半正则二部图的补图生成树计数的一种新方法
A New Method for the Enumerattion of the Number of Spanning Trees of the Complement of a Biregular Graph
DOI: 10.12677/AAM.2024.132059, PDF, 下载: 43  浏览: 88  科研立项经费支持
作者: 姚菊田:绍兴文理学院数理信息学院,浙江 绍兴
关键词: 二部图半正则Kirchhoff矩阵-树定理Schur补Bipartite Graph Semiregular Kirchhoff Matrix-Tree Theorem Schur Complement
摘要: 一个二部图G = (U, V, E)是半正则当且仅当同一部顶点集的两个顶点的度相等。 进一步,设G = (V1, V2, E)是一个二部划分为(V1, V2)的连通二部图,即V1 ∪ V2 = V (G) 且V1 ∩ V2 = ∅。 若G满足|V1| = s, |V2| = t,且∀ui ∈ V1, dG(ui) = x (i = 1, . . . , s), ∀vj ∈ V2, dG(vj ) = y (j = 1, . . . , t),则称G是一个半正则二部图,记作G = (s, t; x, y)。 利用Kirchhoff矩阵-树定理和矩阵的Schur补,本文得到一种半正则二部图的补图的生成树计数一般公式,并得到一些特殊半正则二部图补图的生成树数目计数公式。
Abstract: A biregular (semiregular bipartite) graph is defined as a bipartite graph G = (U, V, E) for which erery two vertices on the same side of the given bipartition have the same degree as each other. Let G = (V1, V2, E) be a connected bipartite graph with bipartition (V1, V2). V1 ∪ V2 = V (G) and V1 ∩ V2 = ∅. If G satisfies |V1| = s, |V2| = t, and ∀ui ∈ V1, dG(ui) =x (i = 1, . . . , s), ∀vj ∈ V2, dG(vj ) = y (j = 1, . . . , t), then G is a semiregular bipartite graph, denoted as G = (s, t; x, y) . Based on the classical Kirchhoff matrix-tree theorem, and by using the Schur complement of a block of block matrix, we show a general expression for the number of spanning trees of the complement of a biregular graph G is given. As applications, several formulas for the number of spanning trees of the complement of various classes of biregular graph were obtained
文章引用:姚菊田. 半正则二部图的补图生成树计数的一种新方法[J]. 应用数学进展, 2024, 13(2): 606-611. https://doi.org/10.12677/AAM.2024.132059

参考文献

[1] Boesch, F.T. (1986) On Unreliability Polynomials and Graph Connectivity in Reliable Network Synthesis. Journal of Graph Theory, 10, 339-352.
https://doi.org/10.1002/jgt.3190100311
[2] Kirchhoff, G. (1847) Ueber die Aufl¨osung der Gleichungen, auf welche man bei der Unter- suchung der linearen Vertheilung galvanischer Stro¨me geflihrt wird. Annalen der Physik, 148, 497-508.
https://doi.org/10.1002/andp.18471481202
[3] Biggs, N. (1993) Algebraic Graph Theory. 2nd Edition, Cambridge University Press, Cam- bridge.
[4] Feussner, W. (1902) Ueber Stromverzweigung in netzfo¨rmigen Leitern. Annalen der Physik, 314, 1304-1329.
https://doi.org/10.1002/andp.19023141320
[5] Tutte, W.T. (1954) A Contribution to the Theory of Chromatic Polynomials. Canadian Journal of Mathematics, 6, 80-91.
https://doi.org/10.4153/CJM-1954-010-9
[6] Spiro, S. (2019) Polynomial Relations between Matrices of Graphs. Journal of Graph Theory, 90, 288-303.
https://doi.org/10.1002/jgt.22401
[7] Klee, S. and Stamps, M.T. (2019) Linear Algebraic Techniques for Weighted Spanning Tree Enumeration. Linear Algebra and Its Applications, 582, 391-402.
https://doi.org/10.1016/j.laa.2019.08.009
[8] Bapat, R.B. 图与矩阵[M]. 吴少川, 译. 哈尔滨: 哈尔滨工业大学出版社, 2014.
[9] Klee, S. and Stamps, M.T. (2020) Linear Algebraic Techniques for Spanning Tree Enumeration. The American Mathematical Monthly, 127, 297-307.
https://doi.org/10.1080/00029890.2020.1708171
[10] [10] Weinberg, L. (1958) Number of Trees in a Graph. Proceedings of the Institute of Radio Engi- neers, 46, 1954-1955.