Te4+/Bi3+掺杂的Cs2SnCl6微米晶实现白光LED
WLED Achieved by Te4+/Bi3+ Doped Cs2SnCl6 Microcrystals
DOI: 10.12677/MS.2024.142022, PDF, HTML, XML, 下载: 41  浏览: 102  科研立项经费支持
作者: 肖宇驰, 向福瑞, 杨璐疑:成都大学,机械工程学院,四川 成都;刘前程*:成都大学,机械工程学院,四川 成都;成都大学,高等研究院,四川 成都
关键词: 锡基钙钛矿光致发光颜色可调白光LED Tin-Based Perovskite Photoluminescence Color Adjustable White LED
摘要: 金属钙钛矿卤化物因其优异的光学性能和易于溶液加工的特点而在下一代固态照明中受到广泛关注。尽管铅基钙钛矿具有可调谐的带隙、窄发射带和高载流子迁移率等优点,但其毒性大、稳定性差等缺点限制了其应用。在此,我们报道了Bi3+和Te4+掺杂的锡基钙钛矿Cs2SnCl6微米晶材料,Cs2SnCl6:Bi3+表现出由Bi3+3P0,11S0跃迁引起的450 nm的蓝光发射,Cs2SnCl6:Te4+表现出由Te4+3P0,11S0跃迁引起的570 nm的黄光发射。上述荧光材料的光致发光量子产率分别可达61.07%和63.73%,并且其在空气环境、热、水中都具有优异的稳定性。我们通过混合不同比例的Cs2SnCl6:Te4+Cs2SnCl6:Bi3+微米晶可实现从暖白光到冷白光的调谐,其光输出色温(CCT)实现了从6237 K到7422 K的变化,最高显色指数(CRI)可达93。本工作表明过渡金属离子掺杂的无铅卤化物钙钛矿可作为高效荧光材料,实现高性能白光LED。
Abstract: Metal perovskite halides have received much attention in the next generation of solid-state lighting because of their excellent optical properties and easy solution processing. Although Pb-based perovskite has the advantages of a tunable band gap, narrow emission band, and high carrier mobility, its disadvantages such as high toxicity and poor stability limit its application. Here, we report that Bi3+ and Te4+ doped tin-based perovskite Cs2SnCl6 microcrystals are explored, and Cs2SnCl6:Bi3+ exhibits 450 nm blue emission originated from 3P0,11S0 transition of Bi3+, while Cs2SnCl6:Te4+ exhibits a 570 nm yellow emission for the 3P0,11S0 transition of Te4+. The photoluminescence quantum yields of the as explored perovskites reach 61.07% and 63.73%, respectively. Moreover, excellent stability of these perovskites in air, heat, and water is demonstrated. By regulating the proportions of Cs2SnCl6:Te4+ and Cs2SnCl6:Bi3+ microcrystals, white light emitting diodes (LEDs) with distinct color temperature tuning from warm white to cold white output could be achieved, and the corresponding color temperature (CCT) changes from 6237 K to 7422 K, with a maximum color rendering index (CRI) of 93. This work provides a reference for realizing high-performance white LED by transition metal ion-doped lead-free halide perovskite.
文章引用:肖宇驰, 向福瑞, 杨璐疑, 刘前程. Te4+/Bi3+掺杂的Cs2SnCl6微米晶实现白光LED[J]. 材料科学, 2024, 14(2): 192-200. https://doi.org/10.12677/MS.2024.142022

1. 引言

具有通用化学式ABX3 (A = Cs+, Rb+; B = Pb2+, Sn2+; X = Cl, Br, I)的金属卤化物钙钛矿的研究开始于几十年前,其在光电领域表现出卓越的光电性能,包括可调谐的带隙、窄发射带、高吸收截面和高载流子迁移率等。这些优点使其成为各种光电子器件的优秀候选者,如高效太阳能电池、光电探测器和发光二极管(LED) [1] [2] [3] 。迄今为止,人们通过优化合成条件、金属离子掺杂或表面钝化等方法努力使光致发光量子产率(PLQY)在可见光和近红外光谱范围内大幅提升 [4] 。由于这些显著的特性,高性能钙钛矿纳米晶光电子器件备受关注 [5] 。例如,钙钛矿LED的外量子效率已经超过20%,卤化物钙钛矿纳米晶被认为是继CdSe纳米晶之后的下一代高效荧光材料 [6] [7] [8] 。

迄今为止,钙钛矿材料的主要研究方向仍集中在合成铅基卤化物钙钛矿纳米晶及其在太阳能电池和LED中的应用,但由于铅(Pb)的毒性引起了环境污染和健康问题 [9] ,尤其,接触铅会导致人体出现神经元损伤和贫血等症状 [10] 。为了解决这个问题,锡(Sn)、锗(Ge)、铋(Bi)和锑(Sb)等元素已经被用来部分或完全取代钙钛矿晶格中的铅 [11] 。此外,这些无铅金属卤化物独特的自捕获激子(STEs)具有宽带发射、大斯托克斯位移和高光致发光量子产率的特点,使其发射波段覆盖整个可见光区域而不发生自吸收,在具有理想显色指数(CRI)和高性能的WLED中显示出巨大的潜力。

其中,锡基卤化物钙钛矿由于其低毒性和优异的光电性能而受到人们的关注 [12] 。与铅相比,Sn2+也是六配位离子,锡具有相同类型的价电子构型(ns2sp2)和相近的离子半径 [13] 。因此,Sn被认为是完全或部分取代Pb的理想元素,通过Pb-Sn合金化,能显著增强钙钛矿的稳定性 [14] 。鉴于这些优点,锡基钙钛矿正成为卤化物钙钛矿领域的研究热点之一 [15] [16] [17] [18] [19] 。

锡(Sn)作为第四主族的金属元素,具有+2价和+4价两种氧化态,可以形成两种不同构型的钙钛矿晶体 [20] 。二价锡可形成经典的钙钛矿结构,通式为ASnX3。此外,四价锡可形成空位有序双钙钛矿,其通式为A2SnX6。这种空位有序双钙钛矿结构上与ASnX3类似,但有一半的B位原子缺失。其典型例子是Cs2SnCl6,这种离子型钙钛矿,具有固有的n型导电性、高载流子迁移率和高吸光系数,在光电领域有很大的应用潜力。

在此,我们制备合成了Bi3+和Te4+掺杂在零维Cs2SnCl6微米晶(MCs),该材料可表现出掺杂离子的高效特性发射。因此,通过混合Cs2SnCl6:Bi3+和Cs2SnCl6:Te4+微米晶即可实现覆盖整个可见光谱区域的高效双波段可调谐白光发射。并且所合成Bi3+和Te4+掺杂Cs2SnCl6微米晶具有优异的空气、结构、光和水稳定性。因此,上述材料被证实作为白光发射的荧光材料有望应用于近紫外转换白光LED。

2. 实验

2.1. 材料制备

采用水热法制备了Cs2SnCl6:xTe4+ (x = 0, 0.01, 0.04, 0.07, 0.10, 0.13)以及Cs2SnCl6:xBi3+ (x = 0, 0.01, 0.03, 0.05, 0.07, 0.09)系列钙钛矿材料。以CsCl (99.9%),TeCl4 (99.9%),BiCl3 (99.9%),SnCl4·5H2O (≥98%) 为原料,将0.95 mmol SnCl4·5H2O、0.05 mmol BiCl3和2 mmol CsCl与5 mL HCl在25 mL高压反应釜中混合。将混合物加热至180℃保温12 h后自然冷却至室温。产物经离心收集,用乙醇洗涤两次,最后在60℃烘箱中干燥24 h,即得到Cs2SnCl6:x%Te4+微米晶。在相同条件下,用x% mmol的BiCl3和(1 − x%) mmol的SnCl4·5H2O可合成不同Bi3+浓度的Cs2SnCl6:x%Bi3+微米晶。

2.2. 样品表征

采用Cu Kα辐射(λ = 0.154056 nm)的X射线衍射技术(XRD) (D8 ADVANCE/德国布鲁克X射线衍射仪)分析所制备粉末样品的晶体结构。XRD数据的采集范围为10˚~80˚,采集步进为0.02˚。采用Rietveld方法,使用通用结构分析系统(FullProf)的精修程序对所采集XRD数据进行数据分析。采用捷克TESCAN公司生产的VEGA3型扫描电子显微镜进行样品的微观形貌表征。采用海洋光学仪器有限公司的QE Pro型光纤光谱仪记录样品在365 nm激发下的热循环发射光谱。采用爱丁堡FS5荧光分光光度计记录样品的激发与发射光谱。

3. 结果与讨论

3.1. 样品结构分析

图1(a)为Cs2SnCl6的晶体结构图,采用改进的水热法合成的Cs2SnCl6微米晶,Cs2SnCl6晶体由三维CsSnCl3钙钛矿衍生而来,通过间隔去除[SnCl6]2−八面体每个中心的一半锡原子,形成所谓的空位有序双钙钛矿(空间群Fm3m),其中孤立的[SnCl6]2−八面体被Cs+阳离子包围。Bi3+和Te4+离子进入晶格后占据Sn4+位点,分别形成[BiCl6]3-和[TeCl6]2−,,其中,Bi3+离子的非等价取代会通过增加Cl空位进行电荷补偿 [21] 。粉末X射线衍射(XRD)检测了微米晶的结晶度和相纯度,与标准衍射卡片(PDF#07-0197)对比,没有观察到任何杂质,如图1(b),证实了我们合成的样品为单相。右图给出了23.7˚到24.9˚的详细X射线衍射峰,随着Te4+和Bi3+掺杂浓度的升高,衍射峰逐渐向小角度移动,这是因为Sn4+ (Å = 0.690 nm)被较大的Bi3+ (Å = 1.030 nm)和Te4+ (Å = 0.970 nm)取代后导致晶格产生膨胀。图1(c)为Cs2SnCl6:0.07Te4+样品的XRD的精修结果,得到的精修参数为Rwp = 9.70%,Rp = 7.04%。这说明得到的精修结果是可靠的,进一步表明Cs2SnCl6:0.07Te4+荧光材料被成功制备且均为纯相。图1(d)和图1(e)分别为所制备的Cs2SnCl6:0.07Te4+和Cs2SnCl6:0.07Bi3+样品的扫描电子显微镜(SEM)和元素分布图像,在这里能够观察到微米晶颗粒表面光滑、尺寸均匀,且Cs、Sn、Cl、Te和Bi元素均匀分布,表明Te4+和Bi3+分别成功掺入Cs2SnCl6基质中。

Figure 1. (a) Crystal structure and the coordination environment of Cs2SnCl6:Bi3+ and Cs2SnCl6:Te4+. (b) X-ray diffraction (XRD) patterns of Cs2SnCl6:xTe4+ (x = 0, 0.01, 0.04, 0.07) and Cs2SnCl6:xBi3+ (x = 0, 0.01, 0.07). (c) Rietveld refinement result of Cs2SnCl6:0.07Te4+ MCs. (d) SEM image and elemental mapping images of Cs2SnCl6:0.07Te4+ and Cs2SnCl6:0.07Bi3+ (scale bar = 5 μm)

图1. (a) Cs2SnCl6掺杂Bi3+和Te4+的晶体结构和配位环境示意图。(b) Cs2SnCl6:xTe4+ (x = 0, 0.01, 0.04, 0.07)和Cs2SnCl6:xBi3+ (x = 0.01, 0.07)的XRD图谱。(c) Cs2SnCl6:0.07Te4+微米晶的XRD精修结果。(d) Cs2SnCl6:0.07Te4+和Cs2SnCl6:0.07Bi3+样品的SEM图像和元素分布图像

3.2. 光学性能的表征

图2(a)为Cs2SnCl6和Te4+离子掺杂的Cs2SnCl6样品的激发光谱。Cs2SnCl6样品在220~480 nm的波段范围内,并未出现激发峰。而Te4+掺杂的Cs2SnCl6的样品,其光致发光光谱在360~480 nm、300~360 nm和250~300 nm出现宽的激发带。其与陈学元课题组所报道的激发峰位置一致,可归属为Te4+的特征激发带。其中,387和425 nm处的非对称双重态吸收带归属于Te4+的自旋轨道允许的1S0 (1A1g) → 3P1 (3T1u)跃迁;342 nm处的单重态吸收带归属于振动诱导的1S0 (1A1g) → 3P2 (3Eu + 3T2u)跃迁;287、298和314 nm处的非对称三重态吸收带归属于偶极允许的1S0 (1A1g) → 1P1 (1T1u)跃迁 [22] 。图2(b)显示,在400 nm紫外光激发下,Cs2SnCl6:Te4+在570 nm处表现出明亮的黄色发射,其450~750 nm的宽带发射可归属为Te4+离子3P0,11S0的跃迁。随着Te4+浓度从0增加到0.07,Cs2SnCl6:Te4+的发光强度逐渐增大。随着Te4+浓度的增加,由于浓度猝灭效应,其发光强度逐渐减小。折线图显示Cs2SnCl6:Te4+的最佳Te4+掺杂浓度为0.07,此时发光强度最高其发光的色坐标位于黄光区域,色坐标为(0.466, 0.509),如图2(c)所示。图2(d)所示,Cs2SnCl6:xBi3+样品的激发光谱表明300~370 nm的不对称激发带归属于自旋轨道允许的Bi3+离子的1S0 (1A1g) → 3P1 (3T1u)跃迁。图2(e)显示,在340 nm激发下,掺Bi3+的微米晶在450 nm处表现出明亮的蓝色发射。随着Bi3+浓度从0增加到0.07,Cs2SnCl6:Bi3+的发光强度逐渐增大。Bi3+离子的浓度进一步增加,由于浓度猝灭效应,发光强度逐渐减小。插图显示Cs2SnCl6:Bi3+的最佳掺杂浓度为0.07,此时发光强度最高,其发光的色坐标位于蓝光区域,色坐标为(0.146, 0.089),如图2(f)所示。从图2(g)可以观察到,Cs2SnCl6:Te4+的最高PLQY为63.73%,PLAY为发射的光子数目与吸收的光子数目比率,如公式(1)所示。

Figure 2. (a) Photoluminescence excitation spectra (λem = 570 nm), (b) photoluminescence emission spectra (λex = 400 nm), and (c) the corresponding CIE chromatic coordinate of Cs2SnCl6:xTe4+ (x = 0, 0.01, 0.04, 0.07, 0.10, 0.13) samples. (d) Photoluminescence excitation spectra (λem = 450 nm), (e) photoluminescence spectra (λex = 340 nm), and (f) the corresponding CIE chromatic coordinate of Cs2SnCl6:xTe4+ (x = 0, 0.01, 0.04, 0.07, 0.10, 0.13) samples. (g) PLQY of Cs2SnCl6:0.07Te4+ (The inset is the local PL spectrum of Cs2SnCl6:0.07Te4+). (h) PLQY of Cs2SnCl6:0.07Bi3+ (The inset is the local PL spectrum of Cs2SnCl6:0.07Bi3+). (i) Mechanism diagram of PL of Cs2SnCl6:Bi3+ and Cs2SnCl6:Te4+ MCs, respectively

图2. Cs2SnCl6:xTe4+ (x = 0, 0.01, 0.04, 0.07, 0.10, 0.13)的(a) 光致发光激发光谱(λem = 570 nm),(b) 光致发光光谱(λex = 400 nm)以及(c) 光致发光光谱的色坐标图。Cs2SnCl6:xBi3+ (x = 0, 0.01, 0.03, 0.05, 0.07, 0.09)的(d) 光致发光激发光谱(λem = 450 nm),(e) 光致发光光谱(λex = 340 nm)以及(f) 光致发光光谱的色坐标图。(g) Cs2SnCl6:0.07Te4+的外量子效率(插图为Cs2SnCl6:0.07Te4+的局部光致发光光谱)。(h) Cs2SnCl6:0.07Bi3+的外量子效率(插图为Cs2SnCl6:0.07Bi3+的局部光致发光光谱)。(i) Cs2SnCl6:Te4+和Cs2SnCl6:Bi3+的光致发光机理图

PLQY = (1)

插图为450~700 nm的Te4+的特征发射的局部放大光谱。同样的,掺Bi3+的Cs2SnCl6也具有很高的PLQY,量子产率为61.07%,如图2(h)所示,插图为Bi3+在400~550 nm特征发射的局部放大光谱。在340 nm和400 nm的特征激发下,激子由1S0基态跃迁到1P13P23P0,1激发态,然后激子快速从1P13P2非辐射弛豫到3P0,1,然后从3P0,1返回基态,分别产生450 nm的蓝色发射和570 nm的黄色发射,如图2(i)所示。

3.3. Cs2SnCl6:Te4+和Cs2SnCl6:Bi3+的稳定性表征

Figure 3. (a) XRD patterns of Cs2SnCl6:0.07Te4+ and Cs2SnCl6:0.07Bi3+ MCs recorded after deposited in ambient air for 30 days. (b) Photoluminescence spectra of Cs2SnCl6:0.07Te4+ and Cs2SnCl6:0.07Bi3+ MCs recorded for the corresponding sample exposed in ambient air for 30 days. The plotted luminescence intensity of (c) Cs2SnCl6:0.07Te4+ and (d) Cs2SnCl6:0.07Bi3+ recorded for 5 thermal cycles from 300 K to 400 K. PL spectra of (e) Cs2SnCl6:0.07Te4+ and (f) Cs2SnCl6:0.07Bi3+ deposited in water for 0~120 mins, the upper inset plots the PL intensity change dependent on recorded time, the bottom inset show the corresponding photographs under 365 nm irradiation, respectively.

图3. (a) Cs2SnCl6:Te4+和Cs2SnCl6:Bi3+暴露于环境空气中30天前后的XRD图谱;(b) Cs2SnCl6:Te4+和Cs2SnCl6:Bi3+暴露于环境空气中30天前后的光致发光光谱;(c) Cs2SnCl6:0.07Te4+和(d) Cs2SnCl6:0.07Bi3+在300 K和400 K下5个热循环的归一化发光强度;(e) Cs2SnCl6:0.07Te4+和(f) Cs2SnCl6:0.07Bi3+放置于去离子水中0~120 min的光致发光光谱,插图为强度变化的折线图;照片为其在去离子水中365 nm紫外光辐照下的照片

发光材料的稳定性是考虑其实际应用可靠性的一个重要方面。在这里,我们详细研究了环境、温度和湿度对Cs2SnCl6:Te4+和Cs2SnCl6:Bi3+微米晶的结构和光学性质的影响。在空气中放置30天后,Cs2SnCl6:0.07Te4+和Cs2SnCl6:0.07Bi3+微米晶的XRD衍射峰并没有发生偏移,如图3(a)所示。这说明周围环境并没有引起明显结构改变,表明该钙钛矿材料具备优异的环境稳定性。此外,图3(b)给出了Cs2SnCl6:0.07Te4+和Cs2SnCl6:0.07Bi3+暴露在空气中长时间后的光致发光强度的变化,经过30天后,二者仍能维持80%以上的光致发光强度。并且其发光峰并没有偏移,说明长时间暴露在大气环境不会影响其发光性能,具备良好的空气稳定性。Cs2SnCl6:0.07Te4+和Cs2SnCl6:0.07Bi3+在连续五次冷却—加热循环中的光致发光强度如图3(c)和图3(d)所示。随着温度从300 K升高到400 K,非辐射弛豫和电子–声子耦合极大地增强,导致热猝灭效应,发光强度明显减弱。虽然样品的热稳定性较差,但随着温度恢复到300 K,其强度仍能恢复到90%以上,高温并没有破坏其结构,表明其具备良好的结构稳定性。此外,图3(e)和3(f)中,Cs2SnCl6:0.07Te4+和Cs2SnCl6:0.07Bi3+微米晶在水中浸泡2小时后能够保持初始PL强度的80%,插图显示Cs2SnCl6:0.07Te4+和Cs2SnCl6:0.07Bi3+在去离子水中仍能保持明亮的黄光发射和蓝光发射,表现出良好的水稳定性。Cs2SnCl6:0.07Te4+和Cs2SnCl6:0.07Bi3+微米晶出色的空气、热和抗水稳定性,以及高PLQY和覆盖整个可见光谱区域的发射意味着其可作为LED荧光材料的巨大优势。

3.4. WLED器件的应用

Figure 4. (a) Powder XRD patterns of samples A, B, and C exposed to ambient air for 30 days, respectively. (b) Electroluminescence spectra of UV-pumped WLED based on Sample A, B, and C operated at 200 mA driving currents. The insets are photographs of the working WLEDs. (c) Commission Internationale de L’Eclairage (CIE) color coordinates of the WLEDs at 200 mA driving current. Electroluminescence spectra of the UV-pumped WLED based on (d) sample A, (e) sample B, and (f) sample C at 40~200 mA driving currents. (g) Thermal images of sample C fabricates WLED devices at 100 mA, 150 mA, and 200 mA driving currents, respectively

图4. (a) 样品A、B和C暴露于环境空气中30天前后的XRD图谱。(b) 基于样品A、B、C封装的紫外泵浦WLED在驱动电流200 mA下的电致发光光谱。插图为WLED的电致发光照片。(c) 样品A、B、C在驱动电流200 mA下的色坐标图。(d) 样品A、(e) 样品B和(f) 样品C在40~200 mA驱动电流下WLED的发射光谱。(g) 样品C制作的WLED器件分别在在100 mA、150 mA、200 mA驱动电流下的热成像照片

为了确认Cs2SnCl6:0.07Te4+:Cs2SnCl6:0.07Bi3+微米晶在固态照明中的潜在应用,我们将不同比例(1:4, 1:5, 1:6)的Cs2SnCl6:0.07Te4+和Cs2SnCl6:0.07Bi3+样品混合为样品A、B和C。如图4(a)所示,三种不同比例的样品混合XRD的衍射峰并没有改变,说明物理混合并没有引起结构变化。样品放置30天后,其衍射峰位置与强度并没有发生变化,说明该系列样品仍具有优异的环境稳定性。通过把样品A、B和C与市场上365 nm的紫外InGaN芯片结合制备了三种不同的WLED,如图4(b)所示。所制备的WLED可发出明亮的白光,光谱覆盖整个可见区域,范围为400~750 nm。上述三种WLED的CIE颜色坐标分别为(0.388, 0.421)、(0.352, 0.381)和(0.301, 0.312),如图4(c)所示。这意味着该LED器件可实现从暖白光到冷白光的转化,CCT分别为7370 K、6237 K、7422 K。值得注意的是,样品C的显色指数(CRI)高达93,远高于常用的荧光灯(≈65),与昂贵的混合荧光粉所达到的值相当,可满足对色彩要求严格的高级应用。为了评估WLED在不同驱动电流下的性能,图4(d)~(f)分别采集了样品A、B和C相应的发射光谱。随着驱动电流的增大,发射强度呈单调增加,这表明所制备的三种不同WLED都具有良好的稳定性,在高电流下也能正常工作。同时,利用红外摄像机对不同驱动电流下WLED的表面温度进行了监测。如图4(g)所示,当驱动电流从100 mA增加到200 mA时,灯珠的温度从42.0℃升高到94.9℃。该LED器件运行过程中温度变化表明输入电能转化为热量,但上述样品仍表现出良好的光输出性能,显示了所开发Cs2SnCl6:0.07Te4+和Cs2SnCl6:0.07Bi3+微米晶用作为WLED用荧光材料的潜力。

4. 结论

总之,本工作通过水热法制备了Te4+和Bi3+离子掺杂的Cs2SnCl6微米晶。上述发光中心可实现高效的Te4+离子3P0,11S0跃迁的570 nm黄光发射和Bi3+离子3P0,11S0跃迁引起的450 nm蓝光发射。所开发荧光材料的光致发光量子产率分别可达61.07%、63.73%,其在空气环境、热、水中都具有优异的稳定性。此外,混合不同比例的Cs2SnCl6:Te4+和Cs2SnCl6:Bi3+微米晶可实现从暖白光到冷白光的调谐,其光输出色温从6237 K变化到7422 K,最高显色指数高达93。即使在高电流密度下,这两种荧光材料仍具有稳定的光输出。因此,本工作表明过渡金属离子掺杂的无铅卤化物钙钛矿可作为高效荧光材料,有望实现高性能荧光转换WLED器件。

致谢

1) 四川省自然科学基金Natural Science Foundation of Sichuan Province (Grant No.2022NSFSC2005)资金支持。

2) 大学生国家级创业训练《便携式医疗X射线成像》和省级创业训练《便携式X射线医疗成像》项目支持。

NOTES

*通讯作者。

参考文献

[1] Zuo, Z.H., Peng, Y.Y., Li, J.H. Wang, X.J., Liu, Z.Q. and Chen, Y.B. (2022) Thermal-Responsive Dynamic Color- Tunable Persistent Luminescence from Green to Deep Red for Advanced Anti-Counterfeiting. Chemical Engineering Journal, 446, Article ID: 136976.
https://doi.org/10.1016/j.cej.2022.136976
[2] Dai, M.Q., Zhou, B., Fang, X.Y. and Yan, D.P. (2022) Two-Dimensional Hybrid Perovskitoid Micro/Nanosheets: Colorful Ultralong Phosphorescence, Delayed Fluorescence, and Anisotropic Optical Waveguide. ACS Applied Materials & Interfaces, 14, 40223-40231.
https://doi.org/10.1021/acsami.2c11164
[3] Jia, M.C., Chen, X., Sun, R.R., Wu, D., Li, X.J., Shi, Z.F., Chen, G.Y. and Shan, C.X. (2023) Lanthanide-Based Ratiometric Luminescence Nanothermometry. Nano Research, 16, 2949-2967.
https://doi.org/10.1007/s12274-022-4882-7
[4] Xu, L.J., Plaviak, A., Lin, X.S., Worku, M., He, Q.Q., Chaaban, M., Kim, B.J. and Ma, B.W. (2020) Metal Halide Regulated Photophysical Tuning of Zero-Dimensional Or-ganic Metal Halide Hybrids: From Efficient Phosphorescence to Ultralong Afterglow. Angewandte Chemie International Edition in English, 59, Article ID: 23067.
https://doi.org/10.1002/anie.202010555
[5] Guo, Q.X., Zhao, X., Song, B.X., Luo, J.J. and Tang, J. (2022) Light Emission of Self-Trapped Excitons in Inorganic Metal Halides for Optoelectronic Applications. Advanced Materials, 34, Article ID: 2201008.
https://doi.org/10.1002/adma.202201008
[6] Zhang, H., Yang, Z., Zhao, L., Cao, J.Z, Yu, X., Yang, Y., Yu, S.F., Qiu, J.B. and Xu, X.H. (2020) Long Persistent Luminescence from All-Inorganic Perovskite Nanocrystals. Advanced Optical Materials, 8, Article ID: 2000585.
https://doi.org/10.1002/adom.202000585
[7] Yang, R.T., Yang, D.W., Wang, M., Zhang, F., Ji, X.Z., Zhang, M.Y., Jia, M.Y., Chen, X.C., Wu, D., Li, X.J., Zhang, Y., Shi, Z.F. and Shan, C.X. (2023) High-Efficiency and Stable Long-Persistent Luminescence from Undoped Cesium Cadmium Chlorine Crystals Induced by Intrinsic Point Defects. Advanced Science, 10, e2207331.
https://doi.org/10.1002/advs.202207331
[8] Liu, N.Q., Zheng, W., Sun, R.J., Li, X.L., Xie, X.Y., Wang, L.Y. and Zhang, Y.H. (2021) Near-Infrared Afterglow and Related Photochromism from Solution-Grown Perovskite Crystal. Advanced Functional Materials, 32, Article ID: 202110663.
https://doi.org/10.1002/adfm.202110663
[9] Chen, X., Wang, X., Zhang, X. and Zhang, Y. (2022) Mn2+-Activated Afterglow in a Transparent Perovskite Crystal. The Journal of Physical Chemistry Letters, 13, 8163-8168.
https://doi.org/10.1021/acs.jpclett.2c02216
[10] Zhou, X., Han, K., Wang, Y., Jin, J., Jiang, S., Zhang, Q. and Xia, Z. (2023) Energy-Trapping Management in X-Ray Storage Phosphors for Flexible 3D Imaging. Advanced Materials, 35, Article ID: 2212022.
https://doi.org/10.1002/adma.202212022
[11] Zhong, C., Li, L., Chen, Q., Jiang, K., Li, F., Liu, Z. and Chen, Y. (2023) Enhanced Exciton-to-Mn2+ Energy Transfer in 3D/0D Cesium–Lead–Chloride Composite Perovskites. Advanced Optical Materials, 11, Article ID: 2202321.
https://doi.org/10.1002/adom.202202321
[12] Liu, Y., Zhang, X., Wang, X., Yan, S., Liang, Y. and Zhang, Y. (2023) Ultralong Afterglow and Unity Quantum Yield from a Transparent CsCdCl3:Mn Crystal. Aggregate, 4, Article No. e334.
https://doi.org/10.1002/agt2.334
[13] Tang, Z., Liu, R., Chen, J., Zheng, D., Zhou, P., Liu, S., Bai, T., Zheng, K., Han, K. and Yang, B. (2022) Highly Efficient and Ultralong Afterglow Emission with Anti-Thermal Quenching from CsCdCl3:Mn Perovskite Single Crystals. Angewandte Chemie International Edition in English, 61, e202210975.
https://doi.org/10.1002/anie.202210975
[14] Zheng, W., Li, X., Liu, N., Yan, S., Wang, X., Zhang, X., Liu, Y., Liang, Y., Zhang, Y. and Liu, H. (2021) Solution- Grown Chloride Perovskite Crystal of Red Afterglow. Angewandte Chemie International Edition in English, 60, 24450-24455.
https://doi.org/10.1002/anie.202110308
[15] Z., Tan, Y., Chu, J., Chen, J., Li, G., Ji, G., Niu, L., Gao, Z., Xiao, J., Tang, (2020) Lead-Free Perovskite Variant Solid Solutions Cs2Sn1–xTexCl6: Bright Luminescence and High Anti-Water Stability. Advanced Materials, 32, Article ID: 2002443.
[16] Wang, X., Zhang, X., Yan, S., Liu, H. and Zhang, Y. (2022) Nearly-Unity Quantum Yield and 12-Hour Afterglow from a Transparent Perovskite of Cs2NaScCl6:Tb. An-gewandte Chemie International Edition in English, 61, e202210853.
https://doi.org/10.1002/anie.202210853
[17] Kim, H., Bae, S.-R., Lee, T.H., Lee, H., Kang, H., Park, S., Jang, H.W. and Kim, S.Y. (2021) Enhanced Optical Properties and Stability of CsPbBr3 Nanocrystals through Nickel Doping. Advanced Functional Materials, 31, Article ID: 2102770.
https://doi.org/10.1002/adfm.202102770
[18] Zheng, W., Sun, R., Liu, Y., Wang, X., Liu, N., Ji, Y., Wang, L., Liu, H. and Zhang, Y. (2021) Management of Lead-Free Perov-skite Nanocrystals through Doping. ACS Applied Materials & Interfaces, 13, 6404-6410.
https://doi.org/10.1021/acsami.0c20230
[19] Yu, J., Kong, J., Hao, W., Guo, X., He, H., Leow, W.R., Liu, Z., Cai, P., Qian, G., Li, S., Chen, X. and Chen X. (2019) Broadband Extrinsic Self-Trapped Exciton Emission in Sn-Doped 2D Lead-Halide Perovskites. Advanced Materials Advanced Materials, 31, Article ID: 1806385.
https://doi.org/10.1002/adma.201806385
[20] Zeng, Z., Sun, M., Zhang, S., Zhang, H., Shi, X., Ye, S., Huang, B., Du, Y. and Yan, C. (2022) Rare-Earth-Based Perovskite Cs2AgScCl6:Bi for Strong Full Visible Spectrum Emission. Advanced Functional Materials, 32, Article ID: 202204780.
https://doi.org/10.1002/adfm.202204780
[21] Tan, Z.F., Li, J.H., Zhang, C., Li, Z., Hu, Q.S., Xiao, Z.W., Kamiya, T., Hoson, H., Niu, G.D., Lifshitz, E., Cheng, Y.B. and Tang, J. (2018) Highly Efficient Blue-Emitting Bi-Doped Cs2SnCl6 Perovskite Variant: Photoluminescence Induced by Impurity Doping. Advanced Functional Materials, 28, Article ID: 1801131.
https://doi.org/10.1002/adfm.201801131
[22] Zhang, W., Zheng, W., Li, L., Huang, P., Gong, Z., Zhou, Z., Sun, J., Yu, Y. and Chen, X. (2022) Dual-Band-Tunable White-Light Emission from Bi3+/Te4+ Emitters in Perovskite-Derivative Cs2SnCl6 Microcrystals. Angewandte Chemie International Edition in English, 61, e202116085.
https://doi.org/10.1002/anie.202116085