|
[1]
|
M. Pellicer, J. Sola-Morales. Analysis of a viscoelastic spring-mass model. Mathematical Analysis and Applications, 2004, 294(2): 687-698.
|
|
[2]
|
M. G. Van Dalsen. On fractional powers of a closed pair of operators and a damped wave equation with dynamic boundary conditions. Appli- cable Analysis, 1994, 53(1-2): 41-54.
|
|
[3]
|
O. Morgul, B. P. Rao and F. Conrad. On the stabilization of a cable with a tip mass. IEEE Transaction on Automatic Control, 1994, 39(10): 2140-2145.
|
|
[4]
|
W. D. Zhu, B. Z. Guo. On hybrid boundary control of flexible systems. Transactions of the ASME, 1997, 119: 836-839.
|
|
[5]
|
A Mifdal. Uniform stabilization of a hybrid system. Comptes Rendus de l’Acadrmie des Sciences, 1997, 324(1): 37-42.
|
|
[6]
|
C. F. Baicu, C. D. Rahn and D. M. Dawson. Exponentially stabilizing boundary control of string-mass systems. Journal of Vibration and Control, 1998, 5(3): 491-502.
|
|
[7]
|
B. Z. Guo, C. Z. Xu. On the spectrum-determined growth condition of a vibration cable with a tip mass. IEEE Transaction on Automatic Con- trol, 2000, 45(1): 89-93.
|
|
[8]
|
F. Conrad, G. O’Dowd and F.-Z. Saouri. Asymptotic behavior for a model of flexible cable with tip mass. Asymptotic Analysis, 2002, 30(3-4): 313-330.
|
|
[9]
|
B. P. Rao. Decay estimates of solutions for a hybrid system of flexible structures. European Journal of Applied Mathematics, 1994, 4(3): 303-319.
|
|
[10]
|
E. Feireisl, G. O’Dowd. Stabilization of a hybrid system with a nonlinear nonmonotone feedback. ESAIM: Control, Optimisation and Calculus of Variations, 1999, 4: 133-135.
|
|
[11]
|
B. d’Andrea-Novel, F. Boustany, F. Conrad and B. P. Rao. Feedback stabilization of a hybrid PDE-ODE system: Application to an overhead crane. Mathematics of Control, Signals and Systems, 1994, 7(1): 1-22.
|
|
[12]
|
J. Vancostenoble. Strong stabilization (via weak stabilization) of hybrid systems with a nonmonotone feedback. ESAIM: Proceedings, 2000, 8: 157-159.
|
|
[13]
|
S. M. Shahruz. Boundary control of a nonlinear axially moving string. International Journal of Robust and Nonlinear Control, 2000, 10(1): 17-25.
|
|
[14]
|
M. Pellicer, J. Sola-Morales. Spectral analysis and limit behaviours in a spring-mass system. Communications on Pure and Applied Analysis, 2008, 7(3): 563-577.
|
|
[15]
|
呼青英, 张宏伟. 混合Cable-Mass动力系统的一致稳定性[J]. 动力与控制学报, 2007, 5(1): 27-29.
|
|
[16]
|
J. A. Burns, B. B. King. Optimal sensor location for robust control of distributed paramater systems. Proceedings of the 33rd Conference on Decision and Control, Lake Buena Vista, December 1994: 3967-3972.
|
|
[17]
|
A. S. Ackleh, H. T. Banks and G. A. Pinter. Well-posedness results for models of elastomers. Journal of Mathematical Analysis and Applica- tion, 2002, 258: 440-456.
|
|
[18]
|
M. Pellicer. Large time dynamics of a nonlinear spring-mass-damper model. Nonlinear Analysis, 2008, 69(9): 3110-3127.
|
|
[19]
|
S. Gerbi, B. Said-Houari. Local existence and exponential growth for a semilinear damped wave equation with dynamic boundary conditions. Advances in Differential Equations, 2008, 13(11): 1051-1074.
|
|
[20]
|
S. Gerbi, B. Said-Houari. Asymptotic stability and blow up for a semilinear damped wave equation with dynamic boundary conditions. Nonlinear Analysis, 2011, 74(17): 7137-7150.
|
|
[21]
|
李玉环, 刘盈盈, 穆春来. 动态边界下一类强阻尼波动方程解的爆破[J]. 西南大学学报, 2011, 33(7): 10-15.
|
|
[22]
|
W. Littman, L. Markus. Stabilization of a hybrid system of elasticity by feedback boundary damping. Annali di Matematica Pura ed Applicata, 1998, 152: 281-330.
|
|
[23]
|
K. T. Andrews, K. L. Kuttler and M. Shillor. Second order evolution equations with dynamic boundary conditions. Journal of Mathematical Analysis and Applications, 1996, 197: 781-795.
|
|
[24]
|
Q. Y. Hu, C. K. Zhu and X. Z. Zhang. Energy decay estimates for an Euller-Bernoulli beam with a tip mass. Annals of Differential Equations, 2009, 25(2): 161-164.
|
|
[25]
|
G. Autuori, P. Pucci. Kirchhoff systems with dynamic boundary conditions. Nonlinear Analysis, 2010, 73(7): 1952-1965.
|
|
[26]
|
H. A. Levine. Some additional remarks on the nonexistence of global solutions to nonlinear wave equations. SIAM Journal on Mathematical Analysis, 1974, 5(1): 138-146.
|
|
[27]
|
G. Todorova. Stable and unstable sets for the Cauchy problem for a nonlinear wave equation with nonlinear damping and source terms. Journal of Mathematical Analysis and Applications, 1999, 239(1): 213-226.
|
|
[28]
|
L. Payne, O. Sattinger. Saddle points and instability on nonlinear hyperbolic equations. Israel Journal of Mathematics, 1973, 22(3-4): 273-303.
|
|
[29]
|
M. Nakao, K. Ono. Global existence to the Cauchy problem of the semilinear evolution equations with a nonlinear with a nonlinear dissipation. Funkcialaj Ekvacioj, 1995, 38: 417-431.
|