Avapritinib治疗血小板源性生长因子受体α外显子18突变的晚期胃肠间质瘤的研究进展
Research Progress of Avapritinib in the Treatment of Advanced Gastrointestinal Stromal Tumors with Mutation of Exon 18 of Platelet-Derived Growth Factor Receptor α
DOI: 10.12677/ACM.2024.143716, PDF, HTML, XML, 下载: 36  浏览: 73 
作者: 刘 昆, 李 洋*:重庆医科大学附属第二医院胃肠肛肠外科,重庆
关键词: Avapritinib胃肠间质瘤PDGFRA突变D842V突变研究进展Avapritinib Gastrointestinal Stromal Tumors PDGFRΑ Mutation D842V Mutation Research Pro-gress
摘要: 胃肠间质瘤(GIST)是一类起源于胃肠道间叶组织的肿瘤,可根据编码受体酪氨酸激酶蛋白(KIT)和血小板源性生长因子受体α (PDGFRA)突变进行分子分类。酪氨酸激酶抑制剂(tyrosine kinase inhibitor, TKI)是胃肠间质瘤全身治疗的基础药物,显著延长了晚期胃肠间质瘤患者的生存期,但PDGFRA外显子18突变的晚期GIST对传统的靶向药物耐药。而Avapritinib是一种有效的KIT和PDGFRA-特异性酪氨酸激酶抑制剂,对PDGFRA外显子18 D842V突变的胃肠间质瘤患者显示出良好的缓解率,为耐药的晚期胃肠间质瘤患者提供了更多的治疗机会。本文对Avapritinib治疗PDGFRA外显子18 D842V突变的晚期胃肠间质瘤的研究进展进行综述。
Abstract: Gastrointestinal stromal tumors (GIST) are a group of tumors originating from the stromal lobe of the gastrointestinal tract that can be molecularly classified by mutations encoding the receptor ty-rosine kinase protein (KIT) and platelet-derived growth factor receptor α (PDGFRA). Tyrosine ki-nase inhibitors (tyrosine kinase inhibitor, TKI) are the basic drugs for the systemic treatment of gastrointestinal GISTs, significantly prolonging the survival of patients with advanced gastrointes-tinal GISTs, but the advanced GIST with PDGFRA exon 18 mutation is resistant to conventional tar-geted drugs. Avapritinib, a potent KIT and PDGFRA-specific tyrosine kinase inhibitor, showed a fa-vorable response rate for patients with PDGFRA exon 18 D842V mutation, providing more thera-peutic opportunities for resistant patients with advanced gastrointestinal GISTs. This paper reviews Avapritinib treatment for advanced gastrointestinal stromal tumors with PDGFRA exon 18 D842V mutation.
文章引用:刘昆, 李洋. Avapritinib治疗血小板源性生长因子受体α外显子18突变的晚期胃肠间质瘤的研究进展[J]. 临床医学进展, 2024, 14(3): 402-408. https://doi.org/10.12677/ACM.2024.143716

1. 引言

胃肠间质瘤(GIST)是胃肠道中最常见的间叶性肿瘤,其细胞起源被认为与Cajal间质细胞有关 [1] ,但它们很罕见,每年每百万患者中的发病率仅为10~15例 [2] [3] 。目前治疗方式有手术治疗和药物治疗,如术前评估肿瘤可R0切除,首选外科手术治疗,手术切除后,根据危险度分级进行辅助治疗。术前评估预期肿瘤难以达到R0切除、需联合脏器切除、可完整切除但手术风险较大者,应考虑新辅助治疗 [4] [5] [6] 。需接受辅助治疗者,可接受TKI治疗,其疗效与肿瘤的基因突变位点有关 [7] [8] 。GIST的分子亚型很大程度上影响预后,分子检测被认为是接受全身治疗的患者的标准治疗方法 [9] 。大多数GIST是由编码受体酪氨酸激酶蛋白KIT (69%~83%)和PDGFRA (5%~15%)的基因突变驱动 [10] ,少数野生型GIST涉及其他分子改变,包括SDHx、BRAF、NF1、K/N-RAS和PIK3CA等基因突变 [11] [12] 。PDGFRA是GIST中第二大突变的癌基因 [13] ,最常见的PDGFRA分子亚型,即改变激活环的基因外显子18突变,而D842V是最常见的外显子18突变,单个D842V突变(将天冬氨酸替换为缬氨酸)会产生错义突变,从而对伊马替尼、舒尼替尼和瑞戈非尼产生耐药性 [14] 。与PDGFRA外显子18非D842V突变GIST相比,具有D842V突变的患者的OS较差 [15] 。Avapritinib是KIT和PDGFRA的有效选择性抑制剂,对KIT外显子17突变D816V和PDGFRA D842V突变激酶具有高效力,2020年1月9日在美国已经被批准用于治疗患有PDGFRA外显子18突变(包括PDGFRA D842V突变)的成人U/M GIST [16] 。2021年,我国批准Avapritinib上市用于治疗PDGFRA外显子18突变的转移性GIST [17] 。全文对Avapritinib治疗PDGFRA外显子18 D842V突变的晚期GIST的研究进展进行综述。

2. PDGFRA肿瘤发生机制

KIT和PDGFRA属于III型受体酪氨酸激酶的同一亚家族,通过JAK/STAT、Ras/ERK、PI3K和AKT途径传递下游信号 [18] 。尽管KIT和PDGFRA突变型GIST的下游信号通路被认为是相似的,但基因表达谱显示,每一类突变都表现出下游信号通路的差异表达 [19] [20] 。在对26个GIST的分析中,KIT突变的GIST中AKT/PI3K通路基因的水平较高,而PDGFRA突变的GIST中与T细胞受体信号传导相关的基因水平较高 [21] 。然而,对22个GIST的类似研究表明PDGFRA和KIT突变的GIST之间70个基因的表达存在差异 [22] 。尽管需要进一步的工作来充分了解差异基因表达的临床影响,但很明显,PDGFRA突变的某些亚组患者的一个重要临床区别是对TKI治疗缺乏敏感性。最常见的突变是单核苷酸取代2664A → T,导致D842V激活突变 [23] 。这种突变导致激酶激活环扭曲,从而导致有利于活性结构的蛋白质构象改变。这导致D842V突变体对伊马替尼不敏感,因为伊马替尼只能与PDGFRA的非活性形式结合 [24] 。

3. PDGFRA突变——治疗意义

体外数据表明,PDGFRA突变体之间的伊马替尼反应不同。几乎所有外显子18 D842突变体(D842Y除外)已被证明具有伊马替尼耐药性 [25] [26] 。而其他PDGFRA突变体已被发现对伊马替尼敏感 [25] [26] 。然而,在相对不常见的PDGFRA分子亚型中,越来越多的文献证明,PDGFRA外显子18 D842V突变和非外显子18 D842V突变患者对伊马替尼的反应存在差异 [27] 。PDGFRA外显子18 D842V突变GIST患者预后较差。来自PDGFRA突变GIST回顾性队列的证据支持不同PDGFRA突变之间伊马替尼敏感性的差异。在一项欧洲回顾性研究中,与携带D842V突变的患者相比,携带非PDGFRA D842V突变的患者对伊马替尼的反应有所改善(D842V疾病进展 = 68% vs非D842V = 12%) [28] 。携带D842V突变的肿瘤患者与使用伊马替尼治疗的其他非D842V外显子18突变的肿瘤患者之间的PFS存在统计学显着性差异(分别为2.8个月和28.5个月)。具有D842V突变的患者的OS较差(14.7个月vs未达到非D842V突变的患者) [28] 。

4. Avapritinib的作用机制

85%~90%的GIST病例存在肿瘤驱动基因KIT (约80%~85%)和PDGFRA (约10%)的活化突变,其中KIT基因突变常发生在外显子9和11,PDGFRA基因突变常发生在外显子12和18 [29] [30] 。KIT基因和PDGFRA基因同属于III型受体酪氨酸激酶( receptor tyrosine kinase, RTK)家族成员,分别表达蛋白产物KIT (CD117)和PDGFRA。KIT和PDGFRA均属于跨膜酪氨酸激酶受体,由胞外区(免疫球蛋白样结构域,配体结合部位) 、跨膜区(氨基酸残基)和胞内区(酪氨酸激酶结构域)组成 [31] [32] [33] 。正常情况下,KIT的胞外区与其配体(干细胞因子(stem cell factor, SCF))结合,引起KIT的二聚体化及磷酸化,进而调控下游信号通路(MARK, JAK/STAT)的信号转导,促发相关联级反应,进而调控基因表达。当KIT基因活化突变,KIT可在无配体结合时自主二聚体化及磷酸化,活化相关信号通路,引起细胞生长、增殖和分化的失控,最终导致肿瘤的发生或进展 [31] [34] 。PDGFRA基因位于KIT基因的下游(4q12),其可表达蛋白产物PDGFRA。正常情况下,PDGFRA的胞外区与其配体[血小板源性生长因子(platelet-derived growth factor, PDGF)]结合后,PDGFRA会发生二聚化,进一步通过反式磷酸化的方式激活,调控PDGF/PDGFRA信号通路的信号转导 [33] 。PDGFRA基因突变时,导致PDGFRA的异常表达,PDGF/PDGFRA信号通路转导紊乱,比如PDGFRβ胞外结构域被核有丝分裂蛋白NUMA1的卷曲螺旋结构域所置换,导致形成二聚化的融合蛋白,引起间质细胞无序增殖和迁移并促进肿瘤血管的生成,最终导致肿瘤的发生或进展 [33] [35] 。Avapritinib是一种能够强效、选择性地抑制突变激酶KIT和PDGFRA (分别由活化突变的肿瘤驱动基因KIT和PDGFRA表达)的新型TKI。Evans等 [36] 通过细胞实验表明,Avapritinib对KIT D816V和PDGFRA D842V基因突变体(对其他TKIs耐药的突变类型)的半抑制浓度(IC50)分别为0.27和0.24 nmol∙L−1,具有明显的抑制活性。Gebreyohannes等 [37] 通过小鼠GIST异种移植模型研究表明,Avapritinib能够显著抑制肿瘤细胞的生长。

5. Avapritinib的临床研究及治疗效果

5.1. I期临床研究:NAVIGATOR (NCT02508532)研究

NAVIGATOR研究是一项将Avapritinib首次用于人类的单臂、开放标签、多中心I期临床试验(NCT02508532),旨在初步评价Avapritinib治疗晚期GIST或其他复发/难治性实体肿瘤的安全性和有效 性 [38] 。NAVIGATOR研究纳入了250例患者作为研究对象,其中总共38例PDGFRA D842V突变GIST患者接受了阿伐替尼300/400mg起始剂量。研究起始给予患者口服Avapritinib 400 mg∙d−1,后由于ADR,剂量降低至300 mg∙d−1,连续用药直至疾病进展或出现不可耐受的ADR。由于摄入2种剂量Avapritinib的患者在客观缓解率方面无明显差异,所有数据进行汇总分析。亚组分析显示,38例PDGFRA D842V突变的GIST患者的ORR为95% (36/38例;5例(13%)患者达到完全缓解,31例(82%)患者达到部分缓解[PR])。正是基于此项研究成果,Avapritinib得以成功获批上市。

5.2. I/II期桥接研究:NCT04254939研究

Avapritinib对PDGFRA D842V突变GIST的安全性和初步临床疗效已在NAVIGATOR研究中得到证实。在中国进行了一项个体、开放标签、I/II期桥接研究,旨在确定RP2D、评估阿伐普替尼在中国不可切除或转移性GIST患者中的安全性和疗效 [39] 。第一阶段包括安全剂量递增和第二阶段剂量确定。II期包括对具有PDGFRA D842V突变的患者或已接受至少3线治疗但无PDGFRA D842V突变的患者进行剂量扩展,以进行安全性/有效性评估。主要终点是推荐的II期剂量、安全性和独立放射学审查委员会(IRRC)评估的客观缓解率(ORR)。研究共纳入65名GIST患者作为研究对象。一阶段中6名59名患者接受了Avapritinib的起始剂量为200毫克和300毫克,在两个剂量组中,总共有47/65 (72%)名患者报告了≥3级TRAE。300 mg剂量组的2名患者观察到4级TRAE,但没有报告5级TRAE。表明,Avapritinib对于不可切除或转移性胃肠道间质瘤(GIST)患者是安全且可耐受的。接受300 mg起始剂量59名患者中,28名为PDGFRA D842V突变GIST患者,其中根据IRRC评估,21名患者实现了部分缓解(PR),ORR为75% (95% CI: 55%~89%)。CBR为86%。根据研究者评估,1名患者获得完全缓解(CR) (4%; 95% CI: 0%~18%),21名患者获得PR (75%; 95% CI: 55%~89%),ORR为79% (95% CI: 59%~92%),CBR为86%。根据Choi标准评估PDGFRA D842V人群的抗肿瘤疗效显示,25/28例患者达到PR,ORR为89% (95% CI: 72%~98%)。根据Choi标准的CBR为89% (95% CI: 72%~98%)。接受300 mg起始剂量59名患者中,23名患者之前接受过至少3线TKI治疗(即第四线或后线治疗)并且没有PDGFRA D842V突变。根据IRRC评估,5名患者实现PR (ORR 22%; 95% CI: 8%~44%)。根据研究者评估,1例达到CR,7例达到PR (ORR 35%; 95% CI: 16%~57%)。根据研究者和IRRC的评估,四线或后线患者的CBR为57% (95% CI: 35%~77%)。在NAVIGATOR研究中,Avapritinib在接受过多次治疗且携带PDGFRA D842V突变的晚期GIST患者中表现出前所未有的持久抗肿瘤活性,ORR为91% (51/56名患者)。在该研究中,包括PDGFRA D842V患者群体,IRRC评估的ORR为75% (21/28患者),CBR为86%。研究者评估的ORR为79% (22/28例患者),与IRRC评估一致。NAVIGATOR研究评估了第四线或后线队列中无PDGFRA D842V突变的患者的疗效,报告ORR为17%,在该研究中,IRRC评估的四线或后线患者的ORR为22%,结果一致。表明Avapritinib在携带PDGFRA D842V突变的中国GIST患者中显示出显着的抗肿瘤活性,并且作为第四线或后线单一疗法具有显着的疗效。基于这些和全球NAVIGATOR研究结果,Avapritinib在中国被批准用于治疗PDGFRA D842V突变GIST。

5.3. III期临床研究:VOYAGER (NCT03465722)研究

VOYAGER (NCT03465722)是一项III期研究,评估了Avapritinib与瑞戈非尼作为不可切除或转移性GIST患者的三线或后续治疗的疗效和安全性 [40] 。VOYAGER研究纳入476名既往接受伊马替尼和一种或两种额外TKI治疗的U/M GIST患者患者作为研究对象,476 名患者被随机分配(Avapritinib, n = 240; regorafenib, n = 236)至Avapritinib 300 mg每日一次(连续4周)或瑞格非尼160 mg每日一次(连续3周,停药1周)。Avapritinib和瑞戈非尼之间的中位PFS没有统计学差异(风险比,1.25;95% CI,0.99至1.57;4.2个月vs 5.6个月;P = 0.055)。Avapritinib和瑞戈非尼的ORR分别为17.1%和7.2%,缓解持续时间分别为7.6和9.4个月;DCR为41.7% (95% CI,35.4至48.2)和46.2% (95% CI,39.7至52.8)。Avapritinib (92.5%和55.2%)和瑞戈非尼(96.2%和57.7%)的治疗相关不良事件(任何级别,≥3级)相似。在接受Avapritinib治疗的7名PDGFRA D842V突变GIST患者中,ORR为42.9% (95% CI,9.9至81.6;全部PR),57.1%出现SD,没有患者出现PD,DCR为100.0% (95% CI,59.0至100.0)。相比之下,接受瑞戈非尼治疗的6名PDGFRA D842V突变GIST患者均未出现放射学反应,50.0%出现SD,16.7%出现PD,DCR为33.3% (95% CI,4.3至77.7;数据补充)。NAVIGATOR研究中的观察结果类似,Avapritinib在所有PDGFRA D842V突变GIST患者中均表现出抗肿瘤活性。在安全人群中,接受Avapritinib (92.5%)和瑞戈非尼(96.2%)治疗的患者中任何级别的治疗相关不良事件(TRAE)的发生率相似,分别有55.2%和57.7%报告级别 ≥ 3 TRAE。≥30%的患者中最常见的任何级别TRAE为贫血(40.2%)、恶心(39.3%)和疲劳(35.1%),使用Avapritinib和疲劳(34.2%)、腹泻(34.6%)和手掌–瑞戈非尼引起的足底红斑感觉综合征(59.0%)。截至目前,在分子未选择的晚期GIST患者中,阿伐替尼和瑞非尼的中位PFS没有显著差异。该研究还未达到主要终点,期待后续数据进一步展示。

6. 结语

Avapritinib是一种能够强效、选择性地抑制突变激酶KIT和PDGFRA的新型TKI,且不同于传统的分子靶向药物(如伊马替尼、舒尼替尼和瑞戈非尼) [41] [42] ,它对于携带PDGFRA D842V活化突变的GIST也具有强大的抗肿瘤活性。目前,Avapritinib也是全球首款针对性治疗携带PDGFRA外显子18突变的GIST患者的靶向药物。现今有限的研究数据表明,Avapritinib对于特定类型的GIST具有不错的疗效,已经先后被多个国家批准上市用于治疗PDGFRA外显子18突变的晚期GIST患者。其III期临床试验数据还未完全统计,就目前来看,Avapritinib在治疗晚期PDGFRA外显子18突变的GIST患者的过程中,疗效可观,期待更进一步研究,在未来为晚期PDGFRA外显子18突变GIST患者带来更多希望。

NOTES

*通讯作者。

参考文献

[1] Huizinga, J.D., Thuneberg, L., Klüppel, M., et al. (1995) W/Kit Gene Required for Interstitial Cells of Cajal and for In-testinal Pacemaker Activity. Nature, 373, 347-349.
https://doi.org/10.1038/373347a0
[2] Verschoor, A.J., Bovée, J., Overbeek, L.I.H., et al. (2018) The Incidence, Mutational Status, Risk Classification and Referral Pattern of Gas-tro-Intestinal Stromal Tumours in the Netherlands: A Nationwide Pathology Registry (PALGA) Study. Virchows Archiv, 472, 221-229.
https://doi.org/10.1007/s00428-017-2285-x
[3] Søreide, K., Sandvik, O.M., Søreide, J.A., et al. (2016) Global Epidemiology of Gastrointestinal Stromal Tumours (GIST): A Systematic Review of Population-Based Cohort Studies. Cancer Epidemiology, 40, 39-46.
https://doi.org/10.1016/j.canep.2015.10.031
[4] Fiore, M., Palassini, E., Fumagalli, E., et al. (2009) Preoperative Imatinib Mesylate for Unresectable or Locally Advanced Primary Gastrointestinal Stromal Tumors (GIST). European Journal of Surgical Oncology, 35, 739-745.
https://doi.org/10.1016/j.ejso.2008.11.005
[5] Li, W., Li, X., Yu, K., et al. (2022) Efficacy and Safety of Neoad-juvant Imatinib Therapy for Patients with Locally Advanced Rectal Gastrointestinal Stromal Tumors: A Multi-Center Cohort Study. Frontiers in Pharmacology, 13, Article 950101.
https://doi.org/10.3389/fphar.2022.950101
[6] Yang, H., Shen, C., Yin, X., et al. (2021) Clinicopathological Fea-tures, Clinical Efficacy on 101 Cases of Rectal Gastrointestinal Stromal Tumors, and the Significance of Neoadjuvant Therapy. BMC Surgery, 21, Article No. 400.
https://doi.org/10.1186/s12893-021-01397-8
[7] Sciot, R., Debiec-Rychter, M., Daugaard, S., et al. (2008) Dis-tribution and Prognostic Value of Histopathologic Data and Immunohistochemical Markers in Gastrointestinal Stromal Tumours (GISTs): An Analysis of the EORTC Phase III Trial of Treatment of Metastatic GISTs with Imatinib Mesylate. European Journal of Cancer, 44, 1855-1860.
https://doi.org/10.1016/j.ejca.2008.06.003
[8] Bannon, A.E., Klug, L.R., Corless, C.L., et al. (2017) Using Mo-lecular Diagnostic Testing to Personalize the Treatment of Patients with Gastrointestinal Stromal Tumors. Expert Review of Molecular Diagnostics, 17, 445-457.
https://doi.org/10.1080/14737159.2017.1308826
[9] Casali, P.G., Abecassis, N., Aro, H.T., et al. (2018) Gastro-intestinal Stromal Tumours: ESMO-EURACAN Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Annals of Oncology, 29, Iv68-Iv78.
[10] 刘柏钶, 蔡兆伦, 张波. 晚期胃肠间质瘤新药相关I期临床试验进展[J]. 中国肿瘤临床, 2022, 49(2): 64-68.
[11] Patel, S.R. and Reichardt, P. (2021) An Updated Review of the Treatment Landscape for Advanced Gastrointestinal Stromal Tumors. Cancer, 127, 2187-2195.
https://doi.org/10.1002/cncr.33630
[12] Boikos, S.A., Pappo, A.S., Killian, J.K., et al. (2016) Molecular Subtypes of KIT/PDGFRA Wild-Type Gastrointestinal Stromal Tumors: A Report from the National Institutes of Health Gastroin-testinal Stromal Tumor Clinic. JAMA Oncology, 2, 922-928.
https://doi.org/10.1001/jamaoncol.2016.0256
[13] Cassier, P.A., Ducimetière, F., Lurkin, A., et al. (2010) A Pro-spective Epidemiological Study of New Incident GISTs during Two Consecutive Years in Rhône Alpes Region: Inci-dence and Molecular Distribution of GIST in a European Region. British Journal of Cancer, 103, 165-170.
https://doi.org/10.1038/sj.bjc.6605743
[14] Sun, Y., Yue, L., Xu, P., et al. (2022) An Overview of Agents and Treatments for PDGFRA-Mutated Gastrointestinal Stromal Tumors. Frontiers in Oncology, 12, Article 927587.
https://doi.org/10.3389/fonc.2022.927587
[15] Smrke, A., Gennatas, S., Huang, P., et al. (2020) Avapritinib in the Treatment of PDGFRA Exon 18 Mutated Gastrointestinal Stromal Tumors. Future Oncologyvol, 16, 1639-1646.
https://doi.org/10.2217/fon-2020-0348
[16] Joseph, C.P., Abaricia, S.N., Angelis, M.A., et al. (2021) Optimal Avapritinib Treatment Strategies for Patients with Metastatic or Unresectable Gastrointestinal Stromal Tumors. Oncolo-gist, 26, E622-E631.
https://doi.org/10.1002/onco.13632
[17] Jones, R.L., Serrano, C., Von, Mehren, M., et al. (2021) Avapritinib in Unresectable or Metastatic PDGFRA D842V-Mutant Gastrointestinal Stromal Tumours: Long-Term Efficacy and Safety Data from the NAVIGATOR Phase I Trial. European Journal of Cancer, 145, 132-142.
https://doi.org/10.1016/j.ejca.2020.12.008
[18] Corless, C.L., Barnett, C.M. and Heinrich, M.C. (2011) Gastroin-testinal Stromal Tumours: Origin and Molecular Oncology. Nature Reviews Cancer, 11, 865-878.
https://doi.org/10.1038/nrc3143
[19] Sihto, H., Sarlomo-Rikala, M., Tynninen, O., et al. (2005) KIT and Plate-let-Derived Growth Factor Receptor α Tyrosine Kinase Gene Mutations and KIT Amplifications in Human Solid Tumors. Journal of Clinical Oncology, 23, 49-57.
https://doi.org/10.1200/JCO.2005.02.093
[20] Du, Z.Q., Dong, J., Li, M.X., et al. (2020) Overexpression of Platelet-Derived Growth Factor Receptor Α D842V Mutants Prevents Liver Re-generation and Chemically Induced Hepatocarcinogenesis via Inhibition of MET and EGFR. Journal of Cancer, 11, 4614-4624.
https://doi.org/10.7150/jca.44492
[21] Subramanian, S., West, R.B., Corless, C.L., et al. (2004) Gas-trointestinal Stromal Tumors (GISTs) with KIT and PDGFRA Mutations Have Distinct Gene Expression Profiles. On-cogene, 23, 7780-7790.
https://doi.org/10.1038/sj.onc.1208056
[22] Kang, H.J., Koh, K.H., Yang, E., et al. (2006) Differentially Expressed Proteins in Gastrointestinal Stromal Tumors with KIT and PDGFRA Mutations. Proteomics, 6, 1151-1157.
https://doi.org/10.1002/pmic.200500372
[23] Lasota, J. and Miettinen, M. (2008) Clinical Significance of Onco-genic KIT and PDGFRA Mutations in Gastrointestinal Stromal Tumours. Histopathology, 53, 245-266.
https://doi.org/10.1111/j.1365-2559.2008.02977.x
[24] Szucs, Z., Thway, K., Fisher, C., et al. (2017) Molecular Subtypes of Gastrointestinal Stromal Tumors and Their Prognostic and Therapeutic Implications. Future Oncology, 13, 93-107.
https://doi.org/10.2217/fon-2016-0192
[25] Corless, C.L., Schroeder, A., Griffith, D., et al. (2005) PDGFRA Mutations in Gastrointestinal Stromal Tumors: Frequency, Spectrum and in Vitro Sensitivity to Imatinib. Journal of Clinical Oncology, 23, 5357-5364.
https://doi.org/10.1200/JCO.2005.14.068
[26] Heinrich, M.C., Owzar, K., Corless, C.L., et al. (2008) Correlation of Kinase Genotype and Clinical Outcome in the North American Intergroup Phase III Trial of Imatinib Mesylate for Treatment of Advanced Gastrointestinal Stromal Tumor: CALGB 150105 Study by Cancer and Leukemia Group B and Southwest Oncology Group. Journal of Clinical Oncology, 26, 5360-5367.
https://doi.org/10.1200/JCO.2008.17.4284
[27] Farag, S., Somaiah, N., Choi, H., et al. (2017) Clinical Characteris-tics and Treatment Outcome in a Large Multicentre Observational Cohort of PDGFRA Exon 18 Mutated Gastrointestinal Stromal Tumour Patients. European Journal of Cancer, 76, 76-83.
https://doi.org/10.1016/j.ejca.2017.02.007
[28] Cassier, P.A., Fumagalli, E., Rutkowski, P., et al. (2012) Outcome of Patients with Platelet-Derived Growth Factor Receptor α-Mutated Gastrointestinal Stromal Tumors in the Tyrosine Kinase Inhibitor Era. Clinical Cancer Research, 18, 4458-4464.
https://doi.org/10.1158/1078-0432.CCR-11-3025
[29] Mei, L., Smith, S.C., Faber, A.C., et al. (2018) Gastrointes-tinal Stromal Tumors: the GIST of Precision Medicine. Trends in Cancer, 4, 74-91.
https://doi.org/10.1016/j.trecan.2017.11.006
[30] 中国临床肿瘤学会胃肠间质瘤专家委员会. 中国胃肠间质瘤诊断治疗共识(2017年版) [J]. 肿瘤综合治疗电子杂志, 2018, 4(1): 31-43.
[31] Kang, W., Zhu, C., Yu, J., et al. (2015) KIT Gene Mutations in Gastrointestinal Stromal Tumor. Frontiers in Bioscience, 20, 919-926.
https://doi.org/10.2741/4346
[32] Iorio, N., Sawaya, R.A. and Friedenberg, F.K. (2014) Review Article: the Biol-ogy, Diagnosis and Management of Gastrointestinal Stromal Tumours. Alimentary Pharmacology & Therapeutics, 39, 1376-1386.
https://doi.org/10.1111/apt.12761
[33] 王媚媚, 秦晓红, 米立志. 血小板衍生生长因子受体结构与功能的研究[J]. 中国科学(生命科学), 2019, 49(6): 683-697.
[34] Hemming, M.L., Heinrich, M.C., Bauer, S. and George, S. (2018) Translational Insights into Gastrointestinal Stromal Tumor and Current Clinical Advances. Annals of Oncology, 29, 2037-2045.
https://doi.org/10.1093/annonc/mdy309
[35] Appiah-Kubi, K., Lan, T., Wang, Y., et al. (2017) Platelet-Derived Growth Factor Receptors (PDGFRs) Fusion Genes Involvement in Hematological Malignancies. Criti-cal Reviews in Oncology/Hematology, 109, 20-34.
https://doi.org/10.1016/j.critrevonc.2016.11.008
[36] Evans, E.K., Gardino, A.K., Kim, J.L., et al. (2017) A Preci-sion Therapy against Cancers Driven by KIT/PDGFRA Mutations. Science Translational Medicine, 9, eaao1690.
https://doi.org/10.1126/scitranslmed.aao1690
[37] Gebreyohannes, Y.K., Wozniak, A., Zhai, M.E., et al. (2019) Robust Activity of Avapritinib, Potent and Highly Selective Inhibitor of Mutated KIT, in Patient-Derived Xenograft Models of Gastrointestinal Stromal Tumors. Clinical Cancer Research, 25, 609-618.
https://doi.org/10.1158/1078-0432.CCR-18-1858
[38] Heinrich, M.C., Jones, R.L., Von Mehren, M., et al. (2020) Avapritinib in Advanced PDGFRA D842V-Mutant Gastrointestinal Stromal Tumour (NAVIGATOR): A Multicentre, Open-Label, Phase 1 Trial. The Lancet Oncology, 21, 935-946.
https://doi.org/10.1016/S1470-2045(20)30269-2
[39] Li, J., Zhang, X., Deng, Y., et al. (2023) Efficacy and Safety of Avapritinib in Treating Unresectable or Metastatic Gastrointestinal Stromal Tumors: A Phase I/II, Open-Label, Multi-center Study. Oncologist, 28, 187-e114.
https://doi.org/10.1093/oncolo/oyac242
[40] Kang, Y.K., George, S., Jones, R.L., et al. (2021) Avapritinib versus Regorafenib in Locally Advanced Unresectable or Metastatic GI Stromal Tumor: A Randomized, Open-Label Phase III Study. Journal of Clinical Oncology, 39, 3128-3139.
https://doi.org/10.1200/JCO.21.00217
[41] 许高奇, 张轶雯, 孔思思, 等. 酪氨酸激酶抑制剂的群体药动学研究进展[J]. 中国现代应用药学, 2020, 37(15): 1899-1906.
[42] 张轶雯, 潘宗富, 叶强, 等. 新一代TKI类药物瑞派替尼在胃肠间质瘤中的作用及研究进展[J]. 中国新药杂志, 2020, 29(23): 2690-2694.