外周血生物标志物在非小细胞肺癌免疫治疗疗效预测研究进展
Progress of Peripheral Blood Biomarkers in Predicting the Efficacy of Immunotherapy for Non-Small Cell Lung Cancer
摘要: 近年来,以免疫检查点抑制剂(ICIs)为代表的免疫治疗在非小细胞肺癌(NSCLC)综合治疗中已经取得重大突破,彻底更改了不同期别NSCLC的整体治疗策略。虽然肿瘤组织相关标记物如:细胞程序性死亡–配体1 (PD-L1)、肿瘤突变负荷(TMB)等能在一定程度上很好的预测应答反应;但受制于肿瘤标本获取、检测技术、经济负担等因素,限制其在临床大规模应用,如何早期、高效、无创的识别免疫治疗的潜在获益人群是当务之急。外周血成为理想的样本来源,也显示了作为免疫治疗效果预测因子的潜力。本文旨在综述外周血生物标志物在NSCLC免疫治疗疗效预测研究进展,为后续临床治疗提供参考依据。
Abstract: In recent years, immunotherapy represented by immune checkpoint inhibitors (ICIs) has made significant breakthroughs in the comprehensive treatment of non-small cell lung cancer (NSCLC), completely changing the overall treatment strategy of NSCLC of different stages. Although tumor tissue-associated markers such as programmed cell death-ligand 1 (PD-L1) and tumor mutational load (TMB) can predict response well to a certain extent; however, factors such as tumor specimen acquisition, detection technology, and economic burden limit their large-scale clinical application, and it is imperative to identify the potential beneficiary populations of immunotherapy in an early, efficient, and non-invasive manner. Peripheral blood has become an ideal sample source and has also shown potential as a predictor of immunotherapy efficacy. The aim of this article is to review the progress of peripheral blood biomarkers in NSCLC immunotherapy efficacy prediction research, and provide a reference basis for subsequent clinical treatment.
文章引用:孙维蔚, 贾敬好. 外周血生物标志物在非小细胞肺癌免疫治疗疗效预测研究进展[J]. 临床医学进展, 2024, 14(2): 4445-4452. https://doi.org/10.12677/ACM.2024.142617

1. 前言

肺癌具有发现晚、预后差的临床特点,其发病率和死亡率均居我国首位 [1] 。近年来,以程序性死亡蛋白及配体1 (programmed death-1 and ligand-1, PD-1/PD-L1)抑制剂为代表的免疫治疗彻底改变了非小细胞肺癌(non-small cell lung cancer, NSCLC)的治疗格局,免疫单药或联合化疗已经成为转移性NSCLC一线或二线的标准治疗,但免疫治疗客观缓解率仍然较低 [2] [3] 。以肿瘤组织表达的PD-L1和TMB为预测因子相关研究中,低表达者同样能观察到临床获益,而部分高表达者依然存在低应答反应,提示PD-L1和肿瘤突变负荷(tumor mutation burden, TMB)作为预测因子具有一定局限性 [4] [5] ,受制于标本获取难易程度、肿瘤异质性、检测平台检测标准差异,结果并不精确 [6] [7] 。而液体活检技术的优势在于侵入性小,允许重复、多次取样,能够追踪治疗期间的动态变化过程 [8] ,外周血标志物变化有可能更早的反映肿瘤和宿主微环境变化 [9] ,弥补活检或穿刺样本无法获取肿瘤全貌的局限性。随着高通量测序和人工智能技术的快速发展,基于外周血生物标志物检测预测免疫治疗疗效的研究受到了越来越多的关注。

2. PDL1

PD-1是表达在多种活化T细胞表面的一种受体,与肿瘤细胞表达的PD-L1配体结合能增强肿瘤细胞的免疫耐受性,介导免疫逃避机制 [10] 。研究表明:PD-L1不仅表达在肿瘤细胞、免疫细胞和肿瘤微环境的其他细胞表面,还可能以细胞外形式存在于肿瘤患者外周血的血浆或血清中,且已被证明在肿瘤免疫抑制中发挥作用 [11] 。

可溶性PDL1 (soluble PD-L1, sPD-L1)在肿瘤细胞和成熟树突细胞中产生和释放,通过血液和淋巴循环播散至全身,与细胞表面受体结合抑制T细胞的活化和增殖,抑制抗肿瘤免疫 [12] 。在接受ICIs治疗的NSCLC患者中,高水平sPD-L1与较短的无进展生存期(progression-free survival, PFS)和总生存期(overall survival, OS)显著相关,且高sPD-L1组(≥90 pg/mL)的疾病控制率(objective response rate, ORR)明显低于低sPD-L1组(<90 pg/mL) (37% vs 57%, P = 0.0158) [13] 。Fabio等 [14] meta分析结果同样显示:高水平的sPD-L1与较差的PFS和OS相关。外泌体PD-L1是另外一种重要形式,可以与T细胞表面PD-1或髓样细胞表面的toll样受体结合,直接和间接地抑制抗肿瘤免疫反应 [15] [16] 。2019年Li等 [17] 发现,较高的外泌体PD-L1与NSCLC疾病进展相关。2021年Yang等 [18] 对转移性NSCLC患者免疫治疗2个月后血液的PD-L1表达进行了动态分析,提示血液PD-L1 mRNA和外泌体PD-L1表达上调预示着良好疗效和生存率,且两种生物标志物的组合可以更好地筛选获益亚群。目前,支持sPD-L1和外泌体PD-L1作为免疫治疗响应的预测标志物的数据大多以回顾性研究为主,尚缺乏大型前瞻性研究的有力支持。

循环肿瘤细胞(circulating tumor cell, CTC)在肿瘤形成早期,从肿瘤病灶脱落并存在于外周血中,能够较好反映肿瘤的异质性。2015年Mazel等 [19] 首次发现PD-L1在转移性乳腺癌患者外周血CTC上表达,并验证了CTC PD-L1检测的可行性。Guibert等 [20] 前瞻性分析了96例晚期NSCLC患者在纳武利尤单抗治疗前和疾病进展时CTC PD-L1的表达,发现CTC PD-L1表达率高于组织样本(83% vs 41%)。Nicolazzo等 [21] 纳入了24例接受免疫治疗的晚期NSCLC患者,分别对基线期、治疗后3个月、6个月外周血中CTC和CTC的PD-L1表达进行了评估。发现基线期和治疗后3个月的CTC及其表面PD-L1的表达与预后不佳相关;在治疗6个月后所有患者均检测到了CTC,CTC PD-L1阴性患者均出现临床获益,而CTC PD-L1阳性患者均出现病情进展,表明CTC PDL1阳性可能是早期耐药的预测性标志物。多项研究显示了CTC上PD-L1表达的预后价值,如何量化PD-L1在CTC上的表达成为临床进一步应用的关键 [22] [23] 。此外,血小板PD-L1不仅能够反映肿瘤整体PD-L1表达情况,而且具有抑制CD4+和CD8+T细胞的能力。开发的一种计算血小板PD-L1 (pPD-L1)的算法,与基于免疫组化的肿瘤PD-L1定量相比,在预测ICIs反应方面更具有优势 [24] 。基于液体活检技术下的PD-L1检测在预测方面展现出了良好的应用前景,且获取的临床信息较为全面,能够满足治疗期间的动态监测需求。

3. 血液肿瘤突变负荷

外周血循环肿瘤DNA (circulating tumor DNA, ctDNA)计算的血液肿瘤突变负荷(blood tumor burden, bTMB)定义为每百万碱基中检测出的体细胞基因编码错误、碱基替换、基因插入或确实错误的总数,作为一种新兴的免疫预测标志物可能比组织TMB更具优势 [25] [26] [27] 。Gandara等 [25] 表示,bTMB ≥ 16 mut/Mb的NSCLC患者接受阿替利珠单抗治疗的PFS和OS获益更好,首次证实了bTMB对于免疫治疗疗效的预测价值。MYSTIC [26] 研究证实:bTMB ≥ 20 mut/Mb的患者可观察到更高的PFS和OS。FIRST [27] 作为首个前瞻性评估bTMB的临床研究同样发现:bTMB越高,越倾向于观察到更高的ORR,更长的OS和PFS;在长期随访中,bTMB ≥ 16 mut/Mb的患者OS获益显著。前瞻性论证了bTMB对免疫治疗疗效的预测价值,为bTMB进入临床实践奠定了重要基础。然而,ctDNA突变丰度和肿瘤异质性程度均会对bTMB的检测造成偏倚 [28] [29] ,影响检测结果准确性,多项bTMB的改进算法正在被提出并验证 [30] 。

4. 循环免疫细胞

免疫细胞是肿瘤微环境的重要组成部分,在机体的抗肿瘤免疫中发挥关键作用。识别和监测外周血中循环免疫细胞的数量和亚群变化,能够帮助预测机体免疫状态及ICIs的治疗反应。

1) 常规外周血标志物

中性粒细胞是肿瘤微环境中主要的免疫细胞类型,在细胞因子及表观遗传学信号诱导下可极化成不同的表型,发挥抗肿瘤或促肿瘤的双重作用,在一定程度上能够作为肿瘤免疫治疗疗效和预后评估的标志 [31] [32] 。Tanizaki等 [33] 研究发现,低中性粒细胞绝对计数(absolute neutrophil count, ANC)、高淋巴细胞绝对计数和高嗜酸性粒细胞绝对计数(absolute eosinophil count, AEC)的基线特征与更好的PFS和OS显著相关。此外,肿瘤诱导的中性粒细胞通过产生诱导型一氧化氮合酶抑制细胞毒性CD8+T淋巴细胞,一氧化氮合酶是一种主要的炎症介质,能够限制肿瘤扩散,以中性粒细胞和淋巴细胞计数衍生的免疫炎症指数可能更具预测价值 [34] [35] 。中性淋巴细胞比值(neutrophil-to-lymphocyte ratio, NLR)与NSCLC患者预后相关性的Meta分析中 [36] ,基线期NLR ≥ 5的患者与纳武利尤治疗后较差的PFS和OS相关。治疗后NLR的变化对PFS和OS也有预测作用。Chen等 [37] 研究发现,治疗后6周或治疗后12周NLR的降低与较高的ORR相关。研究表明:基线衍生的NLR [dNLR,ANC/(白细胞 − ANC)]可能比NLR更与临床结果相关,因为还考虑了单核细胞和其他粒细胞亚群 [38] [39] 。多项研究表明:所选样本的差异,造成NLR或dNLR高低水平的判断略有不同,但治疗前两项的升高均提示提示预后不良 [40] [41] 。血小板淋巴比(platelet-to-lymphocyte ratio, PLR)、淋巴单核比(lymphocyte-to-monocyte ratio, LMR)同样反映机体炎症状态。研究表明:高PLR、低LMR常常与更差的OS和PFS相关 [42] [43] 。最近的一项研究证实了血小板可促进抗肿瘤免疫 [44] 。这一发现,使得血小板这种特殊的免疫细胞受到了诸多关注,一系列关于血小板与免疫疗效相关性的研究正在积极展开 [24] [45] 。外周血标志物的预测作用尚有待大规模的前瞻性数据支持下确定最佳检测时机和各种免疫细胞的最佳截断值,如何确定最佳的联合预测模型仍是要解决的难题。

2) 淋巴细胞亚群

淋巴细胞亚群的数量和百分比反映机体当前的免疫功能状态,能够作为疾病进展、疗效预测和预后的潜在生物标志物 [46] [47] 。CD8+ T细胞在免疫系统对肿瘤细胞的破坏中起着重要作用,PD-1/L1阻断可使表达PD-1的CD8+ T细胞重新活化并诱导其增殖,与多种肿瘤类型对ICIs的反应相关 [48] 。研究表明 [49] ,ICI治疗前较少的循环CD8+ T细胞与持久临床获益(durable clinical benefit, DCB)相关,其准确率为70%。Kim等 [50] 对T细胞亚型进行更详细的前瞻性分析,发现NSCLC患者外周血Ki-67D7/D0 (给药后7天Ki-67+细胞百分比的倍数变化) ≥ 2.8,与更好的DCB、PFS和OS相关,ICIs治疗后循环PD-1+ CD8+ T细胞的早期增殖可能是预测实体瘤抗PD-1治疗反应和预后的有用替代生物标志物。另一项研究 [51] 提示,治疗前外周血PD-1 + CD8+ T细胞的T细胞受体(T-cell receptor, TCR)多样性较高且治疗后TCR克隆性增加的患者,ICIs反应和生存结局更好。总之,无论是监测CD8+ T细胞及亚型的数量变化,还是TCR克隆增,都有助于预测ICIs益处,更好地指导临床治疗。CD4+ T细胞通过辅助细胞因子产生,调节免疫应答和记忆作用等方式增强抗肿瘤免疫 [52] [53] 。Miao等 [54] 对NSCLC患者的外周血亚群及对应的预后数据进行探索,发现基线外周血CD4+ CD45RA T细胞与NSCLC患者应用ICIs的预后密切相关,能够作为预测ICIs疗效的潜在生物标志物。CD45RA是记忆T细胞的表面特征之一,表明记忆CD4+ T细胞在ICIs的起效中同样发挥重要作用。此外,治疗前后淋巴细胞比值的变化与免疫治疗疗效相关 [55] 。

髓源抑制性细胞(myeloid-derived suppressor cells, MDSC)是一种在骨髓细胞分化过程中异常积累的异质细胞,通过肿瘤微环境(tumor microenvironment, TME)中的T细胞活性,促进肿瘤免疫逃逸 [56] 。Youna等 [57] 评估了62例NSCLC患者治疗前后外周血样本中自然杀伤细胞(natural killer cell, NK)和MDSC的频率与免疫治疗反应发现:首次治疗后应答者的NK细胞百分比中位数明显高于非应答者,而Lox-1+多形核MDSC百分比中位数则呈现出相反趋势。在第一个治疗周期后,应答者的NK细胞与Lox-1+多形核MDSC比率(NMR)明显高于非应答者,且第一周期后NMR ≥ 5.75的患者ORR更高,PFS和OS更长。Kim [58] 等人同样观察到,对纳武利尤单抗应答的患者,外周血Lox-1+多形核MDSC的水平出现显著降低。综上,PD-1抑制剂治疗期间多形核MDSC的相对变化有望成为抗PD-1治疗反应的早期预测指标,待进一步验证。

3) 细胞因子

细胞因子是由免疫细胞和某些非免疫细胞(内皮细胞、表皮细胞、纤维母细胞等)经刺激而合成、分泌的一类具有广泛生物学活性的小分子蛋白质。某些细胞因子,尤其是参与适应性免疫应答的细胞因子(如IFNγ、IL-6和IL-8),有助于抗肿瘤免疫 [59] [60] 。Sanmamed等 [59] 表明,在接受抗PD-1治疗的黑色素瘤和NSCLC患者中,血清IL-8水平的早期下降与黑色素瘤和NSCLC患者OS的延长相关。Kauffmann- Guerrero [60] 则在二线接受抗PD-1治疗的NSCLC患者中观察到,低水平的IL-6、IL-8和高水平的IFN-γ是患者对ICI治疗长期反应的特征。上述研究均提示了外周血细胞因子数值变化与免疫治疗疗效密切相关。基于细胞因子抗体在肿瘤免疫调节其他疾病中的应用进展。在肿瘤免疫循环中,可借助细胞因子增强免疫应答或降低免疫治疗副作用。具有很大的应用前景。

5. 营养和炎症指标

C反应蛋白(C reactive protein, CRP)是肝起源的急性期蛋白,反映组织损伤和全身性炎症。Riedl等 [61] 进行的一项回顾性双中心研究表明:在接受PD-1或PD-L1抑制剂治疗的NSCLC患者中,基线期CRP水平升高与较差的PFS和OS相关。研究表明:CRP flare反应(CRP在最初治疗时急剧升高,随后降至基线以下)能够预测抗PD-1单药治疗的反应和生存率 [62] 。早期CRP动力学可能成为一种易于确定、具有成本效益且无创的生物标志物,用于预测NSCLC在第一个月内对检查点抑制剂的反应。

在恶性肿瘤的患者中经常看到乳酸脱氢酶(lactate dehydrogenase, LDH)的升高。LDH水平是癌细胞有氧糖酵解效应重要标志,促进癌细胞生存;通过肿瘤代谢和肿瘤免疫影响治疗;LDH和肿瘤本身侵袭性以及靶向、免疫治疗疗效可能有关;LDH具有协调肿瘤细胞增殖功能,LDH抑制剂可能作为抗肿瘤治疗的新靶点。Mezquita等 [63] 一项回顾性研究中,治疗前LDH大于正常值上限且dNLR > 3制定了肺免疫预后指数(lung immune prognostic index, LIPI),结果证实LIPI可以作为晚期NSCLC患者选择ICI治疗时的潜在有用工具。炎症和营养指标易于评估,能够帮助临床医生早期识别治疗效果较好的患者,为必要的治疗方案更改提供参考依据。

从临床实践来看,相较于单一标志物,基于外周血相关数据建立的预测模型,能够提高预测的特异性及有效性,利于指导个体化治疗方案的选择。Clelia [64] 等证实,通过结合NSCLC患者恶病质状态及营养、代谢和炎症参数相关变化建立的预测模型,是预测ICI治疗生存率和临床反应的关键。在本综述背景下,筛选更多肿瘤免疫相关变量,进行预测模型的开发及验证,将会成为未来的研究方向之一。

6. 小结和展望

随着人工智能算法、机器学习、质谱流式技术的发展,能够对肿瘤进行更深入的信息挖掘,可获得多维度、多阶段的微环境的动态改变图景。尤其是肿瘤微环境刚度的异质性更能免疫治疗应答反应的生物学行为改变。外周血生物标志物仍面临一些挑战:首先,目前研究多为回顾性、探索性、小样本研究,缺乏大型随机前瞻性临床数据支持。其次,对于外周血标志物的检测缺乏标准化平台,且需要对采样时间点、特异度和敏感度进一步规范化,另外外周血标志物受机体循环系统多种因素调节影响较大。再者,影响NSCLC免疫预后因素众多,单一标志物存在一定的局限性,未来的应用模式势必会结合肿瘤、TME、治疗因素及宿主等多方面因素的联合预测模型将是未来研究的方向。

参考文献

[1] Sung, H., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2] Xia, L., et al. (2019) PD-1/PD-L1 Blockade Therapy in Advanced Non-Small-Cell Lung Cancer: Current Status and Future Directions. The Oncologist, 24, S31-S41.
https://doi.org/10.1634/theoncologist.2019-IO-S1-s05
[3] Miao, K., et al. (2022) Real-World Data of Different Immune Checkpoint Inhibitors for Non-Small Cell Lung Cancer in China. Frontiers in Oncology, 12, Article 859938.
https://doi.org/10.3389/fonc.2022.859938
[4] Negrao, M.V., et al. (2021) Oncogene-Specific Differences in Tu-mor Mutational Burden, PD-L1 Expression, and Outcomes from Immunotherapy in Non-Small Cell Lung Cancer. Jour-nal for Immunotherapy of Cancer, 9, e002891.
https://doi.org/10.1136/jitc-2021-002891
[5] Aguilar, E.J., et al. (2019) Outcomes to First-Line Pembrolizumab in Patients with Non-Small-Cell Lung Cancer and Very High PD-L1 Expression. Annals of Oncology, 30, 1653-1659.
https://doi.org/10.1093/annonc/mdz288
[6] Doroshow, D.B., et al. (2021) PD-L1 as a Biomarker of Response to Immune-Checkpoint Inhibitors. Nature Reviews. Clinical Oncology, 18, 345-362.
https://doi.org/10.1038/s41571-021-00473-5
[7] Bravaccini, S., et al. (2021) TMB in NSCLC: A Broken Dream? International Journal of Molecular Sciences, 22, Article 6536.
https://doi.org/10.3390/ijms22126536
[8] Li, S., et al. (2020) Emerging Blood-Based Biomarkers for Predicting Response to Checkpoint Immunotherapy in Non-Small-Cell Lung Cancer. Frontiers in Immunology, 11, Article 603157.
https://doi.org/10.3389/fimmu.2020.603157
[9] de Visser, K.E. and Joyce, J.A. (2023) The Evolving Tumor Mi-croenvironment: From Cancer Initiation to Metastatic Outgrowth. Cancer Cell, 41, 374-403.
https://doi.org/10.1016/j.ccell.2023.02.016
[10] Sharma, P., et al. (2017) Primary, Adaptive, and Acquired Re-sistance to Cancer Immunotherapy. Cell, 168, 707-723.
https://doi.org/10.1016/j.cell.2017.01.017
[11] Daassi, D., et al. (2020) The Importance of Exosomal PDL1 in Tu-mour Immune Evasion. Nature Reviews. Immunology, 20, 209-215.
https://doi.org/10.1038/s41577-019-0264-y
[12] Niu, M., et al. (2022) Biological Characteristics and Clinical Sig-nificance of Soluble PD-1/PD-L1 and Exosomal PD- L1 in Cancer. Frontiers in Immunology, 13, Article 827921.
https://doi.org/10.3389/fimmu.2022.827921
[13] Murakami, S., et al. (2020) Association Between Serum Level Soluble Programmed Cell Death Ligand 1 and Prognosis in Patients with Non-Small Cell Lung Cancer Treated with An-ti-PD-1 Antibody. Thoracic Cancer, 11, 3585-3595.
https://doi.org/10.1111/1759-7714.13721
[14] Scirocchi, F., et al. (2022) Soluble PD-L1 as a Prognostic Factor for Immunotherapy Treatment in Solid Tumors: Systematic Review and Meta-Analysis. International Journal of Molecular Sciences, 23, Article 14496.
https://doi.org/10.3390/ijms232214496
[15] Morrissey, S.M. and Yan, J. (2020) Exosomal PD-L1: Roles in Tu-mor Progression and Immunotherapy. Trends in Cancer, 6, 550-558.
https://doi.org/10.1016/j.trecan.2020.03.002
[16] Kim, D.H., et al. (2019) Exosomal PD-L1 Promotes Tumor Growth through Immune Escape in Non-Small Cell Lung Cancer. Experimental & Molecular Medicine, 51, 1-13.
https://doi.org/10.1038/s12276-019-0295-2
[17] Li, C., et al. (2019) Clinical Significance of PD-L1 Expression in Serum-Derived Exosomes in NSCLC Patients. Journal of Translational Medicine, 17, Article No. 355.
https://doi.org/10.1186/s12967-019-2101-2
[18] Yang, Q., et al. (2021) Novel Biomarkers of Dynamic Blood PD-L1 Expression for Immune Checkpoint Inhibitors in Advanced Non-Small-Cell Lung Cancer Patients. Frontiers in Immunology, 12, Article 665133.
https://doi.org/10.3389/fimmu.2021.665133
[19] Mazel, M., et al. (2015) Frequent Expression of PD-L1 on Cir-culating Breast Cancer Cells. Molecular Oncology, 9, 1773-1782.
https://doi.org/10.1016/j.molonc.2015.05.009
[20] Guibert, N., et al. (2018) PD-L1 Expression in Circulating Tu-mor Cells of Advanced Non-Small Cell Lung Cancer Patients Treated with Nivolumab. Lung Cancer (Amsterdam, Netherlands), 120, 108-112.
https://doi.org/10.1016/j.lungcan.2018.04.001
[21] Nicolazzo, C., et al. (2016) Monitoring PD-L1 Positive Circu-lating Tumor Cells in Non-Small Cell Lung Cancer Patients Treated with the PD-1 Inhibitor Nivolumab. Scientific Re-ports, 6, Article No. 31726.
https://doi.org/10.1038/srep31726
[22] Indini, A., et al. (2021) Circulating Biomarkers of Response and Toxicity of Immunotherapy in Advanced Non-Small Cell Lung Cancer (NSCLC): A Comprehensive Review. Cancers, 13, Article 1794.
https://doi.org/10.3390/cancers13081794
[23] Strati, A., et al. (2023) Clinical Significance of PD-L1 Status in Cir-culating Tumor Cells for Cancer Management During Immunotherapy. Biomedicines, 11, Article 1768.
https://doi.org/10.3390/biomedicines11061768
[24] Hinterleitner, C., et al. (2021) Platelet PD-L1 Reflects Collec-tive Intratumoral PD-L1 Expression and Predicts Immunotherapy Response in Non-Small Cell Lung Cancer. Nature Communications, 12, Article No. 7005.
https://doi.org/10.1038/s41467-021-27303-7
[25] Gandara, D.R., et al. (2018) Blood-Based Tumor Mutational Burden as a Predictor of Clinical Benefit in Non-Small- Cell Lung Cancer Patients Treated with Atezolizumab. Nature Medicine, 24, 1441-1448.
https://doi.org/10.1038/s41591-018-0134-3
[26] Si, H., et al. (2021) A Blood-Based Assay for Assessment of Tumor Mutational Burden in First-Line Metastatic NSCLC Treatment: Results from the MYSTIC Study. Clinical Cancer Research, 27, 1631-1640.
https://doi.org/10.1158/1078-0432.CCR-20-3771
[27] Kim, E.S., et al. (2022) Blood-Based Tumor Mutational Burden as a Biomarker for Atezolizumab in Non-Small Cell Lung Cancer: The Phase 2 B-F1RST Trial. Nature Medicine, 28, 939-945.
https://doi.org/10.1038/s41591-022-01754-x
[28] Stetson, D., et al. (2019) Orthogonal Comparison of Four Plasma NGS Tests with Tumor Suggests Technical Factors Are a Major Source of Assay Discordance. JCO Precision Oncology, 3, 1-9.
https://doi.org/10.1200/PO.18.00191
[29] Liu, Z., et al. (2019) Presence of Allele Frequency Heterogeneity Defined by CtDNA Profiling Predicts Unfavorable Overall Survival of NSCLC. Translational Lung Cancer Research, 8, 1045-1050.
https://doi.org/10.21037/tlcr.2019.12.10
[30] Nie, W., et al. (2022) CtDNA-Adjusted BTMB as a Predictive Bi-omarker for Patients with NSCLC Treated with PD- (L)1 Inhibitors. BMC Medicine, 20, Article No. 170.
https://doi.org/10.1186/s12916-022-02360-x
[31] Hedrick, C.C. and Malanchi, I. (2022) Neutrophils in Cancer: Heterogeneous and Multifaceted. Nature Reviews. Immunology, 22, 173-187.
https://doi.org/10.1038/s41577-021-00571-6
[32] Gungabeesoon, J., et al. (2023) A Neutrophil Response Linked to Tumor Control in Immunotherapy. Cell, 186, 1448- 1464.e20.
https://doi.org/10.1016/j.cell.2023.02.032
[33] Tanizaki, J., et al. (2018) Peripheral Blood Biomarkers Associated with Clinical Outcome in Non-Small Cell Lung Cancer Patients Treated with Nivolumab. Journal of Thoracic Oncology, 13, 97-105.
https://doi.org/10.1016/j.jtho.2017.10.030
[34] Saini, R. and Singh, S. (2019) Inducible Nitric Oxide Synthase: An Asset to Neutrophils. Journal of Leukocyte Biology, 105, 49-61.
https://doi.org/10.1002/JLB.4RU0418-161R
[35] Hirschhorn, D., et al. (2023) T Cell Immunotherapies Engage Neutrophils to Eliminate Tumor Antigen Escape Variants. Cell, 186, 1432-1447.e17.
https://doi.org/10.1016/j.cell.2023.03.007
[36] Cao, D., et al. (2018) A Reliable and Feasible Way to Predict the Benefits of Nivolumab in Patients with Non-Small Cell Lung Cancer: A Pooled Analysis of 14 Retrospective Studies. Oncoimmunology, 7, e1507262.
https://doi.org/10.1080/2162402X.2018.1507262
[37] Chen, Y., et al. (2021) Association of Dynamic Changes in Peripheral Blood Indexes with Response to PD-1 Inhibitor-Based Combination Therapy and Survival Among Patients with Advanced Non-Small Cell Lung Cancer. Frontiers in Immunology, 12, Article 672271.
https://doi.org/10.3389/fimmu.2021.672271
[38] Mezquita, L., et al. (2021) Predicting Immunotherapy Outcomes under Therapy in Patients with Advanced NSCLC Using DNLR and Its Early Dynamics. European Journal of Cancer (Oxford, England: 1990), 151, 211-220.
https://doi.org/10.1016/j.ejca.2021.03.011
[39] Alessi, J.V., et al. (2021) Low Peripheral Blood Derived Neutro-phil-to-Lymphocyte Ratio (DNLR) Is Associated with Increased Tumor T-Cell Infiltration and Favorable Outcomes to First-Line Pembrolizumab in Non-Small Cell Lung Cancer. Journal for Immunotherapy of Cancer, 9, e003536.
https://doi.org/10.1136/jitc-2021-003536
[40] Li, Y., et al. (2020) Pretreatment Neutrophil-to-Lymphocyte Ratio (NLR) May Predict the Outcomes of Advanced Non-Small-Cell Lung Cancer (NSCLC) Patients Treated with Immune Checkpoint Inhibitors (ICIs). Frontiers in Oncology, 10, Article 654.
https://doi.org/10.3389/fonc.2020.00654
[41] Holtzman, L., et al. (2022) dNLR-Based Score Predicting Overall Survival Benefit for the Addition of Platinum-Based Chemotherapy to Pembrolizumab in Advanced NSCLC with PD-L1 Tumor Proportion Score ≥ 50. Clinical Lung Cancer, 23, 122-134.
https://doi.org/10.1016/j.cllc.2021.12.006
[42] Diem, S., et al. (2017) Neutrophil-to-Lymphocyte Ratio (NLR) and Platelet-to-Lymphocyte Ratio (PLR) as Prognostic Markers in Patients with Non-Small Cell Lung Cancer (NSCLC) Treated with Nivolumab. Lung Cancer (Amsterdam, Netherlands), 111, 176-181.
https://doi.org/10.1016/j.lungcan.2017.07.024
[43] Zheng, L., et al. (2023) Decreased Monocyte-to-Lymphocyte Ratio Was Associated with Satisfied Outcomes of First-Line PD-1 Inhibitors Plus Chemotherapy in Stage IIIB-IV Non-Small Cell Lung Cancer. Frontiers in Immunology, 14, Article 1094378.
https://doi.org/10.3389/fimmu.2023.1094378
[44] Ma, C., et al. (2022) Platelets Control Liver Tumor Growth through P2Y12-Dependent CD40L Release in NAFLD. Cancer Cell, 40, 986-998.e5.
https://doi.org/10.1016/j.ccell.2022.08.004
[45] Pankowska, K.A., et al. (2023) Crosstalk of Immune Cells and Platelets in an Ovarian Cancer Microenvironment and Their Prognostic Significance. International Journal of Molecular Sciences, 24, Article 9279.
https://doi.org/10.3390/ijms24119279
[46] Zhang, G., et al. (2022) Clinical Predictive Value of Naïve and Memory T Cells in Advanced NSCLC. Frontiers in Immunology, 13, Article 996348.
https://doi.org/10.3389/fimmu.2022.996348
[47] Wang, Y.-Y., et al. (2020) Circulating Activated Lymphocyte Subsets as Potential Blood Biomarkers of Cancer Progression. Cancer Medicine, 9, 5086-5094.
https://doi.org/10.1002/cam4.3150
[48] Huang, A.C., et al. (2017) T-Cell Invigoration to Tumour Burden Ratio Associated with Anti-PD-1 Response. Nature, 545, 60-65.
https://doi.org/10.1038/nature22079
[49] Nabet, B.Y., et al. (2020) Noninvasive Early Identification of Therapeutic Benefit from Immune Checkpoint Inhibition. Cell, 183, 363-376.e13.
https://doi.org/10.1016/j.cell.2020.09.001
[50] Kim, K.H., et al. (2019) The First-Week Proliferative Response of Peripheral Blood PD-1+CD8+ T Cells Predicts the Response to Anti-PD-1 Therapy in Solid Tumors. Clini-cal Cancer Research, 25, 2144-2154.
https://doi.org/10.1158/1078-0432.CCR-18-1449
[51] Han, J., et al. (2020) TCR Repertoire Diversity of Peripheral PD-1+CD8+ T Cells Predicts Clinical Outcomes after Immunotherapy in Patients with Non-Small Cell Lung Cancer. Cancer Immunology Research, 8, 146-154.
https://doi.org/10.1158/2326-6066.CIR-19-0398
[52] Borst, J., et al. (2018) CD4+ T Cell Help in Cancer Immu-nology and Immunotherapy. Nature Reviews. Immunology, 18, 635-647.
https://doi.org/10.1038/s41577-018-0044-0
[53] Kruse, B., et al. (2023) CD4+ T Cell-Induced Inflammatory Cell Death Controls Immune-Evasive Tumours. Nature, 618, 1033-1040.
https://doi.org/10.1038/s41586-023-06199-x
[54] Miao, K., et al. (2022) Peripheral Blood Lymphocyte Subsets Predict the Efficacy of Immune Checkpoint Inhibitors in Non-Small Cell Lung Cancer. Frontiers in Immunology, 13, Ar-ticle 912180.
https://doi.org/10.3389/fimmu.2022.912180
[55] 戴斌, 黄翠萍, 曹喆, 等. PD-1抑制剂对晚期非小细胞肺癌患者T淋巴细胞亚群、NK细胞及抑制性免疫检查点的影响[J]. 中国老年学杂志, 2021, 41(7): 1393-1396.
[56] Sui, H., et al. (2022) Immunotherapy of Targeting MDSCs in Tumor Microenvironment. Frontiers in Immunology, 13, Arti-cle 990463.
https://doi.org/10.3389/fimmu.2022.990463
[57] Youn, J.-I., et al. (2020) Peripheral Natural Killer Cells and Myeloid-Derived Suppressor Cells Correlate with Anti-PD-1 Responses in Non-Small Cell Lung Cancer. Sci-entific Reports, 10, Article No. 9050.
https://doi.org/10.1038/s41598-020-65666-x
[58] Kim, H.R., et al. (2019) The Ratio of Peripheral Regulatory T Cells to Lox-1+ Polymorphonuclear Myeloid-Derived Suppressor Cells Predicts the Early Response to Anti-PD-1 Ther-apy in Patients with Non-Small Cell Lung Cancer. American Journal of Respiratory and Critical Care Medicine, 199, 243-246.
https://doi.org/10.1164/rccm.201808-1502LE
[59] Sanmamed, M.F., et al. (2017) Changes in Serum Interleukin-8 (IL-8) Levels Reflect and Predict Response to Anti-PD-1 Treatment in Melanoma and Non-Small-Cell Lung Cancer Pa-tients. Annals of Oncology, 28, 1988-1995.
https://doi.org/10.1093/annonc/mdx190
[60] Keegan, A., et al. (2020) Plasma IL-6 Changes Correlate to PD-1 In-hibitor Responses in NSCLC. Journal for Immunotherapy of Cancer, 8, e000678.
https://doi.org/10.1136/jitc-2020-000678
[61] Riedl, J.M., et al. (2020) C-Reactive Protein (CRP) Levels in Im-mune Checkpoint Inhibitor Response and Progression in Advanced Non-Small Cell Lung Cancer: A Bi-Center Study. Cancers, 12, Article 2319.
https://doi.org/10.3390/cancers12082319
[62] Klümper, N., et al. (2022) C Reactive Protein Flare Predicts Re-sponse to Checkpoint Inhibitor Treatment in Non-Small Cell Lung Cancer. Journal for Immunotherapy of Cancer, 10, e004024.
https://doi.org/10.1136/jitc-2021-004024
[63] Mezquita, L., et al. (2018) Association of the Lung Im-mune Prognostic Index with Immune Checkpoint Inhibitor Outcomes in Patients with Advanced Non-Small Cell Lung Cancer. JAMA Oncology, 4, 351-357.
https://doi.org/10.1001/jamaoncol.2017.4771
[64] Madeddu, C., et al. (2023) Effect of Cancer-Related Cachexia and Associated Changes in Nutritional Status, Inflammatory Status, and Muscle Mass on Immunotherapy Efficacy and Survival in Patients with Advanced Non-Small Cell Lung Cancer. Cancers, 15, Article 1076.
https://doi.org/10.3390/cancers15041076