Leclercq, C., Burri, H., Curnis, A., Delnoy, P.P., Rinaldi, C.A., Sperzel, J., et al. (2019) Cardiac Resynchronization Therapy Non-Responder to Responder Conversion Rate in the More Re-sponse to Cardiac Resynchronization Therapy with Multi-Point Pacing (MORE-CRT MPP) Study: Results from Phase I. European Heart Journal, 40, 2979-2987.
https://doi.org/10.1093/eurheartj/ehz109
[14] Bodin, A., Bisson, A., Andre, C., Babuty, D. and Clementy, N. (2021) Anodal Capture for Multisite Pacing with a Quadripolar Left Ventricular Lead: A Feasibility Study. Journal of Clinical Medicine, 10, 58-86.
https://doi.org/10.3390/jcm10245886
[15] Nakai, T., Ikeya, Y., Kogawa, R. and Okumura, Y. (2022) Cardiac Re-synchronization Therapy: Current Status and Near-Future Prospects. Journal of Cardiology, 79, 352-357.
https://doi.org/10.1016/j.jjcc.2021.10.021
[16] Chung, M.K., Patton, K.K., Lau, C.P., Dal Forno, A.R.J., Al-Khatib, S.M., Arora, V., et al. (2023) 2023 HRS/APHRS/ LAHRS Guideline on Cardiac Physiologic Pacing for the Avoidance and Mitigation of Heart Failure. Heart Rhythm, 20, 9-17.
https://doi.org/10.1016/j.hrthm.2023.03.1538
[17] Osca, J., Francisco-Pascual, J., Martínez-Basterra, J., Martínez, J.G., Reis, H., Oliveira, M., et al. (2023) Response Rate in Cardiac Resynchronization Therapy Patients Implanted with a Left Ventricular Quadripolar Lead and the MultiPointTM Pacing Feature Early Activated QUARTO III. European Journal of Clinical Investigation, 53, 1170-1177.
https://doi.org/10.1111/eci.13935
[18] Al Turki, A., Lima, P.Y., Garcia, D., Montemezzo, M., Al-Dosari, A., Vidal, A., et al. (2019) Cardiac Resynchronization Therapy Reprogramming to Improve Electrical Synchrony in Patients with Existing Devices. Journal of Electrocardiology, 56, 94-99.
https://doi.org/10.1016/j.jelectrocard.2019.07.008
[19] Forleo, G.B., Santini, L., Giammaria, M., Potenza, D., Curnis, A., Calabrese, V., et al. (2017) Multipoint Pacing via a Quadripolar Left-Ventricular Lead: Preliminary Results from the Italian Registry on Multipoint Left-Ventricular Pacing in Cardiac Resynchronization Therapy (IRON-MPP). Europace: European Pacing, Arrhythmias, and Cardiac Electrophysiology: Journal of the Working Groups on Cardiac Pacing, Arrhythmias, and Cardiac Cellular Electrophysiology of the European Society of Cardiology, 19, 1170-1177.
https://doi.org/10.1093/europace/euw094
[20] Antoniou, C.K., Dilaveris, P., Chrysohoou, C., Konstantinou, K., Magkas, N., Xydis, P., et al. (2022) Multipoint Left Ventricular Pacing Effects on Hemodynamic Parameters and Func-tional Status: HUMVEE Single-Arm Clinical Trial (NCT03189368). Hellenic Journal of Cardiology, 63, 6-14.
https://doi.org/10.1016/j.hjc.2021.02.012
[21] Allison, J.D., Biton, Y. and Mela, T. (2022) Determinants of Re-sponse to Cardiac Resynchronization Therapy. The Journal of Innovations in Cardiac Rhythm Management, 13, 4994-5003.
https://doi.org/10.19102/icrm.2022.130503
[22] Mehta, V.S., Elliott, M.K., Sidhu, B.S., Gould, J., Porter, B., Niederer, S., et al. (2021) “Is Multipoint Pacing Superior to Optimized Single-Point Pacing?”—Authors’ Re-ply. Journal of Cardiovascular Electrophysiology, 32, 3280-3281.
https://doi.org/10.1111/jce.15276
[23] Mehta, V.S., Elliott, M.K., Sidhu, B.S., Gould, J., Porter, B., Niederer, S., et al. (2021) Multipoint Pacing for Cardiac Resynchronisation Therapy in Patients with Heart Failure: A Systematic Review and Meta-Analysis. Journal of Cardiovascular Electrophysiology, 32, 2577-2589.
https://doi.org/10.1111/jce.15199
[24] Hu, F., Zheng, L., Ding, L., Du, Z., Liang, E., Wu, L., et al. (2018) Clinical Outcome of Left Ventricular Multipoint Pacing versus Conventional Biventricular Pacing in Cardiac Resynchronization Therapy: A Systematic Review and Meta-Analysis. Heart Failure Reviews, 23, 927-934.
https://doi.org/10.1007/s10741-018-9737-5
[25] Antoniou, C.K., Xydis, P., Konstantinou, K., Magkas, N., Mano-lakou, P., Dilaveris, P., et al. (2021) Multipoint Left Ventricular Pacing as an Addition to Cardiac Resynchronization Therapy: A Bridge to the Holy Grail? American Journal of Cardiovascular Disease, 11, 29-40.
[26] Van Everdingen, W.M., Zweerink, A., Salden, O.A.E., Cramer, M.J., Doevendans, P.A., Van Rossum, A.C., et al. (2019) Atrioventricu-lar Optimization in Cardiac Resynchronization Therapy with Quadripolar Leads: Should We Optimize Every Pacing Con-figuration Including Multi-Point Pacing? Europace: European Pacing, Arrhythmias, and Cardiac Electrophysiology: Journal of the Working Groups on Cardiac Pacing, Arrhythmias, and Cardiac Cellular Electrophysiology of the Euro-pean Society of Cardiology, 21, 9-11.
https://doi.org/10.1093/europace/euy138
[27] Almusaad, A., Sweidan, R., Alanazi, H., Jamiel, A., Bokhari, F., Al Hebaishi, Y., et al. (2022) Long-Term Reverse Remodeling and Clinical Im-provement by MultiPoint Pacing in a Randomized, International, Middle Eastern Heart Failure Study. Journal of Inter-ventional Cardiac Electrophysiology: An International Journal of Arrhythmias and Pacing, 63, 399-407.
https://doi.org/10.1007/s10840-020-00928-2
[28] Rodero, C., Strocchi, M., Lee, A.W.C., Rinaldi, C.A., Vigmond, E.J., Plank, G., et al. (2022) Impact of Anatomical Reverse Remodelling in the Design of Optimal Quadripolar Pacing Leads: A Computational Study. Computers in Biology and Medicine, 140, 6-10.
https://doi.org/10.1016/j.compbiomed.2021.105073