|
[1]
|
曹巍, 孟宪红. 新型降糖药在非酒精性脂肪性肝病中的研究进展[J]. 胃肠病学和肝病学杂志, 2022, 31(6): 705-709.
|
|
[2]
|
金玉, 武晓旭, 李秋娟, 关怀. 非酒精性脂肪性肝病流行现状调查[J]. 人民军医, 2021, 64(5): 425-428.
|
|
[3]
|
He, Y., Su, Y., Duan, C., et al. (2023) Emerging Role of Aging in the Progression of NAFLD to HCC. Ageing Research Reviews, 84, Arti-cle ID: 101833. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Ge, T., Shao, Y., Bao, X., Xu, W. and Lu, C. (2023) Cel-lular Senescence in Liver Diseases: From Mechanisms to Therapies. International Immunopharmacology, 121, Article ID: 110522. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Baboota, R.K., Rawshani, A., Bonnet, L., et al. (2022) BMP4 and Gremlin 1 Regulate Hepatic Cell Senescence during Clinical Progression of NAFLD/NASH. Nature Metabolism, 4, 1007-1021. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Popper, H. (1986) Aging and the Liver. Progress in Liver Diseases, 8, 659-683.
|
|
[7]
|
Bril, F., Sanyal, A. and Cusi, K. (2023) Metabolic Syndrome and Its Association with Nonalcoholic Steatohepa-titis. Clinics in Liver Disease, 27, 187-210. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Booth, L.K., Redgrave, R.E., Tual-Chalot, S., Spyridopoulos, I., Phillips, H.M. and Richardson, G.D. (2023) Heart Disease and Ageing: The Roles of Se-nescence, Mitochondria, and Telomerase in Cardiovascular Disease. Subcellular Biochemistry, 103, 45-78. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Iwasaki, K., Abarca, C. and Aguayo-Mazzucato, C. (2023) Regulation of Cellular Senescence in Type 2 Diabetes Mellitus: From Mechanisms to Clinical Applications. Diabetes & Metabolism Jour-nal, 47, 441-453. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Xiang, Q., Tian, F., Xu, J., Du, X., Zhang, S. and Liu, L. (2022) New Insight into Dyslipidemia-Induced Cellular Senescence in Atherosclerosis. Biological reviews of the Cambridge Philosophical Society, 97, 1844-1867. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Engelmann, C. and Tacke, F. (2022) The Potential Role of Cellular Senescence in Non-Alcoholic Fatty Liver Disease. International Journal of Molecular Sciences, 23, Article No. 652. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Gao, Y., Zhang, W., Zeng, L.Q., et al. (2020) Exercise and Dietary Interven-tion Ameliorate High-Fat Diet-Induced NAFLD and Liver Aging by Inducing Lipophagy. Redox Biology, 36, Article ID: 101635. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
陈茗, 冯文静, 胡松, 刘佳, 王珊, 毛拥军. 褐藻胶寡糖对D-半乳糖诱导的衰老模型小鼠肝脏损伤的保护作用及其机制[J]. 精准医学杂志, 2022, 37(3): 217-221. [Google Scholar] [CrossRef]
|
|
[14]
|
Zoubek, M.E., Trautwein, C. and Strnad, P. (2017) Reversal of Liver Fibrosis: From Fiction to Reality. Best Practice & Research Clinical Gastroenterology, 31, 129-141. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Kong, X., Feng, D., Wang, H., et al. (2012) Interleukin-22 Induces Hepat-ic Stellate Cell Senescence and Restricts Liver Fibrosis in Mice. Hepatology, 56, 1150-1159. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Delire, B., Lebrun, V., Selvais, C., et al. (2016) Aging Enhances Liver Fibrotic Response in Mice through Hampering Extracellular Matrix Remodeling. Aging (Albany NY), 9, 98-113. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
陈明华. IL-10通过STAT3/P53/P21信号通路促进活化的肝星状细胞衰老[D]: [硕士学位论文]. 福州: 福建医科大学, 2019.[CrossRef]
|
|
[18]
|
王菲. 慢性应激促进大鼠肝细胞衰老在肝纤维化中的作用[D]: [硕士学位论文]. 郑州: 郑州大学, 2018.
|
|
[19]
|
Kuilman, T., Michaloglou, C., Vredeveld, L.C., et al. (2008) Oncogene-Induced Senescence Relayed by an Interleukin-Dependent Inflamma-tory Network. Cell, 133, 1019-1031. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Sasaki, M., Sato, Y. and Nakanuma, Y. (2020) Increased P16INK4a-Expressing Senescent Bile Ductular Cells Are Associated with Inadequate Response to Ur-sodeoxycholic Acid in Primary Biliary Cholangitis. Journal of Autoimmunity, 107, Article ID: 102377. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Jiang, G.X., Zhong, X.Y., Cui, Y.F., et al. (2010) IL-6/STAT3/TFF3 Signaling Regulates Human Biliary Epithelial Cell Migration and Wound Healing in Vitro. Molecular Biology Reports, 37, 3813-3818. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
徐小元, 丁惠国, 李文刚, 徐京杭, 韩莹, 贾继东, 魏来, 段钟平, 令狐恩强, 庄辉. 肝硬化诊治指南[J]. 临床肝胆病杂志, 2019, 35(11): 2408-2425.
|
|
[23]
|
Hoare, M., Das, T. and Alexander, G. (2010) Ageing, Telomeres, Senescence, and Liver Injury. Journal of Hepatology, 53, 950-961. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Blasco, M.A., Lee, H.W., Hande, M.P., Samper, E., Lansdorp, P.M., De Pinho, R.A., et al. (1997) Telomere Shortening and Tumor Formation by Mouse Cells Lacking Telomerase RNA. Cell, 91, 25-34. [Google Scholar] [CrossRef]
|
|
[25]
|
FGe, T., Shao, Y., Bao, X., Xu, W. and Lu, C. (2023) Cellular Se-nescence in Liver Diseases: From Mechanisms to Therapies. International Immunopharmacology, 121, Article ID: 110522. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
夏长发, 董学思, 何丽, 等. 中国和美国的癌症统计数据(2022年): 概况、趋势和决定因素[J]. 中华医学杂志, 2022, 135(5): 584-590. [Google Scholar] [CrossRef]
|
|
[27]
|
Kang, T.W., Yevsa, T., Woller, N., et al. (2011) Senescence Sur-veillance of Pre-Malignant Hepatocytes Limits Liver Cancer Development. Nature, 479, 547-551. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Leon, K.E. and Aird, K.M. (2019) Jumonji C Demethylases in Cellular Senes-cence. Genes, 10, Article No. 33. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Coppé, J.P., Patil, C.K., et al. (2008) Senescence-Associated Secretory Phe-notypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the P53 Tumor Suppressor. PLOS Biology, 6, 2853-2868. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Papatheodoridi, A.M., Chrysavgis, L., Koutsilieris, M. and Chatzigeor-giou, A. (2020) The Role of Senescence in the Development of Nonalcoholic Fatty Liver Disease and Progression to Nonalco-holic Steatohepatitis. Hepatology, 71, 363-374. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Byrne, C.D. and Targher, G. (2015) NAFLD: A Multisystem Disease. Journal of Hepatology, 62, S47-S64. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Campisi, J. (2005) Senescent Cells, Tumor Suppression, and Organismal Aging: Good Citizens, Bad Neighbors. Cell, 120, 513-522. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Beauséjour, C.M., Krtolica, A., Galimi, F., et al. (2003) Reversal of Human Cellular Senescence: Roles of the P53 and P16 Pathways. EMBO Journal, 22, 4212-4222. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Hamrick, M.W., Herberg, S., Arounleut, P., et al. (2010) The Adipokineleptin Increases Skeletal Muscle Mass and Significantly Alters Skeletal Muscle MiRNA Expression Profile in Aged Mice. Biochemical and Biophysical Research Communications, 400, 379-383. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Li, N., Muthusamy, S., Liang, R., Sarojini, H. and Wang, E. (2011) In-creased Expression of MiR-34a and MiR-93 in Rat Liver during Aging, and Their Impact on the Expression of Mgst1 and Sirt1. Mechanisms of Ageing and Development, 132, 75-85. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
张颖, 保志军. Mi-croRNA在肝脏胰岛素抵抗以及衰老中的研究进展[J]. 老年医学与保健, 2018, 24(6): 746-749.
|
|
[37]
|
张玉皓. LPK基因在非酒精性脂肪肝中的表观遗传学研究[D]: [博士学位论文]. 上海: 复旦大学, 2012.
|
|
[38]
|
谢益文, 徐素美, 陈芝芸, 杨晴柔, 何蓓晖. 非酒精性脂肪性肝病进展中肝组织细胞衰老相关基因P21、SIRT6和NF-κB MRNA表达[J]. 浙江中西医结合杂志, 2020, 30(8): 631-633.
|
|
[39]
|
Kakuda, T., Suzuki, J., Matsuoka, Y., Kikugawa, T., Saika, T. and Yamashita, M. (2023) Senescent CD8+ T Cells Acquire NK Cell-Like Innate Functions to Promote Antitumor Immunity. Cancer Science, 114, 2810-2820. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Kundu, D., Kennedy, L., Meadows, V., Baiocchi, L., Alpini, G. and Francis, H. (2020) The Dynamic Interplay between Mast Cells, Aging/Cellular Senescence, and Liver Disease. Gene Expression, 20, 77-88. [Google Scholar] [CrossRef]
|
|
[41]
|
Lujambio, A., Akkari, L., et al. (2013) Non-Cell-Autonomous Tumor Suppression by P53. Cell, 153, 449-460. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Vienberg, S., Geiger, J., Madsen, S. and Dalgaard, L.T. (2017) Mi-croRNAs in Metabolism. Acta Physiologica (Oxford), 219, 346-361. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Ghafouri-Fard, S., Abak, A., Talebi, S.F., et al. (2021) Role of MiRNA and LncRNAs in Organ Fibrosis and Aging. Biomedicine & Pharmacotherapy, 143, Article ID: 112132. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Palmer, A.K., Xu, M., Zhu, Y., et al. (2019) Targeting Senescent Cells Alleviates Obesity-Induced Metabolic Dysfunction. Aging Cell, 18, E12950. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Munoz-Espin, D. and Serrano, M. (2014) Cellular Senescence: From Physiology to Pathology. Nature Reviews Molecular Cell Biology, 15, 482-496. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Yuan, L., Mao, Y., Luo, W., et al. (2017) Palmitic Acid Dysregulates the Hippo-YAP Pathway and Inhibits Angiogenesis by Inducing Mito-chondrial Damage and Activating the Cytosolic DNA Sensor CGAS-STING-IRF3 Signaling Mechanism. Journal of Biological Chemistry, 292, 15002-15015. [Google Scholar] [CrossRef]
|
|
[47]
|
Zhang, C.Y., Tan, X.H., Yang, H.H., et al. (2022) COX-2/SEH Dual Inhibitor Alleviates Hepatocyte Senescence in NAFLD Mice by Restoring Autophagy through Sirt1/PI3K/AKT/MTOR. International Journal of Molecular Sciences, 23, Article No. 8267. [Google Scholar] [CrossRef] [PubMed]
|