颌骨骨髓炎微生物作用机制研究新进展
Recent Advances in the Study on the Microbial Mechanisms of Mandibular Osteomyelitis
DOI: 10.12677/ACM.2024.142603, PDF, HTML, XML, 下载: 33  浏览: 66 
作者: 谢 帅, 姚志涛*:新疆医科大学第一附属医院(附属口腔医院)口腔颌面创伤正颌外科,新疆 乌鲁木齐;新疆维吾尔自治区口腔医学研究所,新疆 乌鲁木齐
关键词: 颌骨骨髓炎微生物细菌致病机制综述Mandibular Osteomyelitis Microbe Bacteria Pathogenesis Review
摘要: 颌骨骨髓炎在世界范围内的发病率约为3~4/10万,颌骨骨髓炎常给患者带来巨大痛苦,因此本文对于颌骨骨髓炎微生物作用机制研究进行综述,梳理了目前主要微生物致病途径,在未来对颌骨骨髓炎的治疗上提供帮助。
Abstract: The incidence rate of mandibular osteomyelitis worldwide is approximately 3~4 cases per 100,000 people. This disease often causes patients significant pain and discomfort. Therefore, this paper provides a comprehensive review of the microbial mechanisms involved in mandibular osteomyeli-tis, outlining the current understanding of the main pathogenic pathways caused by microorgan-isms. This research aims to provide useful insights into the treatment of mandibular osteomyelitis in the future.
文章引用:谢帅, 姚志涛. 颌骨骨髓炎微生物作用机制研究新进展[J]. 临床医学进展, 2024, 14(2): 4359-4364. https://doi.org/10.12677/ACM.2024.142603

1. 概述

颌骨骨髓炎相关概念

颌骨骨髓炎是指由细菌感染以及物理或化学因素,使骨膜、骨密质和骨髓以及骨髓腔内的血管、神经等产生的炎性病变,由感染性和非感染性两种原因引起的骨炎。大多数骨髓炎病例是由感染引起的。尽管真菌,如酵母菌、孢子菌、念珠菌属和曲霉菌属在某些情况下会引起骨髓炎,但细菌是人类骨髓炎的主要微生物媒介。细菌导致的颌骨骨髓炎,大部分的结局都是颌骨坏死。目前对颌骨骨髓炎发病机制的研究非常多,但微生物学说一直发展缓慢,因为想从受感染的骨骼中分离出特定细菌,在很大程度上受到疾病发展机制、宿主合并症和环境暴露的影响 [1] 。这些条件都导致微生物学说在学术界一直未收到重视,本文就颌骨骨髓炎中细菌的作用机制展开综述,期望可以在未来针对各类骨髓炎中微生物的作用做出有效的关于病因学的治疗。

急性血源性骨髓炎通常是一种单菌性疾病,绝大多数急性血源性骨髓炎是由金黄色葡萄球菌引起的,但也有报道化脓性链球菌、肺炎链球菌和金氏菌也是感染的重要原因 [2] ,而由创伤或连续感染引起的骨髓炎通常是多菌性的。在没有严重环境污染的开放性骨折中,骨髓炎通常由皮肤菌群引起,其中以金黄色葡萄球菌和凝固酶阴性葡萄球菌引起的病例居多。然而,在有严重污染的开放性骨折中,一系列环境生物,包括革兰氏阴性菌(如铜绿假单胞菌、梭状芽孢杆菌和大肠杆菌)、其他革兰氏阳性菌(如芽孢杆菌和肠球菌属)、厌氧菌(如梭状芽孢杆菌)和结核分枝杆菌,也可能导致骨髓炎 [3] [4] [5] ,尽管各种各样的微生物被认为是骨髓炎的病原体,但在骨髓炎期间从死骨中培养出的微生物也可能是阴性的,这与细菌采样及培养的方式有关。

2. 颌骨骨髓炎感染阶段

颌骨骨髓炎的发病顺序主要可分为三个主要阶段:(1) 微生物入侵和生物膜增殖;(2) 宿主对细菌生物膜的免疫反应;(3) 细菌入侵对骨组织成分的影响。

2.1. 微生物入侵和生物膜增殖

微生物入侵引起的骨髓炎是由局部伤口污染和微生物接种引起的,或者是通过血源性传播引起的,后者主要见于儿童,骨髓炎的临床表现可能取决于微生物毒力因素,病人的免疫系统以及其他风险因素。这些因素可能对宿主的防御机制产生负面影响,如免疫缺陷、免疫抑制等,但局部微生物的易感因素也可能损害正常的骨骼和导致伤口延迟愈合 [6] ,除了化脓性链球菌和肺炎链球菌外,金黄色葡萄球菌也主要被认为是儿童急性骨髓炎中的局部因素 [7] 。凝固酶阴性葡萄球菌被认为是许多慢性骨髓炎病例的病因,但有时骨髓炎也可检测到霉菌和真菌 [8] [9] [10] 。另一项研究进一步表明,双磷酸盐可以促进细菌的粘附,进而促进细菌生物膜的形成,因此可能促进了骨髓炎的发展 [11] 。在此前进行的另一项研究中,对双磷酸盐相关颌骨骨髓炎的样本进行了微生物生物膜组织的筛选,发现生物膜结构中不同物种之间的共聚集,包括梭菌属、芽孢杆菌属、放线菌属、葡萄球菌属、链球菌属、月形单胞菌属、密螺旋体属和念珠菌属 [12] ,这些微生物的共同特点是,在坏死的软组织和骨组织以及异物(如骨合成材料、骨科内固定装置)的表面定植后,能够建立三维基质或生物膜。在生物膜形成初期,微生物主要处于好氧和浮游状态,代谢率较高,而在完全成熟和定植状态下,微生物的代谢状态以厌氧为主,且代谢速率极低。

2.2. 宿主对细菌生物膜的免疫反应

用免疫球蛋白和补体对浮游细菌进行杀灭,会导致多形核中性粒细胞(PMN)的激活,从而引起吞噬作用并产生活性氧。细菌生物膜也会被多形核中性粒细胞PMNs攻击,其免疫效率取决于生物膜成熟状态,未成熟的生物膜结构更容易成为PMNs的目标 [13] 。Stroh的实验结果表明,无论是免疫球蛋白G还是补体对生物膜调节作用,都能改善PMN在生物膜表面的细胞粘附程度,促进体外脱颗粒或诱导吞噬,而活性氧的产生则严重依赖于免疫球蛋白G的生物膜调节 [14] 。除了经典的PMN激活途径外,Meyle等人还能够在体外识别表皮葡萄球菌生物膜中含有非细菌的胞外物质中的蛋白质组分来诱导PMN活性 [15] ,除PMN外,生物膜的存在也会导致T细胞和单核细胞的激活,并导致局部促炎细胞因子的增加 [13] [14] [15] [16] [17] ,但这种激活并不能控制感染的病灶。由于迄今尚未完全了解其原因,但据推测,炎性介质的持续释放正在进行溶骨性和组织损伤过程 [17] 。在一项研究中表明,与正常骨组织相比,在骨髓炎样本中发现了高激活水平和低增殖水平的CD28/CD4+细胞,表明与CD28细胞相比,CD11b的高表达和穿孔素的分泌,增加了细胞毒性,由于此前在其他慢性疾病实体中发现过这种特征性表达,因此推测这种细胞模式可能影响破骨细胞活性,从而影响骨吸收过程 [18] 。在血液循环中的单核细胞可能对骨髓炎的骨吸收过程有很大贡献。当外周血单核细胞(CD14+),在肿瘤坏死因子(TNF)-a和白细胞介素(IL)-1刺激时,对血管内皮细胞的黏附和跨内皮细胞的迁移增加,最终导致较高的破骨细胞分化 [19] 。在骨科植入物感染患者的骨标本中,巨噬细胞炎症蛋白(MIP1a、CCL3)和MIP2a (CXCL2)表达增加,CD14+作为巨噬细胞和单核细胞的标记物进一步密切相关。组织学检查还显示,巨噬细胞炎性蛋白在局部和靠近单核细胞的地方表达。文献报道,成骨细胞在体外受到细菌刺激时也能产生巨噬细胞炎性蛋白 [20] 。作为免疫系统的一部分,成骨细胞也能够产生抗菌肽来应对细菌入侵。人类b防御素是这些抗菌肽的一个主要亚类,在黏膜和真皮表面的组成性表达增加,以保护上皮细胞免受微生物的侵害 [21] ,通过这些小阳离子多肽与革兰氏阴性和革兰氏阳性细菌的阴离子膜相互作用,防御素,特别是人b-防御素-1和人b-防御素-2 (hbd-1, hbd-2),可以高效地对抗各种不同的病原体,这包括病毒和真菌 [22] 。在健康和发炎的骨组织中已经证明了b-防御素的表达,特别是在细菌接触后hbd-2被诱导,从而得出抗菌肽在骨髓炎中也可能起作用的结论 [23] 。感染性病原体能够诱导hBD-2,在双磷酸盐相关颌骨坏死标本中hBD-2显著升高,与健康骨标本相比,双膦酸盐相关颌骨骨坏死骨标本中也发现hBD-1和hBD-3的表达水平升高,并强调了这种与药物干扰骨代谢有关的骨疾病中存在的炎症成分 [24] 。

2.3. 细菌入侵对骨组织成分的影响

细菌的存在也直接影响着骨组织的细胞成分,一项体外研究表明,感染金黄色葡萄球菌会导致作为先天免疫系统一部分的Tolllike受体2 (TLR2)的表达增加,这一表达上调已知与微生物入侵有关。微生物入侵后,TLR2的高表达与Jun氨基末端激酶(JNK)的活性水平直接相关,这直接影响成骨细胞的凋亡和分化 [25] [26] ,最近有研究表明,细菌内毒素,特别是定位于革兰氏阴性菌外膜的脂多糖,也能够通过激活JNK途径促进骨细胞的凋亡和抑制分化 [27] 。这些发现在另一项体外研究中得到证实,耐甲氧西林金黄色葡萄球菌生物膜分泌可溶性分子,这可溶性分子通过降低成骨细胞的活力和成骨潜力直接影响成骨细胞,以及通过增加成骨细胞因子κB (NF-κB)配体(RANKL)受体激活剂的表达间接影响成骨细胞,这也可以促进破骨细胞的活性 [28] 。金黄色葡萄球菌还有另一种强毒力因子蛋白A (protein A, SpA),能够直接结合成骨细胞,从而抑制体外成骨细胞的增殖和矿化过程,同时诱导细胞凋亡 [29] [30] 。其中,SpA能够结合肿瘤坏死因子受体1 (TNFR-1),而TNFR-1在成骨细胞中高度表达 [31] ,这种结合激活了NF-κB通路,并导致IL-6的释放,这可促进破骨细胞活性 [32] 。有研究表明,可溶性肿瘤坏死因子相关的凋亡诱导配体(TRAIL)可能与能够诱导凋亡的受体相互作用,例如死亡受体和骨保护素(OPG) [33] [34] 。后者被认为是TRAIL和RANKL的诱导可溶性受体,可促进破骨细胞的形成。有报道称,感染的成骨细胞对骨保护素OPG的产生有抑制作用。未感染的成骨细胞在外源性给予TRAIL时不会启动细胞凋亡,但成骨细胞在接触细菌后会有反应。Young等人提出,成骨细胞过度表达TRAIL会减少可用OPG,导致骨组织中促进破骨细胞形成的RANKL增加。此外,受感染的成骨细胞会对TRAIL的增加产生反应,从而诱导成骨细胞程序性死亡。

3. 总结

在骨髓炎致病机制中,对微生物的病理机制研究,目前大多数集中于发病最多的金黄色葡萄球菌、放线菌等。对于其他罕见细菌,由于临床病例少,细菌采样及培养容易受到环境干扰,因此目前对这类细菌病理机制研究较少。且有文章报道,简单对脓液样本的微生物组的采样及培养可能会导致无法培养出对应的细菌,需要采用更为先进的研究方法,对骨组织进行检测,确定骨髓炎的致病菌,如16S rRNA基因焦磷酸测序。也有文献提出骨髓炎的产生是由多种细菌共同作用的结果,但目前也没有充分的证据能够证实,在未来我们需要摒弃那些对研究可能产生影响的古老研究方法,采用更加稳定且先进的基因测序技术,这对探明在口腔这个复杂环境中,细菌在不同种类的骨髓炎中的作用将会带来更大的帮助。

NOTES

*通讯作者。

参考文献

[1] Tiemann, A., Hofmann, G.O., Krukemeyer, M.G., et al. (2014) Histopathological Osteomyelitis Evaluation Score (HOES)—An Innovative Approach to Histopathological Diagnostics and Scoring of Osteomyelitis. GMS Interdiscipli-nary Plastic and Reconstructive Surgery DGPW, 3, Doc08.
[2] FUnk, S.S. and Copley, L.A.B. (2017) Acute Hema-togenous Osteomyelitis in Children. Orthopedic Clinics of North America, 48, 199-208.
https://doi.org/10.1016/j.ocl.2016.12.007
[3] Al-Manei, K., Ghorbani, M., Naud, S., et al. (2022) Clinical Micro-bial Identification of Severe Oral Infections by MALDI-TOF Mass Spectrometry in Stockholm County: An 11-Year (2010 to 2020) Epidemiological Investigation. Microbiology Spectrum, 10, e0248722.
https://doi.org/10.1128/spectrum.02487-22
[4] Mcneil, J.C., Vallejo, J.G., Hultén, K.G., et al. (2018) Osteoartic-ular Infections Following Open or Penetrating Trauma in Children in the Post-Community-Acquired Methicillin-Resistant Staphylococcus aureus Era: The Impact of Enterobacter Cloacae. Pediatric Infectious Disease Journal, 37, 1204-1210.
https://doi.org/10.1097/INF.0000000000001991
[5] Lucidarme, Q., Lebrun, D., Vernet-Garnier, V., et al. (2022) Chronic Osteomyelitis of the Jaw: Pivotal Role of Microbiological Investigation and Multidisciplinary Management—A Case Report. Antibiotics (Basel), 11, Article No. 568.
https://doi.org/10.3390/antibiotics11050568
[6] Wu, S., Wu, B., Liu, Y., et al. (2022) Mini Review Therapeutic Strategies Targeting for Biofilm and Bone Infections. Frontiers in Microbiology, 13, Article ID: 936285.
https://doi.org/10.3389/fmicb.2022.936285
[7] Woods, C.R., Bradley, J.S., Chatterjee, A., et al. (2021) Clinical Practice Guideline by the Pediatric Infectious Diseases Society and the Infectious Diseases Society of America: 2021 Guideline on Diagnosis and Management of Acute Hematogenous Osteomyelitis in Pediatrics. Journal of the Pediatric Infectious Diseases Society, 10, 801-844.
https://doi.org/10.1093/jpids/piab027
[8] He, P., Francois, K., Missaghian, N., et al. (2022) Are Bacteria Just By-standers in the Pathogenesis of Inflammatory Jaw Conditions? Journal of Oral and Maxillofacial Surgery, 80, 1094-1102.
https://doi.org/10.1016/j.joms.2022.03.012
[9] Teschke, M., Christensen, A., Far, F., Reich, R.H., et al. (2021) Digitally Designed, Personalized Bone Cement Spacer for Staged TMJ and Mandibular Reconstruction—Introduction of a New Technique. Journal of Cranio-Maxillofacial Surgery, 49, 935-942.
https://doi.org/10.1016/j.jcms.2021.05.002
[10] Sakkas, A., Nolte, I., Heil, S., Mayer, B., Kargus, S., Mischkow-ski, R.A. and Thiele, O.C. (2021) Eggerthia catenaformis Infection Originating from a Dental Abscess Causes Severe Intestinal Complications and Osteomyelitis of the Jaw. GMS Interdisciplinary Plastic and Reconstructive Surgery DGPW, 10, Doc02.
[11] Wang, Z., Xu, J., Wan, J., et al. (2022) Vascular Analysis of Soft Tissues around the Bone Lesion in Osteoradionecrosis, Medication-Related Osteonecrosis, and Infectious Osteomyelitis of the Jaw. Journal of Craniofacial Surgery, 33, E750-E754.
https://doi.org/10.1097/SCS.0000000000008697
[12] Ewald, F., Wuesthoff, F., Koehnke, R., et al. (2021) Retrospective Analysis of Bacterial Colonization of Necrotic Bone and Antibiotic Resistance in 98 Pa-tients with Medication-Related Osteonecrosis of the Jaw (MRONJ). Clinical Oral Investigations, 25, 2801-2809.
https://doi.org/10.1007/s00784-020-03595-9
[13] Yamashita, J., Sawa, N., Sawa, Y., et al. (2021) Effect of Bisphosphonates on Healing of Tooth Extraction Wounds in Infectious Osteomyelitis of the Jaw. Bone, 143, Article ID: 115611.
https://doi.org/10.1016/j.bone.2020.115611
[14] Stroh, P., Günther, F., Meyle, E., et al. (2011) Host De-fence against Staphylococcus aureus Biofilms by Polymorphonuclear Neutrophils: Oxygen Radical Production but Not Phagocytosis Depends on Opsonisation with Immunoglobulin G. Immunobiology, 216, 351-357.
https://doi.org/10.1016/j.imbio.2010.07.009
[15] Meyle, E., Brenner-Weiss, G., Obst, U., et al. (2012) Immune Defense against S. epidermidis Biofilms: Components of the Extracellular Polymeric Substance Activate Distinct Bacteri-cidal Mechanisms of Phagocytic Cells. The International Journal of Artificial Organs, 35, 700-712.
https://doi.org/10.5301/ijao.5000151
[16] Arciola, C.R., An, Y.H., Campoccia, D., et al. (2005) Etiology of Im-plant Orthopedic Infections: A Survey on 1027 Clinical Isolates. The International Journal of Artificial Organs, 28, 1091-1100.
https://doi.org/10.1177/039139880502801106
[17] Wang, R., Wang, H., Mu, J., et al. (2023) Molecular Events in the Jaw Vascular Unit: A Traditional Review of the Mechanisms Involved in Inflammatory Jaw Bone Diseases. The Journal of Biomedical Research, 37, 313-325.
https://doi.org/10.7555/JBR.36.20220266
[18] Kumar, G., Roger, P., Ticchioni, M., et al. (2014) T Cells from Chronic Bone Infection Show Reduced Proliferation and a High Proportion of CD28-CD4 T Cells. Clinical and Experi-mental Immunology, 176, 49-57.
https://doi.org/10.1111/cei.12245
[19] Kindle, L., Rothe, L., Kriss, M., et al. (2006) Human Microvascular Endo-thelial Cell Activation by IL-1 and TNF-α Stimulates the Adhesion and Transendothelial Migration of Circulating Human CD14+ Monocytes That Develop with RANKL into Functional Osteoclasts. Journal of Bone and Mineral Research, 21, 193-206.
https://doi.org/10.1359/JBMR.051027
[20] Dapunt, U., Maurer, S., Giese, T., et al. (2014) The Macrophage In-flammatory Proteins MIP1α (CCL3) and MIP2α (CXCL2) in Implant-Associated Osteomyelitis: Linking Inflammation to Bone Degradation. Mediators of Inflammation, 2014, Article ID: 728619.
https://doi.org/10.1155/2014/728619
[21] Dunsche, A., Acil, Y., Siebert, R., et al. (2001) Expression Profile of Human Defensins and Antimicrobial Proteins in Oral Tissues. Journal of Oral Pathology & Medicine, 30, 154-158.
https://doi.org/10.1034/j.1600-0714.2001.300305.x
[22] Gallo, R.L. and Huttner, K.M. (1998) Antimicrobial Pep-tides: An Emerging Concept in Cutaneous Biology. Journal of Investigative Dermatology, 111, 739-743.
https://doi.org/10.1046/j.1523-1747.1998.00361.x
[23] Warnke, P.H., Springer, I.N., Russo, P.A.J., et al. (2006) Innate Immunity in Human Bone. Bone, 38, 400-408.
https://doi.org/10.1016/j.bone.2005.09.003
[24] Stockmann, P., Wehrhan, F., Schwarz-Furlan, S., et al. (2011) In-creased Human Defensine Levels Hint at an Inflammatory Etiology of Bisphosphonate-Associated Osteonecrosis of the Jaw: An Immunohistological Study. Journal of Translational Medicine, 9, Article No. 135.
https://doi.org/10.1186/1479-5876-9-135
[25] Chen, Q., Hou, T., Luo, F., et al. (2014) Involvement of Toll-Like Receptor 2 and Pro-Apoptotic Signaling Pathways in Bone Remodeling in Osteomyelitis. Cellular Physiology and Bio-chemistry, 34, 1890-1900.
https://doi.org/10.1159/000366387
[26] Kawai, T. and Akira, S. (2011) Toll-Like Receptors and Their Crosstalk with Other Innate Receptors in Infection and Immunity. Immunity, 34, 637-650.
https://doi.org/10.1016/j.immuni.2011.05.006
[27] Guo, C., Yuan, L., Wang, J., et al. (2014) Lipopolysaccharide (LPS) Induces the Apoptosis and Inhibits Osteoblast Differentiation through JNK Pathway in MC3T3-E1 Cells. In-flammation, 37, 621-631.
https://doi.org/10.1007/s10753-013-9778-9
[28] Sanchez, C. J., Ward, C.L., Romano, D.R., et al. (2013) Staphy-lococcus aureus Biofilms Decrease Osteoblast Viability, Inhibits Osteogenic Differentiation, and Increases Bone Resorp-tion in Vitro. BMC Musculoskeletal Disorders, 14, Article No. 187.
https://doi.org/10.1186/1471-2474-14-187
[29] Claro, T., Widaa, A., O’seaghdha, M., et al. (2011) Staphylococcus aureus Protein A Binds to Osteoblasts and Triggers Signals That Weaken Bone in Osteomyelitis. PLOS ONE, 6, e18748.
https://doi.org/10.1371/journal.pone.0018748
[30] Widaa, A., Claro, T., Foster, T.J., et al. (2012) Staphylococcus aureus Protein a Plays a Critical Role in Mediating Bone Destruction and Bone Loss in Osteomyelitis. PLOS ONE, 7, e40586.
https://doi.org/10.1371/journal.pone.0040586
[31] Ludwig, N., Thörner-Van Almsick, J., Mersmann, S., et al. (2023) Nuclease Activity and Protein A Release of Staphylococcus aureus Clinical Isolates Determine the Virulence in a Murine Model of Acute Lung Infection. Frontiers in Immunology, 14, Article ID: 1259004.
https://doi.org/10.3389/fimmu.2023.1259004
[32] Claro, T., Widaa, A., Mcdonnell, C., et al. (2013) Staphylococ-cus aureus Protein A Binding to Osteoblast Tumour Necrosis Factor Receptor 1 Results in Activation of Nuclear Factor Kappa B and Release of Interleukin-6 in Bone Infection. Microbiology (Reading), 159, 147-154.
https://doi.org/10.1099/mic.0.063016-0
[33] Casari, G., Dall’Ora, M., Melandri, A., et al. (2023) Impact of Soluble Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Released by Engineered Adipose Mesenchymal Stromal Cells on White Blood Cells. Cytotherapy, 25, 605-614.
https://doi.org/10.1016/j.jcyt.2023.02.008
[34] Halabi, S., Shiber, S., Paz, M., et al. (2023) Host Test Based on Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand, Interferon Gamma-Induced Protein-10 and C-Reactive Pro-tein for Differentiating Bacterial and Viral Respiratory Tract Infections in Adults: Diagnostic Accuracy Study. Clinical Microbiology and Infection, 29, 1159-1165.
https://doi.org/10.1016/j.cmi.2023.05.033