白鹤滩水库运行期非一致性设计洪水估算
Non-Stationary Design Flood Estimation in the Baihetan Reservoir Operation Period
DOI: 10.12677/jwrr.2024.131001, PDF, 下载: 63  浏览: 114  科研立项经费支持
作者: 杨媛婷, 郭生练*, 谢雨祚, 钟斯睿:武汉大学水资源工程与调度全国重点实验室,湖北 武汉
关键词: 设计洪水非一致性时变矩法水库系数白鹤滩水库Design Flood Non-Stationary Time-Varying Moment Reservoir Index Baihetan Reservoir
摘要: 水库建设运行改变了下游河流的水文情势,导致水文资料系列无法满足洪水频率分析的一致性假定要求。本文基于GAMLSS模型构,建以水库系数作为协变量的时变P-III型分布模型,分别采用极大似然法和Q-Q图适线法,估计时变P-III型分布模型参数,推求白鹤滩水库运行期设计洪水。结果表明:Q-Q图适线法的拟合效果要优于极大似然法,与原设计值相比白鹤滩水库运行期1000年一遇设计洪峰,3 d、7 d、15 d和30 d洪量,分别削减了26.2%、25.1%、23.8%、22.7%和24.4%。
Abstract: The construction and operation of the reservoir changed the hydrological regime of the downstream river, resulting in the hydrological data series unable to meet the requirements of the consistency assumption of flood frequency analysis. Based on the GAMLSS model, this paper built a time-varying P-III distribution model with reservoir coefficient as a covariable. Maximum likelihood method and Q-Q diagram fitting line method were used respectively to estimate the parameters of the time-varying P-III distribution model. The design flood of Baihetan reservoir during operation is deduced. The results show that the fitting effect of Q-Q map fitting line method is better than that of maximum likelihood method. Compared with the original design value, the design flood peak, 3 d, 7 d, 15 d and 30 d of Baihetan Reservoir during the oper-ation period of 1000 years are reduced by 26.2%, 25.1%, 23.8%, 22.7% and 24.4%, respectively.
文章引用:杨媛婷, 郭生练, 谢雨祚, 钟斯睿. 白鹤滩水库运行期非一致性设计洪水估算[J]. 水资源研究, 2024, 13(1): 1-11. https://doi.org/10.12677/jwrr.2024.131001

参考文献

[1] 郭生练, 刘章君, 熊立华. 设计洪水计算方法研究进展与评价[J]. 水利学报, 2016, 47(3): 302-314.
[2] 中华人民共和国水利部. 水利水电工程设计洪水计算规范: SL 44-2006 [S]. 北京: 中国水利水电出版社, 2006.
[3] 郭生练, 熊立华, 熊丰, 等. 梯级水库运行期设计洪水理论和方法[J]. 水科学进展, 2020, 31(5): 734-745.
[4] 陈甜, 董增川, 贾本有, 等. 考虑上游梯级水库群调度的小南海水电站坝址设计洪水分析[J]. 河海大学学报(自然科学版), 2014, 42(6): 476-480.
[5] 黄一昕, 梁忠民, 胡义明, 等. 关于水文同频率地区组成法中相应洪量频率的探讨[J]. 南水北调与水利科技, 2018, 16(3): 189-193.
[6] 刘章君, 郭生练, 李天元, 等. 梯级水库设计洪水最可能地区组成法计算通式[J]. 水科学进展, 2014, 25(4): 575-584.
[7] 熊丰, 郭生练, 陈柯兵, 等. 金沙江下游梯级水库运行期设计洪水及汛控水位[J]. 水科学进展, 2019, 30(3): 401-410.
[8] 陆中央. 关于年径流量系列的还原计算问题[J]. 水文, 2000(6): 9-12.
[9] WAYLEN, P., WOO, M. Predic-tion of annual floods generated by mixed processes. Water Resources Research, 1982, 18(4): 1283-1286.
https://doi.org/10.1029/WR018i004p01283
[10] SINGH, V., WANG, S. and ZHANG, L. Frequency analysis of noniden-tically distributed hydrologic flood data. Journal of Hydrology, 2005, 307(1-4): 175-195.
https://doi.org/10.1016/j.jhydrol.2004.10.029
[11] ZENG, H., FENG, P. and LI, X. Reservoir flood routing considering the non-stationarity of flood series in north China. Water Resources Management, 2014, 28(12): 4273-4287.
https://doi.org/10.1007/s11269-014-0744-6
[12] STRUPCZEWSKI, W., SINGH, V. and FELUCH, W. Non-stationary approach to at-site flood frequency modelling I maximum likelihood estimation. Journal of Hydrology, 2001, 248(1-4): 123-142.
https://doi.org/10.1016/S0022-1694(01)00397-3
[13] STRUPCZEWSKI, W., KACZMAREK, Z. Non-stationary approach to at-site flood frequency modelling II weighted least squares estimation. Journal of Hydrology, 2001, 248(1-4): 143-151.
https://doi.org/10.1016/S0022-1694(01)00398-5
[14] JIANG, C., XIONG, L., XU, C., et al. Bivariate frequency analysis of nonstationary low-flow series based on the time-varying copula. Hydrological Processes, 2015, 29(6): 1521-1534.
https://doi.org/10.1002/hyp.10288
[15] XIONG, L., JIANG, C. and DU, T. Statistical attribution analysis of the nonsta-tionarity of the annual runoff series of the Weihe River. Water Science and Technology, 2014, 70(5): 939-946.
https://doi.org/10.2166/wst.2014.322
[16] 江聪, 熊立华. 基于GAMLSS模型的宜昌站年径流序列趋势分析[J]. 地理学报, 2012, 67(11): 1505-1514.
[17] 康彦付, 陈峨印, 李建柱, 等. 环境变化条件下大清河流域非一致性洪水频率分析及设计洪水研究[J]. 河北水利电力学院学报, 2018(1): 39-44.
[18] 赵永茂, 徐力刚, 蒋名亮, 等. 赣江流域非一致性条件下设计洪水估计[J]. 水利水电技术, 2019, 50(6): 62-69.
[19] RIGBY, R., STASINOPOULOS, D. Generalized additive models for location, scale and shape. Journal of the Royal Statistical Society Series C-Applied Statistics, 2005, 54: 507-544.
https://doi.org/10.1111/j.1467-9876.2005.00510.x
[20] STASINOPOULOS, D., RIGBY, R. Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, 2007, 23(7): 1-46.
https://doi.org/10.18637/jss.v023.i07
[21] 余航, 杨茂灵, 李新华, 等. 基于gamlss的非一致性设计洪水研究——以云南省盘龙河龙潭寨水文站为例[J]. 水文, 2024: 1-15.
[22] 邓清文, 倪玲玲, 王栋. 年最大日降水量序列非一致性分析——以长江中下游干流8站为例[J]. 水文, 2023, 43(2): 58-65.
[23] 郝文龙, 宋弘东, 朱长军, 等. 变化环境下非一致性极端水文事件的模拟及预测[J]. 水电能源科学, 2022, 40(6): 58-62.
[24] XIONG, B., XIONG, L., GUO, S., et al. Nonstation-ary frequency analysis of censored data: A case study of the floods in the Yangtze River from 1470 to 2017. Water Resources Research, 2020, 56(8): e2020WR027112.
https://doi.org/10.1029/2020WR027112
[25] XIE, Y., GUO, S., XIONG, L., et al. Nonstationary design flood estimation in response to climate change, population growth and cascade reservoir regulation. Water, 2021, 13(19): 2687.
https://doi.org/10.3390/w13192687