免疫相关心脏毒性的发病机制与诊治
Pathogenesis, Diagnosis and Treatment of Immune-Related Cardiotoxicity
摘要: 目前,肿瘤治疗已经进入精准化时代,免疫检查点抑制剂(ICIs)已经成为多种肿瘤的标准化抗肿瘤疗法。免疫检查点表达于T细胞,参与机体多种免疫过程。ICIs通过激活患者自身免疫系统发挥抗肿瘤效应,患者受益于ICIs抗肿瘤疗效的同时,也会产生免疫相关毒性反应。其中,免疫相关心脏毒性具有发病率低但致死风险高的特点,需要临床医师高度关注。本文将从免疫相关心脏毒性的发病机制、临床表现和诊疗策略展开讨论。
Abstract: At present, cancer treatment has entered the era of precision, and immune checkpoint inhibitors (ICIs) have become standardized anti-tumor therapies for a variety of tumors. Immune checkpoints are expressed in T cells and are involved in a variety of immune processes. ICIs exert anti-tumor ef-fects by activating the patient’s own immune system, and patients benefit from the anti-tumor effi-cacy of ICIs, but also produce immune-related toxic reactions. Among them, immune-related cardi-otoxicity has the characteristics of low incidence but high risk of mortality, which requires great at-tention from clinicians. The pathogenesis, clinical manifestations, and diagnosis and treatment strategies of immune-related cardiotoxicity will be discussed here.
文章引用:任静宜, 赵红. 免疫相关心脏毒性的发病机制与诊治[J]. 临床医学进展, 2024, 14(3): 284-290. https://doi.org/10.12677/ACM.2024.143698

1. 引言

随着精准治疗时代的到来,免疫检查点抑制剂(immune checkpoint inhibitors, ICIs)给恶性肿瘤患者带来了巨大的生存希望。目前,包括细胞程序性死亡受体-1 (programmed death-1)/细胞程序性死亡配体-1 (programmed cell death-ligand 1, PD-L1)、细胞毒性T淋巴细胞相关抗原(cytotoxic T lymphocyte-associated antigen-4, CTLA-4)抑制剂等在内的免疫检查点抑制剂已经成为多种恶性肿瘤的标准疗法。得益于ICIs的抗肿瘤疗效的同时,也有相当患者受到了免疫相关不良反应(immune-related adverse events, irAEs)的困扰 [1] 。

irAEs包括皮肤毒性、胃肠毒性、内分泌毒性、肝脏毒性、心脏毒性、神经毒性、免疫性肺炎等 [2] - [7] 。其中免疫相关心脏毒性占所有irAEs的6.3%,而死亡率却高达35% [8] ,因此早期发现至关重要。本综述将从免疫相关心脏毒性的发病机制、临床表现以及诊疗策略三个方面展开讨论。

2. 免疫相关心脏毒性发病机制

ICIs心脏毒性的发病机制尚未明晰。目前主流学说认为ICIs相关心脏毒性是通过调控T淋巴细胞靶向正常心肌组织引起irAE产生。

PD-L1在人类的心肌细胞中广泛表达,且在心肌损伤时,其表达会增加。Baban等人发现心肌损伤后缺血再灌注时PD-1和PD-L1上调 [9] 。在正常情况下,PD-L1与PD-1的结合可以防止自身免疫性心肌炎的发生 [10] 。因此,使用PD-1/PD-L1免疫检查点抑制剂干扰了心肌细胞正常的保护机制,从而导致心脏组织损伤。其具体机制为:心肌细胞与肿瘤细胞存在相似的淋巴细胞微环境 [11] 。ICIs通过解除肿瘤细胞对T细胞的免疫抑制作用来激活T细胞的功能,从而引发自身免疫反应,最终表现为心脏毒性。Palaskas等人报道,在给予ICIs后,存在于肿瘤细胞和心肌细胞上的同源抗原可被T细胞受体识别 [12] 。动物实验表明,PD-1功能缺失的小鼠最终出现扩张性心肌病,从而导致充血性心力衰竭。在最终死亡的小鼠的心肌细胞上也发现了IgG扩散沉积 [13] [14] 。

CTLA-4是一种免疫检查点分子,通过与抗原提呈细胞上的B7 (CD80/CD86)分子结合,负性调控T细胞的激活,从而对抗CD28介导的共刺激信号 [15] 。CTLA-4抑制剂降低了CTLA-4的免疫抑制作用,导致心脏环境中T细胞积累以及T细胞活性增加 [16] ,随后心脏组织中成纤维细胞增殖以及中性粒细胞和巨噬细胞浸润,故抗CTLA-4所导致的ICI相关心肌炎风险增高,甚至最终出现心肌梗死。动物实验结果显示,CTLA-4基因敲除小鼠发生淋巴细胞增生性疾病,活化的T细胞过度积累。而T细胞的过度活化会引发接受ICIs治疗患者的自身免疫反应,从而导致免疫相关心脏毒性。

3. 临床表现

ICI相关心脏毒性,常见反应包括心肌炎、心包疾病、动脉粥样硬化、急性冠脉综合征、心肌梗死和Takotsubu综合征等。其中心肌炎在所有心脏irAE中的患病率最高,占病例的14.1% [17] 。

3.1. 心肌炎

ICI相关心肌炎中位发生时间通常在首次ICI治疗后平均34天内,约81%的患者在开始治疗后3个月内出现 [18] 。心肌炎在临床早期可出现头晕、胸闷、心悸、疲劳等非特异性症状,此后多表现为胸痛、呼吸困难、肺水肿、心律失常、脑利钠肽(brain natriuretic peptide, BNP)、N末端前脑钠肽(NT-proBNP)升高等,同时在组织学上表现为CD3+、CD4+、CD8+淋巴细胞和巨噬细胞浸润心肌 [19] 。90%的ICIs相关心肌炎患者会出现肌钙蛋白升高,仅有心脏生物标志物升高时的心肌炎可能无症状,但是,心肌炎可能会暴发性出现,并导致心源性休克和死亡 [20] 。有研究表明,应用ICIs导致心肌炎的患者存在并发肌炎、横纹肌溶解症的可能,病理结果证实这类患者的心肌和骨骼肌中有类似的T细胞和巨噬细胞浸润。经T细胞测序,表明自反应性T细胞可能靶向心脏和骨骼肌中的横纹肌。10% ± 15%的心肌炎患者有重症肌无力样症状 [21] 。此外,约89%的ICI相关心肌炎患者还出现了新发的心电图改变 [18] ,伴或不伴心包积液 [12] 。

3.2. 心包疾病

ICIs治疗相关的心包疾病包括急性心包炎、心包积液及心包填塞。具体表现为心包摩擦、心包填塞或缩窄,查体可发现如颈静脉扩张、奇脉、心包摩擦音、心包叩击音等体征 [22] 。接受ICIs治疗的心包炎患者的心包样本显示有明显的淋巴细胞浸润。辅助检查方面,心电图改变包括PR降低、ST段抬高、低QRS波电压和T波倒置。CT扫描可发现心包积液和心包增厚,心脏CMR可发现心包炎症和纤维化 [23] 。暂无证据表明心包积液中淋巴细胞和浆细胞存在恶性细胞 [24] 。

3.3. 动脉粥样硬化

研究表明,ICIs的使用不会诱导产生新的动脉粥样硬化斑块,但会加重已经存在的斑块的炎症并促进坏死碎片的形成 [25] 。动脉动脉粥样硬化斑块中单核细胞的募集和活化的T细胞产生的促动脉粥样硬化细胞因子,会加速动脉粥样硬化的进展。有研究显示,T淋巴细胞在动脉粥样硬化病变中发挥主要作用,T淋巴细胞的激活和分泌INF-γ可以引起激活巨噬细胞 [26] 。此外,通过检验患者外周血发现单核细胞PD-1和PD-L1表达降低 [25] 。动物实验结果表明,使用ICIs后T淋巴细胞浸润冠状动脉内皮和脂质斑块,斑块的不稳定性增加 [27] 。

3.4. 心律失常

ICIs相关性心律失常,包括房性早搏、房性心动过速、心房扑动、房颤、室性心动过速、室颤和房室传导阻滞,其中以房性心律失常最常见。一般情况下患者无明显症状或有心悸、胸闷不适,心电图可表现为PR间区延长、束支传导阻滞 [23] 。有结构性心脏病的患者,接受PD-1/PD-L1免疫检查点抑制剂治疗可出现孤立性心律失常 [28] 。此外,在ICIs治疗后均可观察到房颤、传导延迟和室性心律失常 [29] [30] 。心脏组织病理学显示淋巴细胞浸润累及窦房结和房室结,表明T细胞浸润传导系统导致心律失常和传导异常。临床病例中有使用CTLA-4抑制剂Ipilimumab和PD-1抑制剂Nivolumab后出现心脏骤停报道 [31] [32] 。

3.5. 急性冠脉综合征和心肌梗死

据报道,使用ICIs的患者可能出现稳定型心绞痛和急性冠脉综合征 [33] 。心肌梗死的患者表现为突发胸痛,心肌肌钙蛋白升高,辅助检查中,心电图可表现为ST段抬高、压低或T波倒置,超声心动图提示新发局部室壁运动异常。2017年日本有病例报道称患者使用Nivolumab后出现胸痛及心肌损伤标志物升高,冠状动脉造影术结果显示右冠状动脉闭塞 。

3.6. Takotsubu综合征(Takotsubo Syndrome, TTS)

TTS又称“心碎综合征”,常由负面情绪引起,是一种急性、可逆的左心室收缩功能障碍,临床表现与急性心肌梗死相似。其具体表现为无动脉粥样硬化性相关疾病的患者,出现心尖和左室中部心肌的短暂局部室壁运动异常。某些患者的血清肌钙蛋白水平常表现为正常,但BNP或NT-BNP显著升高。心尖部和左室中部,左室射血分数降低,甚至可能伴发中重度的瓣膜关闭不全 [33] 。有临床病例报告称,男性黑色素瘤患者使用Nivolumab联合Ipilimumab治疗后,出现心电图T波倒置、肌钙蛋白升高和左室射血分数降低,1例患者冠状动脉造影未观察到冠状动脉狭窄,另1例患者冠状动脉造影发现冋旋支远端慢性完全阻塞 [34] 。此外,有一例临床病例报告称,女性黑色素瘤患者在使用Ipilimumab后,心电图ST段抬高并发窦性心动过速,肌钙蛋白升高,冠状动脉造影术结果显示左前降支近端30%狭窄且无血栓 [35] 。

4. 诊断策略

由于ICIs相关心脏毒性可能迅速进展并导致血流动力学不稳定,因此应对于接受免疫治疗且出现心脏不适的患者应保持高度警惕。对于高度怀疑ICIs相关心脏毒性的患者,应立即停用免疫治疗,同时完善心脏评估。

在临床中94%的ICIs相关心肌炎患者中观察到肌钙蛋白水平异常 [29] [36] ,TTS患者的肌钙蛋白水平正常或略有升高 [32] 。肌钙蛋白和BNP在心肌炎病例中明显升高,其中肌钙蛋白T值 ≥ 1.5 ng/mL的预后差且主要心血管不良事件风险显著增加 [12] 。在无症状患者中,心肌肌钙蛋白也是ICIs相关心肌炎筛查的指标。有研究指出,肌钙蛋白应在第一次升高后24小时进行重复测量。心肌炎患者的肌钙蛋白水平会稳步升高 [32] 。

BNP也是一项重要的生物标志物,能反映心脏的应激水平,在大多数ICIs诱导的心肌炎病例中升高 [37] ,虽然其敏感度高,但是特异性较低。BNP/NT-pro BNP升高可能在其他心脏应激的情况下出现,或因癌症相关炎性反应而长期保持升高状态 [23] 。

心电图是非常重要的诊断工具。在心肌炎的情况下,患者的ECG可能表现出心律失常、ST-T波异常、PR段改变等。在心包炎,在心包积液的情况下,ECG可能会出现典型的变化,如低QRS电压、弥漫性ST段上凹和心动过速。但是也有大量的心肌炎病例产生临床正常的ECG报告 [38] 。有文献指出,心电图对PD-1/PD-L1免疫检查点抑制剂所致心肌炎的早期诊断并无预测价值 [39] 。因此心电图在诊断ICIs相关心脏毒性上可能有一定的局限性。

超声心动图可用于诊断心室壁功能障碍、心包积液、心包填塞和检测解剖结构异常 [40] 。其可测量LVEF的变化、心室舒张功能、新的室壁运动异常或心包积液。但是,有研究表明只有约49%的心肌炎患者存在超声心动图异常 [41] 。因此,超声心动图在诊断ICI相关心脏毒性上也可能一定的局限性。

心脏磁共振成像(CMR)是诊断心肌炎的首选无创性方法。CMR可反映心肌水肿和非缺血性心肌损伤,对心肌炎有较高的特异性。通过CMR可显示心肌炎引起的心肌水肿、淋巴细胞浸润、坏死和瘢痕形成等组织特征,并且可了解左心室功能。但是鉴于其高昂的费用和病人耐受相关问题,其在临床上应用受到一定限制。

心内膜心肌活检(endomyocardial biopsy, EMB)是诊断心肌炎的金标准。据统计,心脏穿孔的风险 < 1% [36] [42] 。活检可发现心肌变性、坏死和间质纤维化。在ICIs相关心肌炎可发现中CD4+和CD8+ T细胞及淋巴细胞浸润。

5. 治疗策略

当前,ICIs心脏毒性分四级,G1仅心脏标志物或ECG异常,无症状。建议与基线检查结果对比来确认是否为治疗期间新发异常;一旦确诊心脏毒性,需要暂停ICIs治疗。G2监测指标轻度异常,伴轻度症状。G3监测指标中度异常或轻度活动性症状。G4中重度失代偿,危及生命,需要药物或介入治疗干预。当≥2级时永久停用ICIs,需住院治疗,需肿瘤心脏病团队多学科会诊;立即启用高剂量糖皮质激素,加强心脏症状管理,激素难治性患者可加用免疫抑制剂,必要时重症监护,生命支持。临床治疗中有三个目标:(1) 减少炎性反应的驱动机制;(2) 用免疫抑制疗法来靶向过度活跃的T细胞反应;(3) 启动针对特定疾病的指南指导治疗 [43] 。

糖皮质激素是首选一线用药,使用需遵循早期、足量、足疗程的原则。糖皮质激素的使用应根据患者疾病种类个体化用药:对于心包疾病的患者,推荐口服泼尼松30 mg/d;对于重症心肌炎患者,推荐静脉甲强龙500~1000 mg,持续3 d,此后每日口服泼尼松1~2 mg/kg,逐渐减量,持续4~6周 [33] [44] [45] 。对于非心脏相关毒性的患者,急性期初始剂量推荐静脉甲强龙1 mg/(kg·d),之后续贯口服泼尼松或泼尼松龙并缓慢减量,减量速度根据临床反应调整,但不应少于1个月。如使用糖皮质激素药物疗效不佳或反应较差的患者,应使用英夫妥昔单抗、吗替麦考酚酯和抗胸腺细胞免疫球蛋白等免疫抑制药物。

对症治疗方面,根据患者血流动力学参数应用醛固酮受体拮抗剂、血管紧张素转换酶抑制剂和β受体阻滞剂进行治疗。病情严重出现急性心力衰竭的患者应同时进行心力衰竭的管理和血流动力学支持治疗,必要时可尝试主动脉内球囊反搏或体外膜肺氧合支持治疗。

6. 小结

随着ICIs在临床癌症治疗中的广泛应用,使得患者生存率提高,但是同时越来越多的证据表明ICIs也可引发广泛的心血管不良反应。尽管ICIs相关心脏毒性相对罕见,然而一旦发生可导致患者治疗受阻甚至死亡。当前针对ICIs引起的irAEs机制解释尚不完整,相信在未来的深入研究,能为早期发现并干预ICIs心脏毒性提供新的思路和方法。

NOTES

*通讯作者。

参考文献

[1] Postow, M.A., Sidlow, R. and Hellmann, M.D. (2018) Immune-Related Adverse Events Associated with Immune Checkpoint Blockade. The New England Journal of Medicine, 378, 158-168.
https://doi.org/10.1056/NEJMra1703481
[2] Tang, S.Q., Tang, L.L., Mao, Y.P., et al. (2021) The Pattern of Time to Onset and Resolution of Immune-Related Adverse Events Caused by Immune Checkpoint Inhibitors in Cancer: A Pooled Analysis of 23 Clinical Trials and 8,436 Patients. Cancer Research and Treatment, 53, 339-354.
https://doi.org/10.4143/crt.2020.790
[3] Luoma, A.M., Suo, S., Williams, H.L., et al. (2020) Molecular Pathways of Colon Inflammation Induced by Cancer Immunotherapy. Cell, 182, 655-671.
https://doi.org/10.1016/j.cell.2020.06.001
[4] Suijkerbuijk, K., Kapiteijn, E. and Verheijden, R.J. (2020) Manage-ment of Immune-Related Adverse Events Affecting Outcome in Patients Treated with Checkpoint Inhibitors. JAMA On-cology, 6, 1300-1301.
https://doi.org/10.1001/jamaoncol.2020.1932
[5] Peeraphatdit, T.B., Wang, J., Odenwald, M.A., et al. (2020) Hepatotoxicity from Immune Checkpoint Inhibitors: A Systematic Review and Management Recommendation. Hepatol-ogy, 72, 315-329.
https://doi.org/10.1002/hep.31227
[6] Dubey, D., David, W.S., Reynolds, K.L., et al. (2020) Severe Neurological Toxicity of Immune Checkpoint Inhibitors: Growing Spectrum. Annals of Neurology, 87, 659-669.
https://doi.org/10.1002/ana.25708
[7] Sears, C.R., Peikert, T., Possick, J.D., et al. (2019) Knowledge Gaps and Research Priorities in Immune Checkpoint Inhibitor-Related Pneumonitis. An Official American Thoracic Society Re-search Statement. American Journal of Respiratory and Critical Care Medicine, 200, E31-E43.
https://doi.org/10.1164/rccm.201906-1202ST
[8] Thuny, F., Naidoo, J. and Neilan, T.G. (2022) Cardiovascular Complications of Immune Checkpoint Inhibitors for Cancer. European Heart Journal, 43, 4458-4468.
https://doi.org/10.1093/eurheartj/ehac456
[9] Baban, B., Liu, J.Y., Qin, X., et al. (2015) Upregulation of Pro-grammed Death-1 and Its Ligand in Cardiac Injury Models: Interaction with GADD153. PLOS ONE, 10, E124059.
https://doi.org/10.1371/journal.pone.0124059
[10] Muller, O.J., Spehlmann, M.E. and Frey, N. (2018) Car-dio-Toxicity of Checkpoint Inhibitors. Journal of Thoracic Disease, 10, S4400-S4404.
https://doi.org/10.21037/jtd.2018.12.78
[11] Pirozzi, F., Poto, R., Aran, L., et al. (2021) Cardiovascular Toxicity of Immune Checkpoint Inhibitors: Clinical Risk Factors. Current Oncology Reports, 23, 13.
https://doi.org/10.1007/s11912-020-01002-w
[12] Palaskas, N., Lopez-Mattei, J., Durand, J.B., et al. (2020) Im-mune Checkpoint Inhibitor Myocarditis: Pathophysiological Characteristics, Diagnosis, and Treatment. Journal of the American Heart Association, 9, E13757.
https://doi.org/10.1161/JAHA.119.013757
[13] Zhang, J.C., Chen, W.D., Alvarez, J.B., et al. (2018) Cancer Im-mune Checkpoint Blockade Therapy and Its Associated Autoimmune Cardiotoxicity. Acta Pharmacologica Sinica, 39, 1693-1698.
https://doi.org/10.1038/s41401-018-0062-2
[14] Nishimura, H., Okazaki, T., Tanaka, Y., et al. (2001) Autoimmune Dilated Cardiomyopathy in PD-1 Receptor-Deficient Mice. Science, 291, 319-322.
https://doi.org/10.1126/science.291.5502.319
[15] Yun, S., Vincelette, N.D., Mansour, I., et al. (2015) Late Onset Ipilimumab-Induced Pericarditis and Pericardial Effusion: A Rare but Life Threatening Complication. Case Reports in Oncological Medicine, 2015, Article ID: 794842.
https://doi.org/10.1155/2015/794842
[16] Waterhouse, P., Penninger, J.M., Timms, E., et al. (1995) Lymphopro-liferative Disorders with Early Lethality in Mice Deficient in Ctla-4. Science, 270, 985-988.
https://doi.org/10.1126/science.270.5238.985
[17] Buchbinder, E.I. and Desai, A. (2016) CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition. American Journal of Clinical Oncology, 39, 98-106.
https://doi.org/10.1097/COC.0000000000000239
[18] Mahmood, S.S., Fradley, M.G., Cohen, J.V., et al. (2018) Myocarditis in Patients Treated with Immune Checkpoint Inhibitors. Journal of the American College of Cardiol-ogy, 71, 1755-1764.
https://doi.org/10.1016/j.jacc.2018.02.037
[19] Mocan-Hognogi, D.L., Tranca, S., Farcas, A.D., et al. (2021) Immune Checkpoint Inhibitors and the Heart. Frontiers in Cardiovascular Medicine, 8, Article ID: 726426.
https://doi.org/10.3389/fcvm.2021.726426
[20] Patel, R.P., Parikh, R., Gunturu, K.S., et al. (2021) Cardi-otoxicity of Immune Checkpoint Inhibitors. Current Oncology Reports, 23, Article No. 79.
https://doi.org/10.1007/s11912-021-01070-6
[21] Esfahani, K., Buhlaiga, N., Thebault, P., et al. (2019) Alemtuzumab for Immune-Related Myocarditis Due to PD-1 Therapy. The New England Journal of Medicine, 380, 2375-2376.
https://doi.org/10.1056/NEJMc1903064
[22] Ala, C.K., Klein, A.L. and Moslehi, J.J. (2019) Cancer Treatment-Associated Pericardial Disease: Epidemiology, Clinical Presentation, Diagnosis, and Management. Current Cardiology Reports, 21, Article No. 156.
https://doi.org/10.1007/s11886-019-1225-6
[23] Chen, D.Y., Huang, W.K., Chien-Chia, W.V., et al. (2020) Car-diovascular Toxicity of Immune Checkpoint Inhibitors in Cancer Patients: A Review When Cardiology Meets Immu-no-Oncology. Journal of the Formosan Medical Association, 119, 1461-1475.
https://doi.org/10.1016/j.jfma.2019.07.025
[24] Saade, A., Mansuet-Lupo, A., Arrondeau, J., et al. (2019) Pericar-dial Effusion under Nivolumab: Case-Reports and Review of the Literature. The Journal for ImmunoTherapy of Cancer, 7, Article No. 266.
https://doi.org/10.1186/s40425-019-0760-4
[25] Poels, K., Van Leent, M., Boutros, C., et al. (2020) Immune Checkpoint Inhibitor Therapy Aggravates T Cell-Driven Plaque Inflammation in Atherosclerosis. JACC: CardioOncolo-gy, 2, 599-610.
https://doi.org/10.1016/j.jaccao.2020.08.007
[26] Saigusa, R., Winkels, H. and Ley, K. (2020) T Cell Subsets and Functions in Atherosclerosis. Nature Reviews Cardiology, 17, 387-401.
https://doi.org/10.1038/s41569-020-0352-5
[27] Spallarossa, P., Meliota, G., Brunelli, C., et al. (2018) Potential Cardiac Risk of Immune-Checkpoint Blockade as Anticancer Treatment: What We Know, What We Do Not Know, and What We Can Do to Prevent Adverse Effects. Medicinal Research Reviews, 38, 1447-1468.
https://doi.org/10.1002/med.21478
[28] Baraibar, I., Melero, I., Ponz-Sarvise, M., et al. (2019) Safety and Tolera-bility of Immune Checkpoint Inhibitors (PD-1 and PD-L1) in Cancer. Drug Safety, 42, 281-294.
https://doi.org/10.1007/s40264-018-0774-8
[29] Escudier, M., Cautela, J., Malissen, N., et al. (2017) Clinical Fea-tures, Management, and Outcomes of Immune Checkpoint Inhibitor-Related Cardiotoxicity. Circulation, 136, 2085-2087.
https://doi.org/10.1161/CIRCULATIONAHA.117.030571
[30] Ronen, D., Bsoul, A., Lotem, M., et al. (2022) Exploring the Mechanisms Underlying the Cardiotoxic Effects of Immune Checkpoint Inhibitor Therapies. Vaccines (Basel), 10, 540.
https://doi.org/10.3390/vaccines10040540
[31] Heinzerling, L., Ott, P.A., Hodi, F.S., et al. (2016) Cardiotoxicity Associated with CTLA4 and PD1 Blocking Immunotherapy. The Journal for ImmunoTherapy of Cancer, 4, Article No. 50.
https://doi.org/10.1186/s40425-016-0152-y
[32] Zimmer, L., Goldinger, S.M., Hofmann, L., et al. (2016) Neurological, Respiratory, Musculoskeletal, Cardiac and Ocular Side-Effects of Anti-PD-1 Therapy. European Journal of Cancer, 60, 210-225.
https://doi.org/10.1016/j.ejca.2016.02.024
[33] Guo, X., Wang, H., Zhou, J., et al. (2020) Clinical Manifestation and Management of Immune Checkpoint Inhibitor-Associated Cardiotoxicity. Thoracic Cancer, 11, 475-480.
https://doi.org/10.1111/1759-7714.13250
[34] Ederhy, S., Cautela, J., Ancedy, Y., et al. (2018) Takotsubo-Like Syndrome in Cancer Patients Treated with Immune Checkpoint Inhibitors. JACC: Cardiovascular Imaging, 11, 1187-1190.
https://doi.org/10.1016/j.jcmg.2017.11.036
[35] Geisler, B.P., Raad, R.A., Esaian, D., et al. (2015) Apical Ballooning and Cardiomyopathy in a Melanoma Patient Treated with Ipilimumab: A Case of Takotsubo-Like Syndrome. The Journal for ImmunoTherapy of Cancer, 3, Article No. 4.
https://doi.org/10.1186/s40425-015-0048-2
[36] Slawinski, G., Wrona, A., Dabrowska-Kugacka, A., et al. (2020) Immune Checkpoint Inhibitors and Cardiac Toxicity in Patients Treated for Non-Small Lung Cancer: A Review. Interna-tional Journal of Molecular Sciences, 21, 7195.
https://doi.org/10.3390/ijms21197195
[37] Bonaca, M.P., Olenchock, B.A., Salem, J.E., et al. (2019) Myocarditis in the Setting of Cancer Therapeutics: Proposed Case Definitions for Emerging Clinical Syndromes in Cardio-Oncology. Circulation, 140, 80-91.
https://doi.org/10.1161/CIRCULATIONAHA.118.034497
[38] Tomita, Y., Sueta, D., Kakiuchi, Y., et al. (2017) Acute Coronary Syndrome as a Possible Immune-Related Adverse Event in a Lung Cancer Patient Achieving a Complete Response to Anti-PD-1 Immune Checkpoint Antibody. Annals of Oncology, 28, 2893-2895.
https://doi.org/10.1093/annonc/mdx326
[39] Martin, H.R., Saavedra, S.C., Perna, C., et al. (2019) Cardiac Toxicity of Immune-Checkpoint Inhibitors: A Clinical Case of Nivolumab-Induced Myocarditis and Review of the Evidence and New Challenges. Cancer Management and Research, 11, 4541-4548.
https://doi.org/10.2147/CMAR.S185202
[40] Berg, D.D., Vaduganathan, M., Nohria, A., et al. (2017) Im-mune-Related Fulminant Myocarditis in a Patient Receiving Ipilimumab Therapy for Relapsed Chronic Myelomonocyt-icleukaemia. European Journal of Heart Failure, 19, 682-685.
https://doi.org/10.1002/ejhf.806
[41] Awadalla, M., Mahmood, S.S., Groarke, J.D., et al. (2020) Global Longitudinal Strain and Cardiac Events in Patients with Immune Checkpoint Inhibitor-Related Myocarditis. Journal of the American College of Cardiology, 75, 467-478.
https://doi.org/10.1016/j.jacc.2019.11.049
[42] Laubli, H., Balmelli, C., Bossard, M., et al. (2015) Acute Heart Failure Due to Autoimmune Myocarditis under Pembrolizumab Treatment for Metastatic Melanoma. The Journal for ImmunoTherapy of Cancer, 3, Article No. 11.
https://doi.org/10.1186/s40425-015-0057-1
[43] Khunger, A., Battel, L., Wadhawan, A., et al. (2020) New In-sights into Mechanisms of Immune Checkpoint Inhibitor-Induced Cardiovascular Toxicity. Current Oncology Reports, 22, Article No. 65.
https://doi.org/10.1007/s11912-020-00925-8
[44] Ganatra, S. and Neilan, T.G. (2018) Immune Checkpoint Inhibi-tor-Associated Myocarditis. Oncologist, 23, 879-886.
https://doi.org/10.1634/theoncologist.2018-0130
[45] Celutkiene, J., Pudil, R., Lopez-Fernandez, T., et al. (2020) Role of Cardiovascular Imaging in Cancer Patients Receiving Cardiotoxic Therapies: A Position Statement on Behalf of the Heart Failure Association (HFA), the European Association of Cardiovascular Imaging (EACVI) and the Car-dio-Oncology Council of the European Society of Cardiology (ESC). European Journal of Heart Failure, 22, 1504-1524.
https://doi.org/10.1002/ejhf.1957