PSMA PET/CT和PET/MRI在前列腺癌初始分期中的作用
The Role of PSMA PET/CT and PET/MRI in the Initial Staging of Prostate Cancer
摘要: 前列腺癌(PCa)是男性最常见的实体器官恶性肿瘤,也是导致癌症死亡的第三大原因。准确的PCa检测和分期方法是确定疾病程度和治疗方案的必要条件。回顾前列腺特异性膜抗原(PSMA)正电子发射断层扫描(PET)成像在PCa初步分期中的表现和诊断准确性,并评估其对明确治疗计划的影响。与传统成像相比,PSMA PET对检测前列腺内肿瘤具有中等程度的高灵敏度和特异性,对检测区域和盆腔外转移瘤具有中等程度的高灵敏度。PSMA PET还可在手术前检测前列腺外疾病方面发挥重要作用,并可指导手术规划。此外,PSMA PET已被证明是对治疗无效患者进行明确放疗计划的有效工具。因此,回顾了前列腺特异性膜抗原(PSMA)正电子发射断层扫描(PET)成像在前列腺癌(PCa)初始分期中的诊断准确性和对治疗的影响。我们得出结论:PSMA正电子发射计算机断层成像能有效地对初期PCa进行成像,并能帮助患者修改治疗方案。
Abstract: Prostate cancer (PCa) is the most common solid organ malignancy in men and the third leading cause of cancer death. Accurate PCa detection and staging methods are essential for determining the extent of disease and treatment options. Review prostate-specific membrane antigen (PSMA) positron emission tomography (PET) imaging in Performance and diagnostic accuracy in PCa initial staging, and to assess its impact on a definitive treatment plan. Compared to conventional imaging, PSMA PET has moderately high sensitivity and specificity for detecting intraprostate tumors and moderately high sensitivity for detecting regional and extra-pelvic metastases. PSMA PET can also play an important role in detecting extra-prostatic disease before surgery and can guide surgical planning. In addition, PSMA PET has proven to be an effective tool for a definitive radiotherapy plan for patients who have not responded to treatment. Therefore, the diagnostic accuracy and impact on treatment of prostate specific membrane antigen (PSMA) positron emission tomography (PET) im-aging in the initial staging of prostate cancer (PCa) were reviewed. We conclude that PSMA positron emission computed tomography is effective in imaging initial PCa and can help patients modify treatment.
文章引用:孙静宜, 秦永德. PSMA PET/CT和PET/MRI在前列腺癌初始分期中的作用[J]. 临床医学进展, 2024, 14(2): 4467-4473. https://doi.org/10.12677/ACM.2024.142620

1. 引言

前列腺癌(PCa)已成为最常见的男性实体器官恶性肿瘤,是发达国家癌症致死的主要原因 [1] 。目前的研究显示,影响PCa发病率的诸多因素中,比较显著的不仅包括遗传因素、种族、身高、肥胖率还与高血清水平的睾酮和胰岛素样生长因子1的水平息息相关 [2] 。目前对于PCa的诊断仍然主要依赖于前列腺特异性抗原(PSA)水平筛查和超声引导的穿刺活检。但是,目前常用的PCa诊断方法对于准确诊断和精准分期仍然存在着较高的错误率,并且尚不能为PCa临床治疗计划提供关于疾病范围的有效指导信息 [3] 。华俊 [4] 等的研究表明传统影像学对于区域外淋巴结转移灶及骨转移灶的检出率分别为3.17% (2/63)和25.40% (16/63),而应用前列腺特异性膜抗原(prostate specific membrane antigen, PSMA)正电子发射计算机断层显像(positronemission tomography/computed tomography, PET/CT)对其的检出率均高于传统影像学,分别为23.81% (15/63)和52.38% (33/63)。基因组标记物、基于多参数磁共振成像(mpMRI)的靶向活检和前列腺特异性膜抗原(PSMA)正电子发射断层显像(PET)的引入大大改善了初期PCa的术前诊断、风险分层及分期。本文旨在评价PSMA PET/CT和PSMA PET/MRI在PCa初期诊断和分期中的作用。

2. 在初始分期时进行风险分层的非影像学方法

在前列腺癌初始分期时进行风险分级是必要的,以便制定更加个体化的治疗方案。PCa早期诊断依赖于直肠指检(DRE)和血清PSA测定,这些检查已被证明可以提高PCa的早期检出率,从而降低死亡率 [5] 。然而,PSA和DRE的特异性有限,可导致过度诊断和过度治疗 [3] 。对于PSA水平大于4 ng/ml或DRE异常的患者需进行经直肠超声(TRUS)活检 [6] 。

目前已开发出多种临床列线图来改善对个体风险的分层,其中美国国家综合癌症网络(NCCN)指南使用PSA、Gleason评分和临床分期将PCa分层为极低危、低危、中危、高危和极高危五种类别,为明确治疗前后的临床管理提供指导 [7] 。各种血清、尿液和活检生物标记物已被批准用于临床,目的是减少低风险PCa患者的过度诊断和过度治疗,以及高风险PCa患者的诊断不足和治疗不力。前列腺健康指数(Prostate Health Index),是一种结合了游离PSA、总PSA和p2PSA的诊断性血液检测方法,在检测有临床意义的PCa方面具有很高的诊断性能 [8] 。也已被证明比单独PSA具有更高的诊断准确性,并且将其纳入临床实践时,可以降低不必要的活检率的同时不改变较高级别PCa的检出率 [9] 。

基因组标记物(包括Decipher、Oncotype和Prolaris检测)的引入可改善PCa风险分层并指导个体PCa管理。Decipher检测利用根治性前列腺切除术标本中22种RNA标记物的表达,已被证明对转移和癌症特异性死亡率有很高的预测能力,可作为指导PCa患者更个性化治疗方案的有用工具 [10] 。此外,另一项研究表明,Decipher基因组分类器(GC)每增加0.1分,PSMA-avid淋巴结受累率就会增加40% [11] 。这项研究表明,GC分数较高的患者可能会从结节清扫、全盆腔照射或其他可控制PCa结节转移的治疗策略中获益 [11] 。

3. mpMRI在PCa初始分期中的作用

mpMRI传统上包括T2加权成像(T2WI)、弥散加权成像(DWI)和动态对比增强成像(DCE),这些成像方法已被广泛用于检测有临床意义的癌症。在一项系统性综述中发现,mpMRI对未进行活检或活检结果阴性的男性具有44%~87%、63%~98%的临床意义PCa检出率和阴性预测值(NPV) [12] 。这项研究中的NPV表明,mpMRI可用来排除有临床意义的疾病,从而减少PSA水平升高患者不必要的靶向活检次数 [12] 。此外,mpMRI靶向活检在检测PCa方面也被证明比系统性活检更有效,有助于避免过度诊断或诊断不足。在一项针对500名临床疑似PCa患者且之前未接受过活检的试验中,38%接受MRI靶向活检的男性发现了有临床意义的PCa,而接受系统性活检的男性发现有临床意义的PCa的比例只有26% [13] 。与TRUS活组织检查相比,mpMRI靶向活检能发现更多有临床意义的PCa,而在避免发现临床意义不大的疾病方面,它的效果是TRUS活组织检查的两倍 [14] 。

尽管这些结果表明mpMRI在PCa的诊断和分期中发挥着关键作用,但这种方法仍有需要改进之处 [15] 。此外,关于mpMRI引导下的靶向活检是否足以诊断PCa,也存在争议 [16] ,mpMRI引导下的靶向活检作为一种临床有创检查方式,其结果受人为操作水平差异影响,有不可避免的假阴性率。

此外,随着基于李克特评分法和成像标准的前列腺成像报告和数据系统(PI-RADS)的引入,mpMRI的性能和解释在各中心之间已变得更加标准化 [17] 。在PI-RADSv2中,外周腺体和过渡性腺体主要分别通过DWI和T2WI进行评估。PI-RADSv2根据mpMRI检查结果与临床重大癌症存在的相关性,采用5级评分法对病变进行定性 [17] 。PI-RADS1级表示极不可能存在临床重大癌症,而PI-RADS5则表示极有可能存在临床重大癌症。但是,对于PI-RADSv2级的界定在读片者之间的一致性相对较低,这可能会妨碍PI-RADS在指导临床决策方面的可靠性 [18] 。PI-RADS3级病变是否适合活检也存在模糊性 [17] 。PI-RADSv2.1于2019年发布,其中包括图像采集参数的修订和判读标准的修改,预计将减少阅片人员之间的差异并规范前列腺MRI的判读 [19] 。未来版本的PI-RADS报告系统可能会纳入更多临床特征(如PSA密度),以帮助医生做出临床决策,并提供更多信息 [20] 。

在初治患者中使用mpMRI,有助于临床医生预测患者对不同的治疗方案的反应,从而帮助以更加个性化的方式指导PCa的治疗 [21] [22] 。例如,在高剂量率(HDR)近距离治疗和外束放射治疗后,mpMRI检测到的精囊浸润可预测高剂量率联合HDR治疗的高危前列腺癌患者的生化失败 [23] 。此外,还可以根据肿瘤体积预测根治性前列腺切除术后的生化复发 [24] 。这些研究表明,与传统的预处理变量相比,mpMRI在指导手术治疗和改善PCa患者的肿瘤预后方面具有重要作用。

最近的研究还表明,DCE成像和多平面T2WI对前列腺MRI的整体准确性可能并没有明显的帮助 [25] 。与mpMRI相比,双参数(bp)磁共振成像(T2WI和DWI)在PCa检测中的作用更大。在PSA水平升高或DRE检查结果异常的患者中,由单平面(轴向) T2WI和DWI组成的简略双参数MRI对PCa的检测显示出较高的灵敏度和特异性 [26] 。此外,vanderLeest等人在一项针对626名未接受活检的男性进行了前瞻性对照研究中发现,发现缩短bpMRI和三平面bpMRI的诊断效果与mpMRI相似,缩短bpMRI在NPV方面的临床差异可以忽略 [25] 。这些研究表明,bpMRI并不会明显影响诊断的准确性,而且提供了一种在不使用对比剂的情况下检测高级别PCa的简便方法 [26] 。

4. PSMA PET

4.1. 用于PCa成像的非PSMA靶向PET显像剂

PET等分子影像技术在PCa分期、指导治疗方案、改善患者预后方面发挥着重要作用。虽然计算机断层扫描(CT)、MRI和骨扫描(ECT)传统上被用于中高危前列腺癌的分期,但这些成像方式在检测小的腹膜后淋巴结转移和小体积的骨转移方面的准确性有限 [1] 。葡萄糖类似物18氟脱氧葡萄糖(18F-FDG)在肿瘤PET显像中有广泛的应用,但已被证明对前列腺癌的初始检测灵敏度较差,在生化复发的检测中效用也有限 [27] 。18F-FDG PET可用于检测侵袭性疾病、评估转移性疾病的治疗以及判断去势抵抗性肿瘤患者的预后 [27] 。

用于前列腺癌显像的其他非PSMA靶向PET显像剂包括18F-NaF、11c-胆碱和18F-FDG。18F-NaF是一种靶向骨代谢的PET显像剂,与常规显像相比,对骨转移性疾病具有更高的诊断准确性。然而,18F-NaF也可以检测到许多骨良性病变,这使得成像研究的解释与骨扫描相比更加繁琐。PET显像剂11c-胆碱显示细胞膜上磷脂酰胆碱合成上调,而18F-FDG显示恶性细胞内氨基酸内流上调。虽然11c-胆碱和18F-FDG有助于检测前列腺癌的生化复发,但它们对检测前列腺内肿瘤的特异性不佳 [27] 。特别是18F-FDG对于良性前列腺增生与PCa有着相似的亲合力,因此它在确定前列腺内肿瘤的作用有限 [27] 。正是因为如此,人们对新型放射性示踪剂越来越感兴趣,如PSMA,这种示踪剂对PCa的检出率高,并且可以在初始分期中发挥更大的作用。

4.2. PSMA PET/CT和PSMA PET/MRI放射性示踪剂

PSMA是一种跨膜糖蛋白,在正常前列腺实质中表达,但在PCa和其他恶性肿瘤中表达增强,因此可作为一个有用的诊疗靶点 [1] [27] 。靶向PSMA的显像剂包括68Ga和18F标记的PET显像剂。目前应用最广泛的是68Ga标记PSMA靶向显像剂是68Ga-PSMA-11。18F标记的PSMA显像剂包括18F-DCFPyL和18F-PSMA-1007 [1] 。与68Ga相比,18F标记的PSMA靶向显像剂具有正电子能量低、半衰期长等优势,可提高图像质量 [28] 。

4.3. 前列腺内肿瘤的检测

一些研究已经探讨了PSMA PET在确定前列腺内肿瘤特征方面的效能。PET/MRI是将PET显像的高特异性与MRI显像的肿瘤精准定位相结合。在中危或高危PCa患者中,无论在前列腺内肿瘤的检测还是盆腔转移性淋巴结的检测方面,68Ga-PSMA-11PET/MRI比单纯mpMRI或68Ga-PSMA-11PET/CT成像具有更高的灵敏度和特异度 [29] [30] [31] 。最近一项包含7项研究的荟萃分析也表明,68GaPSMA-11PET/CT的综合灵敏度和特异度为0.97和0.66,阴性似然比为0.05 [32] 。较低的阴性似然比提示68Ga-PSMA-11PET/CT可用于临床怀疑PCa的患者排除PCa的患病肯能,从而避免不必要的活检 [32] 。

最近也有研究探索了利用影像组学对PSMA PET进行定量分析是否可以提供关于患者前列腺癌侵袭性的额外信息,从18F-DCFPyL PET/CT图像中提取的影像组学特征比标准PET特征更能预测淋巴结受累、任何转移、Gleason评分和包膜外侵犯 [33] 。这项研究强调了PSMA PET/CT作为原发性前列腺癌无创风险分层的生物标志物的潜力。为了进一步了解使用影像组学的益处,有必要在多个中心进行进一步的研究与标准PET参数评估原发性前列腺癌风险的比较。

4.4. PSMA PET对转移性淋巴结的诊断

如果淋巴结转移的风险超过5%,通常会在根治性前列腺切除术中进行双侧扩大盆腔淋巴结清扫(ePLND) [34] 。ePLND被认为是检测PCa患者淋巴结受累情况的最准确方法,可提供有价值的预后信息。传统影像学检查在根治性前列腺切除术前检测淋巴结受累方面不够敏感或特异,因此PCa患者术前评估淋巴结受累的方法有限 [34] 。PSMA PET在淋巴结分期评估方面进行了广泛研究。在一项包括130名中高危PCa患者的研究中,Maurer等人发现68 Ga-PSMA-11 PET的淋巴结分期效果优于常规成像 [34] 。随后的研究显示,PSMA PET检测淋巴结转移的特异性较高,但灵敏度一般,这突出表明可能会低估疾病的程度 [35] 。Kim等人最近对六项研究进行的荟萃分析也反映了这些发现,他们发现68 Ga-PSMA-11 PET/CT对新诊断的中高危PCa患者淋巴结受累的检测集合灵敏度和特异性分别为0.71和0.95 [36] 。因此,虽然PSMA PET阳性时是准确的,但PSMA PET阴性并不一定能排除淋巴结转移的存在。

4.5. PSMA PET对手术规划的影响

尽管根治性前列腺切除术通常是治愈性的,但部分患者术后可能会出现生化复发或顽固性病变,尤其是淋巴结或精囊出现病变时 [37] 。PSMA PET在术前检测前列腺外疾病和指导手术方法方面发挥着至关重要的作用,因为与前列腺局限性疾病患者相比,PSMA PET检测出前列腺外疾病的患者出现生化失败的可能性更大 [37] 。与核磁共振成像相比,PSMA PET还有助于更好地检测前列腺体外扩展(EPE),由于保留神经的前列腺切除术是疑似EPE患者的禁忌症,PSMA PET可以作为一种有用的工具来识别不适合手术的患者 [38] 。68 Ga-PSMA-11 PET后,分别有23%和13%的64例男性患者的结节和远处转移状态得到了提升,6%和23%的患者的结节和远处转移状态得到了降低,这表明PSMA PET可为治疗方案的改变提供信息 [39] 。

5. 总结与展望

PSMA PET已被证明在初始前列腺癌的显像中具有良好的应用前景。与常规成像相比,PSMA PET已被证明在定性方面更有效前列腺内肿瘤、盆腔淋巴结疾病和远处转移。此外,PSMA PET被证明是手术应答的预测因素,并可导致患者确定性放疗计划的改变。对于根据PSMA PET影像结果制定根治性放疗计划的患者,需要进一步的研究来评估其术后复发率和OS。随着靶向PSMA的显像剂数量的不断增加,以及PSMA显像剂的广泛应用,我们也期待着评估PSMA PET在其他类型恶性肿瘤诊断和分期中的疗效的临床试验结果。

NOTES

*通讯作者。

参考文献

[1] Eapen, R.S., Nzenza, T.C., Murphy, D.G., Hofman, M.S., Cooperberg, M. and Lawrentschuk, N. (2019) PSMA PET Applications in the Prostate Cancer Journey: From Diagnosis to Theranostics. World Journal of Urology, 37, 1255- 1261.
https://doi.org/10.1007/s00345-018-2524-z
[2] Ugai, T., Sasamoto, N., Lee, H.-Y., et al. (2022) Is Early-Onset Cancer an Emerging Global Epidemic? Current Evidence and Future Implications. Nature Reviews Clinical Oncology, 19, 656-673.
[3] Filella, X. and Foj, L. (2018) Novel Biomarkers for Prostate Cancer Detection and Prognosis. In: Schatten, H., Ed., Cell & Molecular Biology of Prostate Cancer, Springer, Cham, 15-39.
https://doi.org/10.1007/978-3-319-95693-0_2
[4] 华俊, 宋彦平, 杨媛媛, 等. 前列腺特异性膜抗原PET/CT对中高危前列腺癌初始TNM分期及临床治疗策略的影响[J]. 中国肿瘤临床, 2022, 49(16): 828-833.
https://doi.org/10.12354/j.issn.1000-8179.2022.20220639
[5] Catalona, W.J., Richie, J.P., Ahmann, F.R., et al. (2017) Comparison of Digital Rectal Examination and Serum Prostate Specific Antigen in the Early Detection of Prostate Cancer: Results of a Multicenter Clinical Trial of 6630 Men. Journal of Urology, 197, S200-S207.
https://doi.org/10.1016/j.juro.2016.10.073
[6] Stabile, A., Giganti, F., Rosenkrantz, A.B., et al. (2020) Multipar-ametric MRI for Prostate Cancer Diagnosis: Current Status and Future Directions. Nature Reviews Urology, 17, 41-61.
https://doi.org/10.1038/s41585-019-0212-4
[7] Mohler, J.L., Armstrong, A.J., Bahnson, R.R., et al. (2016) Pros-tate Cancer, Version 1.2016. Journal of the National Comprehensive Cancer Network, 14, 19-30.
https://doi.org/10.6004/jnccn.2016.0004
[8] Parekh, D.J., Punnen, S., Sjoberg, D.D., et al. (2015) A Mul-ti-Institutional Prospective Trial in the USA Confirms that the 4Kscore Accurately Identifies Men with High-Grade Pros-tate Cancer. European Urology, 68, 464-470.
https://doi.org/10.1016/j.eururo.2014.10.021
[9] Tosoian, J.J., Druskin, S.C., Andreas, D., et al. (2017) Use of the Prostate Health Index for Detection of Prostate Cancer: Results from a Large Academic Practice. Prostate Cancer and Prostatic Diseases, 20, 228-233.
https://doi.org/10.1038/pcan.2016.72
[10] Dalela, D., Löppenberg, B., Sood, A., Sammon, J. and Abdollah, F. (2016) Contemporary Role of the Decipher ® Test in Prostate Cancer Management: Current Practice and Future Perspec-tives. Reviews in Urology, 18, 1-9.
[11] Xu, M.J., Kornberg, Z., Gadzinski, A.J., et al. (2019) Genomic Risk Predicts Molecular Imaging-Detected Metastatic Nodal Disease in Prostate Cancer. European Urology Oncology, 2, 685-690.
https://doi.org/10.1016/j.euo.2018.11.002
[12] Futterer, J.J., Briganti, A., De Visschere, P., et al. (2015) Can Clin-ically Significant Prostate Cancer be Detected with Multiparametric Magnetic Resonance Imaging? A Systematic Review of the Literature. European Urology, 68, 1045- 1053.
https://doi.org/10.1016/j.eururo.2015.01.013
[13] Kasivisvanathan, V., Rannikko, A.S., Borghi, M., et al. (2018) MRI-Targeted or Standard Biopsy for Prostate-Cancer Diagnosis. The New England Journal of Medicine, 378, 1767-1777.
https://doi.org/10.1056/NEJMoa1801993
[14] Schoots, I.G., Roobol, M.J., Nieboer, D., Bangma, C.H., Steyerberg, E.W. and Hunink, M.G. (2015) Magnetic Resonance Imaging-Targeted Biopsy May Enhance the Di-agnostic Accuracy of Significant Prostate Cancer Detection Compared to Standard Transrectal Ultrasound-Guided Biopsy: A Systematic Review and Meta-Analysis. European Urology, 68, 438-450.
https://doi.org/10.1016/j.eururo.2014.11.037
[15] Wibulpolprasert, P., Raman, S.S., Hsu, W., et al. (2020) Influ-ence of the Location and Zone of Tumor in Prostate Cancer Detection and Localization on 3-T Multiparametric MRI Based on PI-RADS Version 2. AJR. American Journal of Roentgenology, 214, 1101-1111.
https://doi.org/10.2214/AJR.19.21608
[16] Ahdoot, M., Wilbur, A.R., Reese, S.E., et al. (2020) MRI-Targeted, Systematic, and Combined Biopsy for Prostate Cancer Diagnosis. New England Journal of Medicine, 382, 917-928.
https://doi.org/10.1056/NEJMoa1910038
[17] Weinreb, J.C., Barentsz, J.O., Choyke, P.L., et al. (2016) PI-RADS Prostate Imaging-Reporting and Data System: 2015, Version 2. European Urology, 69, 16-40.
https://doi.org/10.1016/j.eururo.2015.08.052
[18] Westphalen, A.C., McCulloch, C.E., Anaokar, J.M., et al. (2020) Variability of the Positive Predictive Value of PI-RADS for Prostate MRI across 26 Centers: Experience of the Society of Abdominal Radiology Prostate Cancer Disease-Focused Panel. Radiology, 296, 76-84.
https://doi.org/10.1148/radiol.2020190646
[19] Turkbey, B., Rosenkrantz, A.B., Haider, M.A., et al. (2019) Pros-tate Imaging Reporting and Data System Version 2.1: 2019 Update of Prostate Imaging Reporting and Data System Ver-sion 2. European Urology, 76, 340-351.
https://doi.org/10.1016/j.eururo.2019.02.033
[20] Gupta, R.T., Mehta, K.A., Turkbey, B. and Verma, S. (2020) PI-RADS: Past, Present, and Future. Journal of Magnetic Resonance Imaging, 52, 33-53.
https://doi.org/10.1002/jmri.26896
[21] McClure, T.D., Margolis, D.J.A., Reiter, R.E., et al. (2012) Use of MR Imaging to Determine Preservation of the Neurovascular Bundles at Robotic-Assisted Laparoscopic Prostatectomy. Radi-ology, 262, 874-883.
https://doi.org/10.1148/radiol.11103504
[22] Schiavina, R., Bianchi, L., Borghesi, M., et al. (2018) MRI Displays the Prostatic Cancer Anatomy and Improves the Bundles Management before Robot-Assisted Radical Prostatectomy. Journal of Endourology, 32, 315-321.
https://doi.org/10.1089/end.2017.0701
[23] Hegde, J.V., Demanes, D.J., Veruttipong, D., et al. (2017) Pretreat-ment 3T Multiparametric MRI Staging Predicts for Biochemical Failure in High-Risk Prostate Cancer Treated with Com-bination High-Dose-Rate Brachytherapy and External Beam Radiotherapy. Brachytherapy, 16, 1106-1112.
https://doi.org/10.1016/j.brachy.2017.07.008
[24] Tan N, Shen L, Khoshnoodi P, et al. (2018) Pathological and 3 Tesla Volumetric Magnetic Resonance Imaging Predictors of Biochemical Recurrence after Robotic Assisted Radical Prostatectomy: Correlation with Whole Mount Histopathology. Journal of Urology, 199, 1218-1223.
https://doi.org/10.1016/j.juro.2017.10.042
[25] Van Der Leest, M., Israel, B., Cornel, E.B., et al. (2019) High Di-agnostic Performance of Short Magnetic Resonance Imaging Protocols for Prostate Cancer Detection in Biopsy-Naïve Men: The Next Step in Magnetic Resonance Imaging Accessibility. European Urology, 76, 574-581.
https://doi.org/10.1016/j.eururo.2019.05.029
[26] Obmann, V.C., Pahwa, S., Tabayayong, W., et al. (2018) Diag-nostic Accuracy of a Rapid Biparametric MRI Protocol for Detection of Histologically Proven Prostate Cancer. Urology, 122, 133-138.
https://doi.org/10.1016/j.urology.2018.08.032
[27] Fraum, T.J., Ludwig, D.R., Kim, E.H., Schroeder, P., Hope, T.A. and Ippolito, J.E. (2018) Prostate Cancer PET Tracers: Essentials for the Urologist. The Canadian Journal of Urology, 25, 9371-9383.
[28] Werner, R.A., Derlin, T., Lapa, C., et al. (2020) 18F-Labeled, PSMA-Targeted Radio-tracers: Leveraging the Advantages of Radiofluorination for Prostate Cancer Molecular Imaging. Theranostics, 10, 1-16.
https://doi.org/10.7150/thno.37894
[29] Eiber, M., Weirich, G., Holzapfel, K., et al. (2016) Simultaneous 68Ga-PSMA HBED-CC PET/MRI Improves the Localization of Primary Prostate Cancer. European Urology, 70, 829-836.
https://doi.org/10.1016/j.eururo.2015.12.053
[30] Hicks, R.M., Simko, J.P., Westphalen, A.C., et al. (2018) Diagnostic Accuracy of 68Ga-PSMA-11 PET/MRI Compared with Multiparametric MRI in the Detection of Prostate Cancer. Radiology, 289, 730-737.
https://doi.org/10.1148/radiol.2018180788
[31] Park, S.Y., Zacharias, C., Harrison, C., et al. (2018) Gallium 68 PSMA-11 PET/MR Imaging in Patients with Intermediate-or High-Risk Prostate Cancer. Radiology, 288, 495-505.
https://doi.org/10.1148/radiol.2018172232
[32] Satapathy, S., Singh, H., Kumar, R. and Mittal, B.R. (2021) Diag-nostic Accuracy of 68Ga-PSMA PET/CT for Initial Detection in Patients with Suspected Prostate Cancer: A Systematic Review and Meta-Analysis. AJR. American Journal of Roentgenologyl, 216, 599-607.
[33] Cysouw, M.C.F., Jansen, B.H.E, Van De Brug, T., et al. (2021) Machine Learning-Based Analysis of [18F]DCFPyL PET Radiomics for Risk Stratification in Primary Prostate Cancer. European Journal of Nuclear Medicine and Molecular Imaging, 48, 340-349.
[34] Maurer, T., Gschwend, J.E., Rauscher, I., et al. (2016) Diagnostic Efficacy of 68Gallium-PSMA Positron Emission Tomography Compared to Conventional Imaging for Lymph Node Staging of 130 Consecutive Patients with Intermediate to High Risk Prostate Cancer. Journal of Urology, 195, 1436-1443.
https://doi.org/10.1016/j.juro.2015.12.025
[35] Van Leeuwen, P.J., Emmett, L., Ho, B., et al. (2017) Prospective Evaluation of 68Gallium-Prostate-Specific Membrane Antigen Positron Emission Tomography/Computed Tomography for Preoperative Lymph Node Staging in Prostate Cancer. BJU International, 119, 209-215.
https://doi.org/10.1111/bju.13540
[36] Kim, S.J., Lee, S.W. and Ha, H.K. (2019) Diagnostic Performance of Radi-olabeled Prostate-Specific Membrane Antigen Positron Emission Tomography/Computed Tomography for Primary Lymph Node Staging in Newly Diagnosed Intermediate to High-Risk Prostate Cancer Patients: A Systematic Review and Meta-Analysis. Urologia Internationalis, 102, 27-36.
https://doi.org/10.1159/000493169
[37] Nandurkar, R., Van Leeuwen, P., Stricker, P., et al. (2019) 68Ga-HBEDD PSMA-11 PET/CT Staging Prior to Radical Prostatectomy in Prostate Cancer Patients: Diagnostic and Predictive Value for the Biochemical Response to Surgery. British Journal of Radiology, 92, Article 20180667.
https://doi.org/10.1259/bjr.20180667
[38] Brauchli, D., Singh, D., Chabert, C., Somasundaram, A. and Collie, L. (2020) Tumour-Capsule Interface Measured on 18F-DCFPyL PSMA Positron Emis-sion Tomography/CT Imaging Comparable to Multi-Parametric MRI in Predicting Extra-Prostatic Extension of Prostate Cancer at Initial Staging. Journal of Medical Imaging and Radiation Oncology, 64, 829-838.
https://doi.org/10.1111/1754-9485.13084
[39] Donswijk, M.L., Van Leeuwen, P.J., Vegt, E., et al. (2020) Clinical Impact of PSMA PET/CT in Primary Prostate Cancer Compared to Conventional Nodal and Distant Staging: A Retro-spective Single Center Study. BMC Cancer, 20, Article No. 723.
https://doi.org/10.1186/s12885-020-07192-7