心理弹性的研究方法及神经机制
The Research Methods and Neural Mechanism of Psychological Resilience
DOI: 10.12677/AP.2024.143129, PDF, HTML, XML, 下载: 58  浏览: 119 
作者: 吴政东:西南大学心理学部,重庆
关键词: 心理弹性量表海马眶额皮层情绪网络Psychological Resilience Scales Hippocampus Orbitofrontal Cortex Emotion Network
摘要: 心理弹性是积极心理学领域的核心议题,对于纠正异常行为和缓解心理疾患症状具有极为重要的意义。尽管存在多种评估心理弹性的量表,如广泛使用的Connor-Davidson Resilience Scale和适用于本土人群的《青少年心理弹性量表》等,这些工具无法深入揭示心理弹性的神经生物学基础。神经影像技术,特别是功能性核磁共振成像,通过提供精确的大脑活动映射来补充传统量表的不足。心理弹性的神经影像研究已识别出较为一致的脑区活动,涉及海马、眶额皮层等与情绪处理相关的脑网络。未来研究不仅需要对被试群体按性别、年龄进行更精细的分类,还应整合多种科学技术手段,以充分弥补目前研究在揭示心理弹性神经机制方面的局限。
Abstract: Psychological resilience is a central issue in the field of positive psychology and plays a crucial role in correcting abnormal behaviors and alleviating symptoms of mental disorders. Although there are numerous scales for measuring psychological resilience, such as the widely used Connor-Davidson Resilience Scale and the culturally adapted Adolescent Psychological Resilience Scale, these in-struments fall short of delving into the neurobiological underpinnings of psychological resilience. Neuroimaging techniques, particularly functional Magnetic Resonance Imaging (fMRI), complement traditional scales by providing precise mappings of brain activity. Neuroimaging studies of psycho-logical resilience have identified consistent patterns of brain activity in regions including the hip-pocampus and orbitofrontal cortex, which are associated with emotional processing networks. Fu-ture research should not only categorize study populations more finely by factors like gender and age, but also integrate multiple scientific methods to adequately address current limitations in un-veiling the neural mechanisms of psychological resilience.
文章引用:吴政东 (2024). 心理弹性的研究方法及神经机制. 心理学进展, 14(3), 30-36. https://doi.org/10.12677/AP.2024.143129

1. 研究背景

心理弹性,亦称心理韧性或心理复原力(席居哲,2006)。尽管心理弹性的定义尚未达成共识,研究通常从个体的特质、结果和过程三个维度进行解:Masten和Ann认为心理弹性是个人的稳定特质,体现为个体在经历困难或创伤后的有效应对(Wright & Masten, 2005);Connor和Davidson第二种视角将心理弹性视为个体在面临压力或逆境时避免挫折影响的能力或特质(Connor & Davidson, 2003);Andel和Rutter则把心理弹性定义为个体在逆境中的积极环境适应和动态过程,是一种动态的情感和行为发展过程,其在特定情境中被优先考虑并旨在提升满意度,并包括与风险因素的交互作用及保护性过程(Andel, 2011)。

综上,这些观点都指出心理弹性的两个核心要素:第一个要素是个体遭遇的压力情境;第二个要素是个体的有效适应(古丽妮尕尔·哈米提,2023)。本文采纳第二种观点,将心理弹性定义为个体在遭遇挫折和困难时所展现的积极适应和快速恢复能力。

2. 心理弹性的测量工具

2.1. 单一维度

Block和Krem根据特质观点开发了Self-Resiliency Scale《自我韧性量》,该量表包含14个项目,每个项目均采用4点评分制。作者指出心理弹性与智力商数之间是相互依存并相互促进的(Block & Kremen, 1996)。

Liebenberg,Ungar,和Leblanc编制的Child and Youth Resilience Measure (CYRM-12)包含12个项目,每个项目使用5点评分制,其内部一致系数为0.84。该量表具旨在测量青少年群体的心理弹性。

Campbell-Sills等人简化Connor-Davidson Resilience Scale (CD-RISC) (后文介绍),开发了10-item Conner-Davidson Resilience Scale (CD-RISC-10),包含10个采用5点评分制的项目。总分范围为0至40分,得分越高,表明受试者的心理弹性越强。该量表的条目简洁且具有较好的稳定性。目前,为了衡量癌症患者的心理弹性水平,最常用的测量是CD-RISC-10,它能够准确地反映出病人的心理健康状态,从而提供有效的治疗方案(Campbell-Sills & Stein, 2007)。

2.2. 两维

基于CD-RISC,Smith等开发了简化版的韧性量表,该量表有6个项目,每个项目使用5点评分制。量表分为积极和消极特质的两个维度,内部一致性系数在0.80~0.91之间(Smith et al., 2008)。

2.3. 三维

Jew和Green开发的“心理弹性技能量表”,涵盖乐观、未来定向和信任他人这三个维度,包含35个项目,这三个维度的内部一致性系数分别为:0.91、0.79、0.65。该量表特别重视内在保护因素在儿童和青少年发展中的作用(Jew et al., 1999)。

鉴于CD-RISC五因素模型在不同实测地区及群体中结果的不稳定性,于肖楠等对该量表进行了汉化,中文版包含三个维度:坚韧(13个项目),自强(8个项目),和乐观(4个项目),共25个5点评分制的项目,量表的内部一致性系数为0.89 (于肖楠,张建新,2007)。

2.4. 其他多维

Connor和Davidson编制的Connor-Davidson心理弹性量表(Connor-Davidson Resilience Scale, CD-RISC)是被广泛用于测量心理弹性的一种量表,它分为个人能力、忍耐性、适应性、精神信念和掌控力五个子维度,包含25个5点评分制的项目,得分越高,表明个体应对挫折和困难的能力越强(Connor & Davidson, 2003)。

Friborg等开发的成人心理弹性量表(Resilience Scale for Adults, RSA)包含33个采用7点评分制的项目,涵盖个人能力、社交能力、家庭凝聚、社会支持和组织能力这五个因素,内部一致性系数介于0.76~0.86之间(Friborg et al., 2005)。

胡月琴等人开发的《青少年心理韧性量表》,共27项目。分为情绪控制、目标专注、积极认知、人际协助、家庭支持五个维度,其内部一致性系数为0.80。该量表更适合用于测量中国青少年心理弹性(胡月琴,甘怡群,2008)。

3. 心理弹性的神经机制

3.1. 神经机制对心理弹性研究的理论基础

神经机制对心理弹性的研究基于一定的理论基础,它们主要强调了大脑的适应性和调节机制在应对压力和逆境中的关键作用。通过探究这些神经机制,研究者能更深入地理解心理弹性的形成和发展过程。

3.1.1. 神经可塑性假说

神经可塑性是指大脑结构和功能的可塑性和适应性。当个体经历新的经验、学习新技能或者面对压力时,神经系统可以发生结构和功能上的变化,以适应外界环境。这个概念支持了心理弹性的理论,认为通过神经可塑性,个体可以调整神经回路,更好地适应面临的压力和挑战。

3.1.2. 应激响应假说

个体在面对逆境时会启动生理和心理上的应激响应。这包括神经内分泌系统的活动,如垂体–肾上腺轴的激活,以及自主神经系统的变化。研究神经机制有助于理解个体在应激情境下的生理反应,进而了解他们的心理弹性水平。

3.1.3. 压力适应模型

该模型认为,适度的压力刺激可以促使神经系统发生适应性变化,提高个体对未来压力的抵抗力。神经机制的研究有助于验证这一模型,揭示适应性神经变化对于心理弹性的贡献。

3.1.4. 情绪调节和认知控制理论

研究发现,神经网络与情绪调节和认知控制密切相关。个体在面对压力时,通过这些神经机制来调节情绪反应和加强认知控制,可能有助于提高心理弹性。

3.2. 研究进展

已有的研究表明心理弹性通常涉及认知和情绪的神经回路(Burt et al., 2016; Eaton et al., 2022; Shi et al., 2019),海马作为情感和认知的中央整合枢纽,它的形成在认知和情感以及对压力事件的适应中起着关键作用,个体顺利适应压力可促进恢复力,反之则可能引起抑郁症和焦虑症等精神疾病(Albrecht et al., 2021)。事实上,不论是持续的不良事件还是短时间的压力,都会对海马造成结构、功能、甚至神经元分子组成上的改变(Albrecht et al., 2017, 2021; Cameron & Schoenfeld, 2018)。近期一项针对青少年心理弹性的元分析(Eaton et al., 2022)指出,海马自身的体积以及与其他脑区的连接,都与心理弹性显著相关。尽管海马在众多与心理弹性相关的研究中出现频率最高,但结果不尽相同。一方面,证据表明海马的体积与心理弹性呈正相关关系(Levone et al., 2015; Moreno-López et al., 2020),特别是对于患有PTSD的青少年而言,心理弹性高组的海马灰质体积显著高于心理弹性低组(Li et al., 2020; Morey et al., 2016);另一方面,Malhi等的研究却表明,青春期女孩的海马体积与心理弹性量表得分呈负相关关系(Malhi et al., 2020)。海马与心理弹性之间的交互关系极为复杂,其具体的作用机制以及细节仍然有待探究。

心理弹性是一个复杂的心理概念,它不仅仅与某一个脑区相关,大量证据指出它跟脑连接网络关系密切。功能性核磁共振的脑连接研究显示心理弹性涉及情绪网络、显著网络、默认网络等(Tai et al., 2023)。其中,在成人群体上的心理弹性功能连接研究中,眶额皮层(The Orbitofrontal Cortex, OFC)也是众多研究中出现频次较高的一个典型区域(Jeon et al., 2020; Jeong et al., 2019; Shi et al., 2019)。OFC和海马都是情绪网络(emotion network, EN)内的重要节点(Catalino et al., 2020; Papez, 1937),而EN也是众多研究中与心理弹性联系最密切的网络(Tai et al., 2023)。事实上,EN是负责情绪加工的脑网络,与感知、认知和行动等紧密地联系在一起的(Pessoa, 2017)。前人研究结果已经证实了心理弹性和情绪之间的关系(Fadhlia et al., 2022; Moreno-López et al., 2020; Tai et al., 2023; Troy et al., 2023),比如适当地进行情绪接受与表达训练对心理弹性得分有显著影响(Turan & Canbulat, 2023)。心理弹性水平高的个体,即使经历过创伤,也能成功地抑制对于不必要的负性情绪事件的记忆(Ersche, 2020)。患有抑郁症的青少年,其心理弹性水平普遍较低(Fischer et al., 2021; Sheerin et al., 2018),其左侧海马与双侧OFC之间的功能连接有所下降(Feng et al., 2022; Zhou et al., 2023)。

4. 小结与展望

我们可以看出,心理弹性的研究方法一般分为量表测试和神经影像学研究,它们分别从行为和生理的角度提供了对心理弹性的洞察。量表测试的优点是可以在短时间内进行大规模的研究和调查;但缺点是可能会受到社会期望等主观因素的影响,导致数据不准确,并且量表测试无法提供关于生理或者神经层面的信息。而神经影像学研究的优势就在于可以提供客观的生理指标,甚至可以在实时中观察大脑活动的变化,以揭示个体在面对逆境时神经系统的实际响应;但该方法实践起来,较为昂贵和复杂,难以进行大规模的研究,并且只能观察到大脑的某些方面,无法获得完整的内容。

功能性磁共振成像在心理学领域,尤其是在揭示情绪处理的脑机制方面起到了不可或缺的作用。然而,其在时间分辨率方面的不足,例如在捕捉精细时间动态上的局限性,使得研究者开始探求其他神经科学技术的整合,以补充fMRI的空间精确性。特别是,结合脑电图和fMRI的多模态方法被认为有潜力同时提供高时间和空间分辨率的脑活动数据,这对理解心理弹性至关重要。

另外,在静息态fMRI方面,已有研究指出数据处理步骤对功能连接的可重复性具有重大影响(Chen et al., 2018; Tai et al., 2023)。尤其是OFC等脑区的信噪比较低,加上组织–空气边界对磁场的扭曲在采样时的影响,进一步降低了研究结果的可靠性(Pilmeyer et al., 2022)。这些挑战促使研究者转向基于结构像的协变连接方法,后者的噪声敏感性较低,并且已被证实能够有效地揭示大脑不同区域结构发育的相关性(Alexander-Bloch, Giedd et al., 2013a; Alexander-Bloch, Raznahan et al., 2013b)。以后的研究或许可以结构协变连接来探索EN与心理弹性之间的关系,不仅可能验证先前关于心理弹性与EN功能连接关系的研究,而且能从解剖学角度发现心理弹性的潜在生物标志。这种方法提供了一种新的视角,有助于我们深化理解大脑的应对压力和促进心理弹性的能力,可能为心理疾病的诊断和治疗带来新的策略。

先前研究还表明高强度的体育锻炼与右侧海马-OFC的连通性有显著的相关性(Ikuta et al., 2019),而运动又能显著提高青少年的resilience水平(Belcher et al., 2021),所以我们可以提升青少年的锻炼时间进而促进其大脑机制的连通性增加,进而增强resilience。目前以左侧DLPFC为目标的针对抑郁症群体的rTMS治疗导致OFC活性增加,这有助于海马活性的正常化和抑郁症的缓解(Han et al., 2023)。由此可见,海马-OFC通路在rTMS缓解治疗抑郁症中起关键作用,这些发现为大脑刺激治疗抑郁症提供了潜在的替代目标。更好地理解resilience对研究相关心理疾病的神经基础是很重要的。

值得注意的是,不同性别的个体在不同年龄段的心理弹性会和不同的脑区相关。这意味着之后的研究可以对于被试进行更为细致的分类,探索更多人口学变量对心理弹性神经机制的影响。总之,随着神经科学技术的发展,综合应用不同技术的研究方法将进一步提高我们理解大脑功能和结构之间复杂关系的能力。这种跨学科的整合努力,特别是在静息态fMRI和结构协变连接研究领域,预示着心理学研究未来将更加精确地理解和治疗心理和情绪障碍。

参考文献

[1] 古丽妮尕尔•哈米提(2023). 硕士研究生学业压力与主观幸福感的关系: 社会支持与心理弹性的链式中介作用. 硕士学位论文, 重庆: 西南大学.
[2] 胡月琴, 甘怡群(2008). 青少年心理弹性量表的编制和效度验证. 心理学报, 40(8), 902-912.
[3] 席居哲(2006). 基于社会认知的儿童心理弹性研究. 博士学位论文, 上海: 华东师范大学.
[4] 于肖楠, 张建新(2007). 自我韧性量表与Connor-Davidson韧性量表的应用比较. 心理科学, 30(5), 1169-1171.
[5] Albrecht, A., Müller, I., Ardi, Z., Çalışkan, G., Gruber, D., Ivens, S., Segal, M., Behr, J., Heinemann, U., Stork, O., & Richter-Levin, G. (2017). Neurobiological Consequences of Juvenile Stress: A GABAergic Perspective on Risk and Resilience. Neuroscience & Biobehavioral Reviews, 74, 21-43.
https://doi.org/10.1016/j.neubiorev.2017.01.005
[6] Albrecht, A., Redavide, E., Regev-Tsur, S., Stork, O., & Rich-ter-Levin, G. (2021). Hippocampal GABAergic Interneurons and Their Co-Localized Neuropeptides in Stress Vulnerability and Resilience. Neuroscience & Biobehavioral Reviews, 122, 229-244.
https://doi.org/10.1016/j.neubiorev.2020.11.002
[7] Alexander-Bloch, A., Giedd, J. N., & Bullmore, E. (2013a). Im-aging Structural Co-Variance between Human Brain Regions. Nature Reviews Neuroscience, 14, 322-336.
https://doi.org/10.1038/nrn3465
[8] Alexander-Bloch, A., Raznahan, A., Bullmore, E., & Giedd, J. (2013b). The Convergence of Maturational Change and Structural Covariance in Human Cortical Networks. The Journal of Neuroscience, 33, 2889-2899.
https://doi.org/10.1523/JNEUROSCI.3554-12.2013
[9] Andel, R. (2011). Resilience in Aging: Concepts, Research, and Outcomes. JAMA, 305, 1810-1813.
https://doi.org/10.1001/jama.2011.569
[10] Belcher, B. R., Zink, J., Azad, A., Campbell, C. E., Chakravartti, S. P., & Herting, M. M. (2021). The Roles of Physical Activity, Exercise, and Fitness in Promoting Resilience during Adolescence: Effects on Mental Well-Being and Brain Development. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 6, 225-237.
https://doi.org/10.1016/j.bpsc.2020.08.005
[11] Block, J., & Kremen, A. M. (1996). IQ and Ego-Resiliency: Concep-tual and Empirical Connections and Separateness. Journal of Personality and Social Psychology, 70, 349-361.
https://doi.org/10.1037/0022-3514.70.2.349
[12] Burt, K. B., Whelan, R., Conrod, P. J., Banaschewski, T., Barker, G. J., Bokde, A. L. W., Bromberg, U., Büchel, C., Fauth-Bühler, M., Flor, H., Galinowski, A., Gallinat, J., Gowland, P., Heinz, A., Ittermann, B., Mann, K., Nees, F., Papadopoulos-Orfanos, D., Paus, T. et al., The IMAGEN Consortium (2016). Struc-tural Brain Correlates of Adolescent Resilience. Journal of Child Psychology and Psychiatry, 57, 1287-1296.
https://doi.org/10.1111/jcpp.12552
[13] Cameron, H. A., & Schoenfeld, T. J. (2018). Behavioral and Structural Adap-tations to Stress. Frontiers in Neuroendocrinology, 49, 106-113.
https://doi.org/10.1016/j.yfrne.2018.02.002
[14] Campbell-Sills, L., & Stein, M. B. (2007). Psychometric Analysis and Refinement of the Connor-Davidson Resilience Scale (CD-RISC): Validation of a 10-Item Measure of Resilience. Journal of Traumatic Stress, 20, 1019-1028.
https://doi.org/10.1002/jts.20271
[15] Catalino, M. P., Yao, S., Green, D. L., Laws, E. R., Golby, A. J., & Tie, Y. (2020). Mapping Cognitive and Emotional Networks in Neurosurgical Patients Using Resting-State Functional Magnetic Resonance Imaging. Neurosurgical Focus, 48, E9.
https://doi.org/10.3171/2019.11.FOCUS19773
[16] Chen, X., Lu, B., & Yan, C.-G. (2018). Reproducibility of R-FMRI Metrics on the Impact of Different Strategies for Multiple Comparison Correction and Sample Sizes: R-FMRI Reproducibility: On the Impact of Correction Strategies and Sample Size. Human Brain Mapping, 39, 300-318.
https://doi.org/10.1002/hbm.23843
[17] Connor, K. M., & Davidson, J. R. T. (2003). Development of a New Resilience Scale: The Connor-Davidson Resilience Scale (CD-RISC). Depression and Anxiety, 18, 76-82.
https://doi.org/10.1002/da.10113
[18] Eaton, S., Cornwell, H., Hamilton-Giachritsis, C., & Fairchild, G. (2022). Resilience and Young People’s Brain Structure, Function and Connectivity: A Systematic Review. Neuroscience & Biobe-havioral Reviews, 132, 936-956.
https://doi.org/10.1016/j.neubiorev.2021.11.001
[19] Ersche, K. D. (2020). Resilience to Trauma: Just a Matter of Control? Science, 367, 734-735.
https://doi.org/10.1126/science.aaz9451
[20] Fadhlia, T. N., Sauter, D. A., & Doosje, B. (2022). Adversity, Emotion, and Resilience among Syrian Refugees in the Netherlands. BMC Psychology, 10, Article No. 257.
https://doi.org/10.1186/s40359-022-00963-w
[21] Feng, R., Bao, W., Zhuo, L., Gao, Y., Yao, H., Li, Y., Liang, L., Liang, K., Zhou, M., Zhang, L., Huang, G., & Huang, X. (2022). Family Conflict Associated with Intrinsic Hippocam-pal-OFC Connectivity in Adolescent Depressive Disorder. Frontiers in Psychiatry, 12, Article 797898.
https://doi.org/10.3389/fpsyt.2021.797898
[22] Fischer, A. S., Hagan, K. E., & Gotlib, I. H. (2021). Functional Neu-roimaging Biomarkers of Resilience in Major Depressive Disorder. Current Opinion in Psychiatry, 34, 22-28.
https://doi.org/10.1097/YCO.0000000000000662
[23] Friborg, O., Barlaug, D., Martinussen, M., Rosenvinge, J. H., & Hjemdal, O. (2005). Resilience in Relation to Personality and Intelligence. International Journal of Methods in Psychiatric Research, 14, 29-42.
https://doi.org/10.1002/mpr.15
[24] Han, S., Li, X.-X., Wei, S., Zhao, D., Ding, J., Xu, Y., Yu, C., Chen, Z., Zhou, D.-S., & Yuan, T.-F. (2023). Orbitofrontal Cortex-Hippocampus Potentiation Mediates Relief for De-pression: A Randomized Double-Blind Trial and TMS-EEG Study. Cell Reports Medicine, 4, Article 101060.
https://doi.org/10.1016/j.xcrm.2023.101060
[25] Ikuta, T., Frith, E., Ponce, P., & Loprinzi, P. D. (2019). Association of Physical Activity on the Functional Connectivity of the Hippocampal-Orbitofrontal Pathway. The Physician and Sports-medicine, 47, 290-294.
https://doi.org/10.1080/00913847.2018.1549461
[26] Jeon, S., Lee, Y. J., Park, I., Kim, N., Kim, S., Jun, J. Y., Yoo, S. Y., Lee, S. H., & Kim, S. J. (2020). Resting State Functional Connectivity of the Thalamus in North Korean Refugees with and Without Posttraumatic Stress Disorder. Scientific Reports, 10, Article No. 3194.
https://doi.org/10.1038/s41598-020-59815-5
[27] Jeong, H., Park, S., Dager, S. R., Lim, S. M., Lee, S. L., Hong, H., Ma, J., Ha, E., Hong, Y. S., Kang, I., Lee, E. H., Yoon, S., Kim, J. E., Kim, J., & Lyoo, I. K. (2019). Altered Functional Connectivity in the Fear Network of Firefighters with Repeated Traumatic Stress. The British Journal of Psychiatry, 214, 347-353.
https://doi.org/10.1192/bjp.2018.260
[28] Jew, C. L., Green, K. E., & Kroger, J. (1999). Development and Validation of a Measure of Resiliency. Measurement and Evaluation in Counseling and Development, 32, 75-89.
https://doi.org/10.1080/07481756.1999.12068973
[29] Levone, B. R., Cryan, J. F., & O’Leary, O. F. (2015). Role of Adult Hippocampal Neurogenesis in Stress Resilience. Neurobiology of Stress, 1, 147-155.
https://doi.org/10.1016/j.ynstr.2014.11.003
[30] Li, L., Pan, N., Zhang, L., Lui, S., Huang, X., Xu, X., Wang, S., Lei, D., Li, L., Kemp, G. J., & Gong, Q. (2020). Hippocampal Subfield Alterations in Pediatric Patients with Post-Traumatic Stress Disorder. Social Cognitive and Affective Neuroscience, 16, 334-344.
https://doi.org/10.1093/scan/nsaa162
[31] Malhi, G. S., Das, P., Outhred, T., Bell, E., Gessler, D., Bryant, R., & Man-nie, Z. (2020). Hippocampal Volumes and Resilience in Adolescent Girls Exposed to Emotional Trauma. Acta Psychiatrica Scandinavica, 141, 84-87.
https://doi.org/10.1111/acps.13095
[32] Moreno-López, L., Ioannidis, K., Askelund, A. D., Smith, A. J., Schueler, K., & Van Harmelen, A.-L. (2020). The Resilient Emotional Brain: A Scoping Review of the Medial Prefrontal Cortex and Lim-bic Structure and Function in Resilient Adults with a History of Childhood Maltreatment. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 5, 392-402.
https://doi.org/10.1016/j.bpsc.2019.12.008
[33] Morey, R. A., Haswell, C. C., Hooper, S. R., & De Bellis, M. D. (2016). Amygdala, Hippocampus, and Ventral Medial Prefrontal Cortex Volumes Differ in Maltreated Youth with and without Chronic Posttraumatic Stress Disorder. Neuropsychopharmacology, 41, 791-801.
https://doi.org/10.1038/npp.2015.205
[34] Papez, J. W. (1937). A Proposed Mechanism of Emotion. Ar-chives of Neurology and Psychiatry, 38, 725-743.
https://doi.org/10.1001/archneurpsyc.1937.02260220069003
[35] Pessoa, L. (2017). A Network Model of the Emo-tional Brain. Trends in Cognitive Sciences, 21, 357-371.
https://doi.org/10.1016/j.tics.2017.03.002
[36] Pilmeyer, J., Huijbers, W., Lamerichs, R., Jansen, J. F. A., Breeuwer, M., & Zinger, S. (2022). Functional MRI in Major Depressive Disorder: A Review of Findings, Limitations, and Future Prospects. Journal of Neuroimaging, 32, 582-595.
https://doi.org/10.1111/jon.13011
[37] Sheerin, C. M., Lind, M. J., Brown, E. A., Gardner, C. O., Kendler, K. S., & Amstadter, A. B. (2018). The Impact of Resilience and Subsequent Stressful Life Events on MDD and GAD. Depression and Anxiety, 35, 140-147.
https://doi.org/10.1002/da.22700
[38] Shi, L., Sun, J., Wei, D., & Qiu, J. (2019). Recover From the Adversity: Func-tional Connectivity Basis of Psychological Resilience. Neuropsychologia, 122, 20-27.
https://doi.org/10.1016/j.neuropsychologia.2018.12.002
[39] Smith, B. W., Dalen, J., Wiggins, K., Tooley, E., Chris-topher, P., & Bernard, J. (2008). The Brief Resilience Scale: Assessing the Ability to Bounce Back. International Journal of Behavioral Medicine, 15, 194-200.
https://doi.org/10.1080/10705500802222972
[40] Tai, A. P. L., Leung, M.-K., Geng, X., & Lau, W. K. W. (2023). Conceptualizing Psychological Resilience through Resting-State Functional MRI in a Mentally Healthy Population: A Sys-tematic Review. Frontiers in Behavioral Neuroscience, 17, Article 1175064.
https://doi.org/10.3389/fnbeh.2023.1175064
[41] Troy, A. S., Willroth, E. C., Shallcross, A. J., Giuliani, N. R., Gross, J. J., & Mauss, I. B. (2023). Psychological Resilience: An Affect-Regulation Framework. Annual Review of Psychology, 74, 547-576.
https://doi.org/10.1146/annurev-psych-020122-041854
[42] Turan, N., & Canbulat, Ş. (2023). The Effectiveness of the Training Program on Accepting and Expressing Emotions on the Psychological Resilience and Depression Levels of Nurses: A Two-Year Follow-Up Study. Archives of Psychiatric Nursing, 44, 1-7.
https://doi.org/10.1016/j.apnu.2023.03.002
[43] Wright, M. O., & Masten, A. S. (2005). Resilience Processes in De-velopment. In S. Goldstein, & R. B. Brooks (Eds.), Handbook of Resilience in Children (pp. 17-37). Springer US.
https://doi.org/10.1007/0-306-48572-9_2
[44] Zhou, Z., Gao, Y., Feng, R., Zhuo, L., Bao, W., Liang, K., Qiu, H., Cao, L., Tang, M., Li, H., Zhang, L., Huang, G., & Huang, X. (2023). Aberrant Intrinsic Hippocampal and Orbitofrontal Connec-tivity in Drug-Naive Adolescent Patients with Major Depressive Disorder. European Child & Adolescent Psychiatry, 32, 2363-2374.
https://doi.org/10.1007/s00787-022-02086-4