脓毒症急性肾损伤患者使用右美托咪啶镇静对肾功能的保护作用
Protective Effect of Dexmedetomidine Sedation on Renal Function in Patients with Septic Acute Kidney Injury
DOI: 10.12677/ACM.2024.142623, PDF, HTML, XML, 下载: 24  浏览: 67 
作者: 杨永辉, 张力萍*, 郭红丽, 刘建波, 宋志永:寿光市中医医院麻醉科,山东 潍坊
关键词: 右美托咪定脓毒症急性肾损伤肾脏保护Dexmedetomidine Sepsis Acute Kidney Injury (AKI) Kidney Protection
摘要: 目的:探讨使用右美托咪啶对脓毒症急性肾损伤(AKI)病人镇静过程中对病人肾功能产生的作用。方法:选择脓毒症AKI的病患54例,随机分组成观察组(A组)与对照组(B组),各27例,入组后实施镇静策略,包含镇痛、镇静、评估、每日中断镇静4个部分,在实施前(T0)、实施后第一日(T1)、第二日(T2)、第三日(T3)、第六日(T4)早上取静脉血,测量血肌酐(Scr)、胱抑素C (CysC)含量,取尿液测量中性粒细胞明胶酶相关脂质运载蛋白(uNGAL)含量,同时记录镇静实施后4个时间点的肾脏顺序器官衰竭评估(SOFA)亚评分。结果:在组内比较中,和T0相比,A组在T2时,Scr水平显示明显降低(P < 0.05)。在组间比较中,和B组相比,A组在T1、T2、T3时Scr水平显著下降(P < 0.05),在T2、T3、T4时uNGAL明显降低,在T2、T3时血清CysC显著降低,在T4时肾脏SOFA亚评分降低(P < 0.05)。结论:使用右美托咪定镇静时可以降低脓毒症AKI病患Scr、CysC、uNGAL水平及肾的SOFA亚评分,可能具有保护和改善肾功能作用。
Abstract: Objective: To investigate the effect of dexmedetomidine sedation strategy on renal function in pa-tients with kidney injury caused by sepsis. Methods: 54 patients with acute renal injury of sepsis were selected. They were randomly divided into dexmedetomidine group (experimental group, group D), Non-dexmedetomidine group (control group, group C), 27 cases in each group. The two groups were given a sedation strategy, including analgesia, sedation, evaluation, daily interruption of sedation. The blood samples and urine sample of the patients were taken immediately before sedation (T0), the first day after sedation (T1), the second day after sedation (T2), the third day after sedation (T3), the sixth day after sedation (T4), to determine the level of Scr, CysC, and urine the lev-el of NGAL, compare the changes in the renal sequential organ failure assessment (SOFA) subscores from the baseline within five points in times after randomization between groups. Result: Within the data of intra-group, compared with T0 time point, the levels of serum Scr in group D significantly decreased at T2 time point (P < 0.05). But group C had no significant difference at all time points (P > 0.05). Within the data of inter-group, compared with group C, the level of serum Scr in group D significantly decreased at T1, T2 and T3 time point (P < 0.05), the level of unire neutrophil gelatinase associated lipocalin (NGAL) in group D significantly decreased at T2 , T3 and T4 time point (P < 0.05), the level of cystatin C in group D significantly decreased at T2 and T3 time point (P < 0.05). While the renal SOFA subscore at the baseline was similar for both groups, it significantly decreased in the D group at T4 time point (P < 0.05). Conclusion: A sedation strategy with dexmedetomidine can effec-tively decrease the levels of serum Scr and CysC and unire NGAL for AKI patients. A sedation strate-gy with dexmedetomidine is associated with improving renal function among patients with sepsis.
文章引用:杨永辉, 张力萍, 郭红丽, 刘建波, 宋志永. 脓毒症急性肾损伤患者使用右美托咪啶镇静对肾功能的保护作用[J]. 临床医学进展, 2024, 14(2): 4486-4492. https://doi.org/10.12677/ACM.2024.142623

1. 背景

脓毒症(sepsis)的特点是患者对感染的反应失控,大多病况凶险且易产生并发症。急性肾损伤(AKI)便是经常出现的一种并发症,AKI患者的病死率较高,但临床中并没有针对AKI的特效药物。右美托咪啶(Dexmedetomidine)是有多重药理作用机制的α2受体激动药,不仅具有良好的镇静效果,近来也被证明具有良好的抗炎及器官保护作用 [1] ,能够改善缺血介导的细胞损伤 [2] 。有研究显示,在心脏手术过程中,利用右美托嘧啶与AKI的发生率下降有联系,对于有慢性肾病史和轻度肾损伤患者作用更加明显,因为右美托咪定能够通过稳定交感神经系统,发挥抗炎作用,减轻I/R损伤,已被证明可以保护肾功能 [3] ,而且能够激活α2肾上腺素能受体,使抗氧化能力升高 [4] 。在一项随机、安慰剂对照,双盲临床试验中表明,与对照组相比,术前肾功能正常且液体限制的开胸术后患者输注右美托咪啶作为硬膜外镇痛药物,对肾小球滤过有益 [5] 。但对于已发生AKI的脓毒症患者,应用右美托咪啶是否能够改善肾功能仍需进一步证实。本研究对重症监护室(ICU)中诊断为脓毒症AKI需要有创机械通气的A组病患加用右美托嘧啶镇静,B组不利用右美托嘧啶镇静,比较54例脓毒症AKI的成年病人利用和不利用右美托嘧啶镇静对肾功能产生的作用。

2. 材料与方法

2.1. 研究对象

选择2021年6月至2023年5月我院ICU收治并诊断为脓毒症AKI的病患54例,男33例,女性21例。所有病人都满足2012年KDIGO发布的《急性肾损伤临床实践指南》中诊断标准 [6] ,纳入的病人都处在AKI分期的1~2期,入住ICU ≥48 h,预期需要有创机械通气和镇静镇痛≥72 h。排除标准:① 处于妊娠或哺乳期;② 年龄 < 18岁;③ 对使用的药物过敏;④ 有慢性肾功能不全史;⑤ 合并严重的中枢神经系统性疾病、严重心衰、大面积心梗、严重器官功能衰竭等患者;⑥ 糖尿病患者;⑦ 短时间内需要进行RRT的重度AKI患者。本研究通过伦理委员会批准,并与患者或家属签署知情同意书。

2.2. 研究方法

所有患者采用完全随机设计分为观察组(A组)和对照组(B组),各27例。① 两组患者进行镇静镇痛策略:A组镇痛采用芬太尼50 μg/5min静脉注射至BPS [7] < 6分,之后以0.5~1 μg/(kg∙h)维持输注,镇静采用Dexmedetomidine 1 μg/kg,15分钟缓慢静脉输注,至Ramsay scale [8] = 3~4分,之后以0.2~0.5 μg/(kg∙h)同时合用咪达唑仑0.01~0.5 mg/(kg∙h)维持输注。B组镇痛与A组相同,镇静采用咪达唑仑0.01~0.05 mg/kg,2~5 min缓慢静脉推注至Ramsay scale [8] = 3~4分,之后以0.02~0.1 mg/(kg∙h)维持输注。② 每4个小时评分一次,在评分要求范围内,继续以初始剂量输注;如果镇静不足,A组加大Dexmedetomidine的剂量直至满足镇静评分要求,B组加大咪达唑仑的剂量至满足镇静评分要求;如果镇静过度,两组均减少咪达唑仑的用量至满足镇静评分要求;若减少药物输注剂量没有反应,则停止输注,直到患者镇静评分满足要求。③ 每日镇静中断唤醒:上午8~9点停用所有镇痛镇静药物,至病患苏醒,可以满足以下4项中的3项:遵嘱睁眼,眼神追踪,遵嘱握拳,遵嘱动脚趾 [9] ,之后再次以初始药物剂量的0.5倍给药直至满足评分要求水平。

2.3. 观察指标

患者在镇静前(T0)、镇静后第1天(T1)、第2天(T2)、第3天(T3)、第6天(T4)早上取静脉血液标本,检测血清Scr、CysC水平,取尿液标本测量uNGAL水平,尿液样本以4℃,1500转/分离心10分钟,取上清液保存于−80℃,uNGAL的测定采用化学发光微粒子免疫分析法测定(雅培,日本)。记录各个时间点两组患者肾脏SOFA亚评分 [10] (以血清Scr和尿量为评分标准:血清Scr值 < 110 μmol/L为0分,110~170 μmol/L为1分,171~299 μmol/L为2分,300~440 μmol/L为3分,>440 μmol/L为4分;尿量 < 500 ml/d为3分,<200 ml/d为4分)。

2.4. 统计学分析

使用SPSS 24.0统计软件进行统计分析,计量资料采用平均数±标准差( x ¯ ± s )表示,两组之间相比采取独立性t检验,同组之间比较采用重复测量的方差分析;计数资料采用数字,百分率(n, %)表示,两组之间相比采用χ2检验。以P < 0.05为差异有统计学意义。

3. 结果

3.1. 基本情况

病患在T0时性别、年龄、体重、肾SOFA亚评分、血清Scr、CysC水平以及uNGAL比较差异均没有统计学意义(P > 0.05),见表1

3.2. 统计分析

两组患者分别进行组内比较,和T0相比,T1时,A组血清Scr含量降低,B组血清Scr含量增加,两组uNGAL均明显降低,但差异没有统计学意义(P > 0.05);A组中,和T0相比,T2时血清Scr水平降低,差异存在统计学意义(P < 0.05);和T1相比,两组患者在T2、T3、T4时,血清Scr、CysC和uNGAL含量均下降,但差异没有统计学意义(P > 0.05)。在组间比较中,和B组相比,A组在T1、T2、T3时血清Scr明显降低,在T2、T3、T4时uNGAL明显降低,在T2、T3时血清CysC明显降低,在T4时肾SOFA亚评分降低,差异均存在统计学意义(P < 0.05),见表2

Table 1. Basic information of the patients before sedation (T0)

表1. 患者镇静前(T0)基本情况

Table 2. Comparison of indexes of patients after sedation

表2. 患者镇静后各指标比较

注:A组内,T2与T0相比,*P < 0.05。

4. 讨论

急性肾损伤(AKI)是脓毒症患者常见的并发症,大约50%的患者是由脓毒症引起的AKI,值得注意的是,这些患者的死亡率可高达70% [11] 。对于脓毒症并发AKI (S-AKI)患者,以往经常强调全肾低灌注的关键作用,近来有相关研究发现,脓毒症病人肾脏血液灌注量并没有下降反而增加,而脓毒症病人在肾脏血液灌注量不降低的情况下仍然会出现AKI,表明脓毒症AKI可能是一种充血性的损伤而非缺血性的损伤 [12] 。最近的研究也已经不再把S-AKI简单地看作是灌注不足和“免疫系统失控”的促炎状态的组合 [13] ,而可能是促炎和抗炎介质的升高和失衡,加上严重的内皮功能障碍和扰乱凝血级联的协同作用诱导化学和生物介质介导的肾损伤 [14] 。由于发生机制复杂,目前没有完全阐明,临床也没有针对AKI的药物,所以对于脓毒症患者加强肾功能监测早发现AKI早治疗显得尤为重要 [4] 。目前,肾功能的评价指标常为血清Scr、BUN以及血清肌酐清除率等生物标志物,但因为有些食物、药物、基础病等因素会加重肾脏的负担,导致这些指标异常升高,对于AKI的诊断有滞后性 [15] 。有研究显示,尿NGAL和血清胱抑素C不易受年龄、体重、炎症状况等因素影响,在AKI预测和诊断方面优于常规生物标志物 [16] 。NGAL是一种在肾脏中表达,相对分子质量小且不易分解的脂质蛋白,易从尿中分泌和检测出 [17] 。CysC属于一种非糖基化碱性蛋白,每日分泌量比较恒定,原尿中CysC在近曲小管几乎全被摄取、分解,不回到血液中,因此血清CysC水平是反映肾功能的一个灵敏且特异的指标对AKI的诊断效能高,通常比临床诊断提前24~48小时 [18] 。

对于ICU中需要有创机械通气患者实行有效的镇痛镇静策略,可以减少患者的应激反应,降低机体器官代谢水平,减少焦虑和躁动发生率。右美托嘧啶(DEX)是一种具有多重药理作用机制的药物,先前有研究表明,右美托嘧啶除了具有改善镇静的作用外,还能够减轻炎症反应,预防急性肾损伤,降低交感神经张力,维持肾脏血液灌注,产生肾脏保护作用 [19] 。有研究发现在脂多糖诱导的脓毒症大鼠模型中,右美托咪啶通过抑制炎症反应来保护脓毒症诱导的AKI,其机制可能与抑制α2受体有关 [20] 。Zhao等人也发现 [21] DEX可以增强自噬,通过α2受体抑制PI3K/AKT/mTOR通路去除脂多糖诱导的AKI中受损的线粒体,减少氧化应激和凋亡。缺血再灌注小鼠模型显示,右美托咪定可能通过α2肾上腺素能受体激活细胞存活信号pAKT发挥额外的细胞保护作用 [22] 。Wang等人 [23] 研究证实DEX能够通过调节p75NTR/p38MAPK/JNK信号通路,部分降低氧化应激和凋亡,从而改善脓毒症小鼠的AKI。此外,已有研究表明,右美托咪定诱导的交感神经驱动减弱可能通过下调血管收缩剂内皮素-1来调节血管反应性并潜在地改善肾血流 [24] 。越来越多的证据表明右美托嘧啶的肾脏保护作用主要涉及抗交感作用、减轻炎症反应和氧化应激、减少细胞凋亡、增加自噬、减少铁死亡、保护肾小管上皮细胞(RTECs)、抑制肾纤维化等 [25] 。

本研究结果显示,两组患者在T0时各项指标差异不存在统计学意义,在组间比较中,A组在T1、T2、T3时血清Scr较B组有明显降低,在T2、T3、T4时uNGAL明显降低,在T2、T3时血清CysC显著降低,在T4时肾SOFA亚评分降低,差异均存在统计学意义,表明在加用右美托嘧啶镇静后可以降低脓毒症AKI患者的肾脏SOFA亚评分,此外,A组患者的血清Scr、CysC和uNGAL浓度均明显低于B组,说明右美托嘧啶与脓毒症AKI患者肾功能改善是有一定关系的。通过本研究结果我们猜测右美托嘧啶可能通过降低过度炎症反应或交感神经张力来改善脓毒症引起的AKI,但是我们不能证实这一假设,因为我们不能在目前的研究中评估炎症反应。

本研究的局限性在于做为一项单中心的研究,纳入研究样本量较少,这或许会对结果产生一定的影响,右美托嘧啶在S-AKI中的作用尚需在后期研究中增加样本含量,进行多中心研究进一步研究证实。此外,SOFA评分是为了对每个器官功能障碍提供一个粗略的评估,因此,我们并没有对轻微的器官功能障碍进行检测。

综上所述,对于脓毒症急性肾损伤患者加用右美托嘧啶镇静策略可以改善肾功能障碍,但我们的发现依然需要在将来的研究中得到证明。

NOTES

*通讯作者。

参考文献

[1] Liu, Q.L., et al. (2021) Effect and Mechanism of Dexmetopyrimidine on Endotoxin-Induced Acute Lung Injury in Rats. Minerva Surgery, 77, 301-303.
https://doi.org/10.23736/S2724-5691.21.09036-5
[2] Wang, L., Wang, S.W., Jia, T., et al. (2022) Dexmedetomidine Prevents Cardiomyocytes From Hypoxia/Reoxygenation Injury via Modulating Tet-methylcytosine Dioxygenase 1-Mediated DNA Demethylation of Sirtuin1. Bioengineered, 13, 9369-9386.
https://doi.org/10.1080/21655979.2022.2054762
[3] Peng, Y.H., Hu, X.L., He, H.F., et al. (2024) Dexmedetomi-dine Promotes the Functional Recovery of Mice after Acute Ischemic Stroke via Activation of the α2-Adrenoceptor. Folia Neuropathologica.
[4] Ji, F., Li, Z., Young, J.N., et al. (2013) Post-Bypass Dexmedetomidine Use and Postoperative Acute Kidney Injury in Patients Undergoing Cardiac Surgery with Cardiopulmonary Bypass. PLOS ONE, 8, e77446.
https://doi.org/10.1371/journal.pone.0077446
[5] Frumento, R.J., Logginidou, H.G., Wahlander, S., et al. (2006) Dexmedetomidine Infusion Is Associated with Enhanced Renal Function after Thoracic Surgery. Journal of Clinical An-esthesia, 18, 422-426.
https://doi.org/10.1016/j.jclinane.2006.02.005
[6] Kidney Disease: Improve Global Outcomes (KDIGO) Acute Kidney Injury Work Group (2012) KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney International, 2, 1-138.
[7] Aïssaoui, Y., Zeggwagh, A.A., Zekraoui, A., et al. (2005) Validation of a Behavioral Pain Scale in Critically Ill, Sedated, and Mechanically Ventilated Patients. Anesthesia & Analgesia, 101, 1470-1476.
https://doi.org/10.1213/01.ANE.0000182331.68722.FF
[8] Knape, J.T., Adriaensen, H., Van Aken, H., et al. (2007) Guidelines for Sedation and/or Analgesia by Non-Anaesthe- siology Doctors. European Journal of Anaesthesi-ology, 24, 563-567.
https://doi.org/10.1017/S0265021506002092
[9] 中国成人ICU镇痛和镇静治疗指南[J]. 中华重症医学电子杂志(网络版), 2018, 4(2): 90-113.
[10] 曹钰, 柴艳芬, 邓颖, 方邦江, 刘明华, 卢中秋, 陆一鸣, 聂时南, 钱传云, 田英平, 杨山, 姚咏明, 尹文, 于学忠, 张新超, 赵敏, 赵晓东, 周荣斌, 朱华栋, 朱曦, 曾红科. 中国脓毒症/脓毒性休克急诊治疗指南(2018) [J]. 感染、炎症、修复, 2019, 20(1): 3-22.
[11] Vanmassenhove, J., Lameire, N., Dhondt, A., et al. (2015) Prognostic Robustness of Serum Creatinine Based AKI Definitions in Patients with Sepsis: A Prospective Cohort Study. BMC Nephrology, 16, Article No. 112.
https://doi.org/10.1186/s12882-015-0107-4
[12] Shum, H.P. and Yan, W.W. (2016) Recent Knowledge on the Pathophysiology of Septic Acute Kidney Injury: A Narrative Review. Journal of Critical Care, 31, 82-89.
https://doi.org/10.1016/j.jcrc.2015.09.017
[13] Ronco, C., Kellum, J.A., Bellomo, R., et al. (2008) Potential Inter-ventions in Sepsis-Related Acute Kidney Injury. Clinical Journal of the American Society of Nephrology, 3, 531-544.
https://doi.org/10.2215/CJN.03830907
[14] Schrezenmeier, E.V., Barasch, J., Budde, K., et al. (2017) Biomarkers in Acute Kidney Injury-Pathophysiological Basis and Clinical Performance. Acta Physiologica (Oxford), 219, 554-572.
https://doi.org/10.1111/apha.12764
[15] Ishii, H., Kohno, T., Yamakura, T., et al. (2008) Action of Dexmedetomi-dine on the Substantia Gelatinosa Neurons of the Rat Spinal Cord. European Journal of Neuroscience, 27, 3182-3190.
https://doi.org/10.1111/j.1460-9568.2008.06260.x
[16] Haase-Fielitz, A., Bellomo, R., Devarajan, P., et al. (2009) Novel and Conventional Serum Biomarkers Predicting Acute Kidney Injury in Adult Cardiac Surgery—A Prospective Cohort Study. Critical Care Medicine, 37, 553-560.
https://doi.org/10.1097/CCM.0b013e318195846e
[17] Bennett, M., Dent, C.L., Ma, Q., et al. (2008) Urine NGAL Predicts Severity of Acute Kidney Injury after Cardiac Surgery: A Prospective Study. Clinical Journal of the American Society of Nephrology, 3, 665-673.
https://doi.org/10.2215/CJN.04010907
[18] Séronie-Vivien, S., Delanaye, P., Piéroni, L., et al. (2008) Cystatin C: Current Position and Future Prospects. Clinical Chemistry and Laboratory Medicine, 46, 1664-1686.
https://doi.org/10.1515/CCLM.2008.336
[19] Shi, R. (2017) Dexmedetomidine as a Promising Prevention Strategy for Cardiac Surgery-Associated Acute Kidney Injury: A Meta-Analysis. Critical Care, 21, 198.
https://doi.org/10.1186/s13054-017-1776-0
[20] Cakir, M., Polat, A., Tekin, S., et al. (2015) The Effect of Dex-medetomidine against Oxidative and Tubular Damage Induced by Renal Ischemia Reperfusion in Rats. Renal Failure, 37, 704-708.
https://doi.org/10.3109/0886022X.2015.1011550
[21] Zhao, Y., Feng, X., Li, B., et al. (2020) Dexmedetomidine Protects against Lipopolysaccharide-Induced Acute Kidney Injury by Enhancing Autophagy through Inhibition of the PI3K/AKT/MTOR Pathway. Frontiers in Pharmacology, 11, Article No. 128.
https://doi.org/10.3389/fphar.2020.00128
[22] Gu, J., Sun, P., Zhao, H., et al. (2011) Dexmedetomidine Provides Renoprotection against Ischemia-Reperfusion Injury in Mice. Critical Care, 15, R153.
https://doi.org/10.1186/cc10283
[23] Wang, Z., Wu, J., Hu, Z., et al. (2020) Dexmedetomidine Alleviates Lipopol-ysaccharide-Induced Acute Kidney Injury by Inhibiting P75NTR-Mediated Oxidative Stress and Apoptosis. Oxidative Medicine and Cellular Longevity, 2020, Article ID: 5454210.
https://doi.org/10.1155/2020/5454210
[24] Liu, J., Shi, K., Hong, J., et al. (2020) Dexmedetomidine Protects against Acute Kidney Injury in Patients with Septic Shock. Annals of Palliative Medicine, 9, 224-230.
https://doi.org/10.21037/apm.2020.02.08
[25] Gao, X. and Wu, Y.H. (2023) Perioperative Acute Kidney Injury: The Renoprotective Effect and Mechanism of Dexmedetomidine. Biochemical and Biophysical Research Communications, 695, Article ID: 149402.