Boussinesq-Coriolis方程在变指数 Fourier-Besov-Morrey 空间中解的 整体适定性
Global Well-Posednessfor the Boussinesq-CoriolisEquations in Variable ExponentFourier-Besov-Morrey Spaces
摘要: 本文考虑 Boussinesq-Coriolis 方程在变指数 Fourier-Besov-Morrey 空间 中的Cauchy 问题。 利用 littlewood-Paley 分解工具和 Fourier 局部化方法,我们得到了小初值(u00) 整体解的存在唯一性。
Abstract: We consider the Cauchy problem of the three-dimensional Boussinesq equations with Coriolis force in variable exponent Fourier-Besov-Morrey spaces in this paper. By using littlewood-Paley decomposition and the Fourier localization argument, we obtain the unique existence of the global solution for small initial data (u00).
文章引用:马偌鸿, 孙小春, 吴育联. Boussinesq-Coriolis方程在变指数 Fourier-Besov-Morrey 空间中解的 整体适定性[J]. 理论数学, 2024, 14(2): 682-694. https://doi.org/10.12677/PM.2024.142068

参考文献

[1] Majda, A. (2003) Introduction to PDEs andWaves for the Atmosphere and Ocean. In: Courant Lecture Notes in Mathematics, Vol. 9, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI.
[2] Sun, J., Liu, C. and Yang, M. (2020) Global Solutions to 3D Rotating Boussinesq Equations in Besov Spaces. Journal of Dynamics and Differential Equations, 32, 589-603.[CrossRef
[3] Koba, H., Mahalov, A. and Yoneda, T. (2012) Global Well-Posedness for the Rotating Navier- Stokes-Boussinesq Equations with Stratification Effects. Advances in Mathematical Sciences and Applications, 22, 61-90.
[4] Sun, X., Wu, Y. and Xu, G. (2023) Global Well-Posedness for the 3D Rotating Boussinesq Equations in Variable Exponent Fourier-Besov Spaces. AIMS Mathematics, 8, 27065-27079.[CrossRef
[5] Charve, F. and Ngo, V.-S. (2011) Global Existence for the Primitive Equations with Small Anisotropic Viscosity. Revista Matematica Iberoamericana, 27, 1-38.[CrossRef
[6] Angulo-Castillo, V. and Ferreira, L.C.F. (2020) Long-Time Solvability in Besov Spaces for the Inviscid 3D-Boussinesq-Coriolis Equations. Discrete and Continuous Dynamical Systems-B, 25, 4553-4573.[CrossRef
[7] Babin, A., Mahalov, A. and Nicolaenko, B. (1999) On the Regularity of three-Dimensional Rotating Euler-Boussinesq Equations. Mathematical Models and Methods in Applied Sciences, 9, 1089-1121.[CrossRef
[8] Charve, F. (2018) Asymptotics and Lower Bound for the Lifespan of Solutions to the Primitive Equations. Acta Applicandae Mathematicae, 158, 11-47.[CrossRef
[9] 汝少雷. 不可压Navier-Stokes方程在变指标函数空间上的整体适定性[J]. 中国科学(数学), 2018, 48(10): 1427-1442.
[10] Abidin, M.Z. and Chen, J. (2021) Global Well-Posedness for Fractional Navier-Stokes Equations in Variable Exponent Fourier-Besov-Morrey Spaces. Acta Mathematica Scientia. Series B. English Edition, 41, 164-176.[CrossRef
[11] Abidin, M.Z. and Chen, J.C. (2022) Global Well-Posedness of Generalized Magnetohydrodynamics Equations in Variable Exponent Fourier-Besov-Morrey Spaces. Acta Mathematica Sinica, English Series, 38, 2187-2198.[CrossRef
[12] Azanzal, A., Allalou, C. and Melliani, S. (2022)Well-Posedness, Analyticity and Time Decay of the 3D Fractional Magneto-Hydrodynamics Equations in Critical Fourier-Besov-Morrey Spaces with Variable Exponent. Journal of Elliptic and Parabolic Equations, 8, 723-742.[CrossRef
[13] Abidin, M.Z. and Chen, J. (2021) Global Well-Posedness of the Generalized Rotating Magnetohydrodynamics Equations in Variable Exponent Fourier-Besov Spaces. Journal of Applied Analysis Computation, 11, 1177-1190.[CrossRef
[14] Almeida, A. and Caetano, A. (2020) Variable Exponent Besov-Morrey Spaces. Journal of Fourier Analysis and Applications, 26, Article No. 5. [Google Scholar] [CrossRef
[15] Sun, J. and Cui, S. (2019) Sharp Well-Posedness and Ill-Posedness of the Three-Dimensional Primitive Equations of Geophysics in Fourier-Besov Spaces. Nonlinear Analysis: Real World Applications, 48, 445-465.[CrossRef