缺血性脑白质高信号与血管性认知障碍关系的研究进展
Advances in the Relationship between Ischemic White Matter Hyperintensity and Vascular Cognitive Impairment
摘要: 缺血性脑白质高信号(WMH)是脑小血管病(CSVD)的影像学表现之一,近年来研究发现,缺血性WMH可导致认知功能下降、运动功能障碍、增加卒中后抑郁和二便障碍的风险。其中早期认知功能的损害表现不突出,然而影响患者后期的生存质量。因此,研究缺血性WMH患者发生认知障碍的潜在机制显得尤为重要。本文主要阐述两者之间关系,并从病理生理学、影像学、生物标志物三个方面对其机制进行总结,以期为预防缺血性WMH患者发生认知障碍提供新思路。
Abstract: Ischemic white matter hyperintensity (WMH) of presumed vascular origin is one of the imaging markers of cerebral small vascular disease (CSVD). Recent studies show that ischemic WMH may be a risk factor for the occurrence of cognitive impairment, motor dysfunction, and increased risk of post-stroke depression and defecation disorder. Among them, the impairment of early cognitive function is not prominent, but it affects the later quality of life of patients. Therefore, it is particu-larly important to investigate the underlying mechanisms of cognitive dysfunction in patients with ischemic WMH. This paper reviewed the current state of research on the mechanisms of cognitive impairment in the development of ischemic WMH from pathology, imaging and biology, in order to provide new ideas for preventing cognitive impairment caused by ischemic WMH.
文章引用:王颖颖, 王蓉蓉, 赵雄飞. 缺血性脑白质高信号与血管性认知障碍关系的研究进展[J]. 临床医学进展, 2024, 14(3): 438-444. https://doi.org/10.12677/ACM.2024.143721

1. 引言

脑白质高信号(white matter hyperintensity, WMH)是由神经病学专家Hachinski等 [1] 首次提出的一个影像学概念,位于双侧侧脑室周围或皮质下白质,影像学表现为T2加权或T2液体衰减反转恢复序列(fluid-attenuated inversion recovery, FLAIR)高信号,T1加权为等信号或稍低信号(较脑脊液信号高)。近年来研究发现,这种影像学的表现主要是脑小血管的缺血所致 [2] ,而与脱髓鞘病变、感染、中毒及代谢不相关。WMH的患病率为39%~100%,其与年龄呈正相关,65岁以上老年人中,WMH的患病率高达80%,并随年龄增长逐渐增加,几乎所有90岁以上老年人都有WMH表现 [3] 。在鹿特丹扫描研究中,对于60~70岁的参与者,87%有皮层下WMH,68%有脑室周围WMH。对于80~90岁的参与者,100%有皮层下WMH,95%有脑室周围WMH [4] 。一项纵向研究表明,健康老年人随年龄增加,WMH体积增加,WMH的年体积增长从4.4%~37.2%不等 [5] 。

血管性认知障碍(vascular cognitive impairment, VCI)是指由脑血管病变及其危险因素导致的不同程度的认知功能损害的临床综合征 [6] ,是仅次于阿尔茨海默病(Alzheimer disease, AD)之后导致痴呆的第二大原因,而我国65岁以上人群中VCI的患病率高达1.5%。因此,早期发现导致其发生的危险因素尤为重要。但目前对于缺血性WMH与VCI之间的关系及缺血性WMH患者发生认知障碍的机制尚不清楚,本文就其研究现状及进展进行总结。

2. 缺血性脑白质高信号与认知障碍发生的关系

目前国内外大量研究表明缺血性WMH是认知功能障碍发生的危险因素,但也有学者不认同,关于缺血性WMH对认知功能的影响尚存在争议。Mortamais等 [7] 回顾分析了24项关于缺血性WMH与认知关系的纵向研究,发现两者之间的关系是不一致的。Hu等 [8] 在对36项前瞻性研究的系统回顾和荟萃分析中,发现缺血性WMH使认知障碍和全因痴呆发生风险增加了14%,使AD风险升高25%,血管性痴呆风险增加了73%,并可能成为痴呆的神经影像学指标。Prosser等 [9] 研究发现较高的WMH和较低的海马体积可预测从认知正常转化为轻度认知障碍(Mild cognitive impairment, MCI),两者有望成为MCI的预测因子。

研究表明缺血性WMH所致认知功能损害程度与病变位置、体积和患者的认知储备密切相关 [10] 。根据部位可将WMH分为脑室周围WMH (periventricular hyperintensity, PVH)和深部皮质下WMH (deep white matter hyperintensity, DWMH),Griffanti [11] 等通过纳入563例WMH患者探讨PVH和DWMH与认知功能的关系,发现DWMH主要引起注意力、执行功能、视空间能力的降低,PVH可使所有认知功能域下降。可能机制是DWMH主要破坏短连接,损害特定大脑区域支持的认知能力,而PVH会破坏与空间较远的皮质区域的较长连接,从而导致多个领域的认知能力下降。对于不同脑区WMH的分布与认知功能下降的关系也存在差异。一项针对大于75岁脑卒中患者的研究发现 [12] ,额叶区域的WMH与认知处理速度和注意力下降有关,而记忆障碍与颞叶区域WMH有关。Lampel等 [13] 通过纳入702例健康老年人的研究发现,与执行功能相关的WMH主要位于额叶靠近脑室,顶颞叶的WMH主要使记忆力下降。对WMH体积与认知功能之间的关系,Kloppenborg等 [14] 的一项荟萃分析研究结果显示,WMH体积与整体认知障碍呈负相关,WMH体积越大,认知功能下降越显著,在信息处理速度和注意力最明显。Rizvi等 [15] 通过磁共振测量皮质厚度,发现WMH体积越大,皮质厚度越薄,认知评分越低,认为WMH对认知功能的影响部分是由于皮质萎缩所致。研究表明患者受教育年限与认知功能密切相关。Göthlin [16] 等通过纳入于记忆门诊就诊的358例患者进行前瞻性研究,发现受试者受教育年限越长,WMH导致认知障碍发生的风险越小,且受教育年限越长的年轻MCI患者预后准确性越高。张等 [17] 在一项系统综述中研究发现,受教育程度可以弥补认知储备,在脑小血管病变相似的情况下表现出较好的认知贮备。综上所述,目前的研究倾向于认为WMH与认知功能障碍的发生与发展有关。

3. 缺血性脑白质高信号患者发生认知障碍的可能机制

3.1. 缺血性WMH患者发生认知障碍的病理生理学研究进展

WMH患者发生认知功能障碍病变的病理生理学被归因于多种机制,包括缺血缺氧、炎症反应、静脉胶原沉积、血脑屏障(blood brain barrier, BBB)受损、淋巴系统功能障碍和遗传等因素 [18] - [24] 。根据解剖结构脑白质区的血液供应主要来自于深穿支小动脉或终末分支动脉,易受缺血性损伤,而长期高血压、糖尿病或其他血管危险因素易引起的脑小动脉管腔狭窄、动脉壁硬化,使脑白质区域的供血减少。由于传导高级神经活动的通路通过脑白质区域,而这些纤维之间的相互联系恰恰与情绪、记忆等高级神经活动有关,因此WMH被认为与患者的认知功能障碍有密切联系。长期供血不足加上各种血流动力学的变化,使脑组织缺血灌注不足,从而引起认知功能障碍发生 [18] 。炎症反应也是缺血性WMH患者认知损害进一步加重的原因,一项研究证实,在认知障碍的小鼠模型中发现白质损害不仅仅是慢性缺血缺氧的结果,也是炎性环境持续诱导的结果,炎症反应特点是白质内星形胶质细胞和小胶质细胞增生诱导促炎性通路的激活,释放相关炎性因子,导致纤维脱髓鞘、轴突退化、白质完整性破坏和认知功能损害 [19] 。既往有关WMH发病机制的研究很少考虑静脉疾病的影响,自Moody [20] 等人提出脑室周围小静脉胶原病的概念以来,静脉胶原重塑和静脉系统对WMH的影响开始受到重视。静脉胶原沉积可导致静脉高压使脑血流量减少,从而出现白质低灌注。低灌注导致缺血缺氧,营养物质及代谢物不能正常运输,使脑功能发生障碍,从而致认知能力下降 [21] 。中枢神经系统的功能维持主要依靠神经元,而神经元的稳定性主要取决于BBB,BBB主要由内皮细胞、星形胶质细胞、周细胞、小胶质细胞和基底膜组成,BBB的受损引起细胞因子、蛋白质等大分子物质穿过血管壁到达脑实质,产生炎症和细胞凋亡等,使脑白质区及周围神经传导束的内在结构破坏,从而导致认知功能障碍 [22] 。淋巴系统是中枢神经系统代谢废物的一种新型排泄途径,大脑的液体输出主要依靠淋巴管进行。Ke等 [23] 纳入137例脑小血管病患者,通过使用沿血管周围空间的扩散函数指数评估淋巴功能,发现淋巴系统的功能障碍可能导致神经退行性疾病中的认知障碍,其机制是脑小血管病患者的病理改变为氧化应激和炎症,可导致代谢废物的产生,当这些废物沉积在组织中时,会造成脑功能的损害。近年来,随着基因技术的发展,对WMH与认知障碍的发生机制开始集中于遗传因素。Shi等人 [24] 通过对241名非痴呆老年患者分析,发现与APOE-ε4非携带者相比,APOE-ε4携带者可调节血浆Aβ水平,使海马萎缩和认知能力下降,因此遗传因素也有可能导致认知障碍。

3.2. 缺血性WMH患者发生认知障碍的影像学研究进展

评价WMH的严重程度多采用磁共振T2-FLAIR,影像学对WMH的评估可用视觉评分、半自动化、全自动的方法。王拥军等 [25] 对ARWMC、Fazekas、改良Scheltens、和Ylikoski 4种常用视觉WMH量表的可信度进行分析,发现Fazekas和改良Scheltens量表更适合对WMH的严重程度进行评估。但由于存在观察者内部和观察者之间的变异性,因此提出了WMH变异的自动化分析,研究发现其可能会更好地预测认知功能 [26] 。Tran等 [27] 对60名健康对照、多发性硬化及认知障碍患者进行WMH的自动化分割,发现3DT2-FLAIR数据集的WMH自动分割算法是一种可靠且易于使用的方法,可以成为临床实践和临床试验的有用工具。随着研究的深入,有学者认为弥散张量成像(diffusion tensor image, DTI)在评估WMH和认知损害关系中比常规磁共振更为敏感,可以测量没有物理边界约束区域内(如脑室内脑脊液)水分子的扩散,其主要用各向异性分数(fractional anisotropy, FA)、平均扩散系数(mean diffusivity, MD)的水平变化来评估脑白质微结构的完整性 [28] 。Mascalchi等 [29] 对患有MCI的老年患者进行研究,发现WMH白质完整性损坏可能早于影像上WMH的出现,WMH纤维的损伤是通过断开机制导致患者发生认知功能的改变。Chen等 [30] 使用自动纤维定量提取组间改变的DTI指标,评估WMH完整性与认知之间的关联,发现DTI性质的变化可能是WMH相关MCI的潜在机制,且可能成为预测WMH相关认知功能障碍的影像学标志物。Yuan等 [31] 研究发现较低的FA或较高MD值可能导致皮质–皮质或皮质–皮质下通路之间的断开,从而出现认知功能障碍。动脉自旋标记(arterial spin labeling, ASL)是用磁性标记的动脉血液质子作为内源性示踪剂,以非侵入方式直接量化脑血流量 [32] 。既往多数研究证实脑血流量的下降可使脑组织发生缺血缺氧损伤,从而引起认知功能的改变。Promjunyakul等 [33] 通过测量周围正常外观白质(normal appearing white matter, NAWM)的脑血流量及白质微结构,发现NAWM的血流变化可能早于白质微结构完整性变化,推测脑血流动力学改变可能是WMH发生的始动因素,因此早期发现脑血流量的下降可有效预防WMH的发生。磁共振波谱(magnetic resonance spectroscopy, MRS)也是一种非侵入技术,可监测脑组织物质代谢水平,主要代谢产物为N-乙酰天门冬氨酸(NAA)、胆碱复合物(Cho)、肌酸(Cr)和肌醇(mI)等 [34] 。既往研究表明 [35] ,较低NAA/ml值可预测认知正常老年人进展为MCI和认知能力下降,MRS较常规磁共振更能反映物质代谢水平的动态变化,评估指标更加全面准确。

动态对比增强MRI技术(dynamic contrast-enhanced magnetic resonance imaging, DCE-MRI)通过静脉注射造影剂,重复采集T1WI图像,测量随时间变化的信号增强值,评估BBB的通透性和完整性 [36] 。Huisa等 [37] 在一项前瞻性队列研究中,回顾性选择了22例Binswanger病痴呆患者,通过使用DCE-MRI计算BBB渗透率,发现BBB破坏发生在正常出现的WM和WMH附近的区域,对认知功能的改变有预测意义。目前多项研究证实可以通过DCE-MRI评价BBB渗透率,在对WMH患者的研究中,发现BBB损伤,可能比WMH体积对认知和语言功能障碍的预测更敏感,这更好的解释了具有相似WMH负担的患者认知表现的异质性 [38] 。静息状态功能磁共振成像(resting state functional magnetic resonance imaging, rs-fMRI)是一种非侵入性成像技术,用于探索大脑的异常功能结构 [39] 。Yang等 [40] 通过rs-fMRI检测自发的脑神经活动和功能连接性,发现严重的WMH可能导致脑神经活动和功能连接性的异常,最终出现认知能力下降。目前,可使用氟脱氧葡萄糖正电子发射计算机断层成像(fluoro-deoxyglucose positron emission tomography, FDG-PET)技术研究葡萄糖利用率和认知功能之间的相关性。研究证实通过18FDG-PET测量WMH,发现额叶执行功能和葡萄糖利用率之间呈负相关,葡萄糖代谢异常可能导致认知功能的下降 [41] 。

3.3. 缺血性WMH患者发生认知障碍的生物标志物研究进展

目前尚未寻找到预测缺血性WMH患者发生认知障碍高敏感性、高特异性的生物标志物。有研究证实高同型半胱氨酸(hyperhomocysteinemia, HHcy)与认知障碍和痴呆的发生密切相关,可能机制是HHcy造成血管内皮细胞破坏,导致脑血管调节能力下降和脑组织缺血而发生认知功能下降 [42] 。Qiao等 [43] 对WMH患者认知障碍及血清炎症标志物表达的研究进展进行综述,发现C反应蛋白、肿瘤坏死因子、血浆脂蛋白磷脂酶A2和白细胞介素等炎症标志物与WMH患者的认知功能下降有关,促炎因子可能使微血管内皮损伤,对患者WM造成损害,最终导致认知障碍。Bian等 [44] 通过一项对215例脑小血管病患者测定血清丙酮酸激酶肌肉同工酶2 (PKM2)水平的研究,发现PKM2与WMH呈正相关,与认知功能呈负相关,可能机制是PKM2是一种促炎介质转录激活剂,可促进炎症反应,从而发生认知改变。研究发现淀粉样蛋白(Aβ)的积累可导致WMH的微观结构发生变化,但其与认知障碍的关系目前尚缺相关研究 [45] [46] 。一项来自韩国针对64例皮质下血管认知障碍患者的横断面研究发现 [47] ,tau蛋白与WMH和认知障碍之间存在关联,tau蛋白积累是WMH患者认知障碍的最终共同途径。Hirao等 [48] 等通过观察38例遗忘性MCI患者和正常人群的血清胱抑酸-C (CysC)水平后发现,血清CysC水平与PVH体积正相关,PVH体积与认知功能障碍的关系密切,研究表明CysC不仅是早期肾功能损害的标志物,而且可能与大脑的病理机制有关联,可能是诊断遗忘型MCI患者白质异常的标志物。

4. 小结与展望

综上所述,WMH是老年人群中常见的影像学表现,也是导致认知功能障碍的危险因素之一,通过对其病理生理学、影像学及生物标志物方面的深入研究,揭示了WMH的认知损害机制。目前预测WMH患者发生认知功能障碍缺乏敏感的标志物,因此应进一步探索发病机制以发现敏感标志物,预防认知功能减退和延缓认知功能下降。

NOTES

*通讯作者。

参考文献

[1] Wardlaw, J.M., Smith, E.E., Biessels, G.J., et al. (2013) Neuroimaging Standards for Research into Small Vessel Dis-ease and Its Contribution to Ageing and Neurodegeneration. The Lancet Neurology, 12, 822-838.
https://doi.org/10.1016/S1474-4422(13)70124-8
[2] Prins, N.D. and Scheltens, P. (2015) White Matter Hyperintensities, Cognitive Impairment and Dementia: An Update. Nature Reviews Neurology, 11, 157-165.
https://doi.org/10.1038/nrneurol.2015.10
[3] Alber, J., Alladi, S., Bae, H.-J., et al. (2019) White Matter Hyperintensities in Vascular Contributions to Cognitive Impairment and Dementia (VCID): Knowledge Gaps and Op-portunities. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 5, 107-117.
https://doi.org/10.1016/j.trci.2019.02.001
[4] Jorgensen, D.R., Shaaban, C.E., Wiley, C.A., et al. (2018) A Pop-ulation Neuroscience Approach to the Study of Cerebral Small Vessel Disease in Midlife and Late Life: An Invited Review. American Journal of Physiology-Heart and Circulatory Physiology, 314, H1117-H1136.
https://doi.org/10.1152/ajpheart.00535.2017
[5] 中国医师协会神经内科分会认知障碍专业委员会,《中国血管性认知障碍诊治指南》编写组. 2019年中国血管性认知障碍诊治指南[J]. 中华医学杂志, 2019, 99(35): 2737-2744.
[6] Phuah, C.-L., Chen, Y., Strain, J.F., et al. (2022) Association of Data-Driven White Matter Hyperintensity Spatial Signatures with Distinct Cerebral Small Vessel Disease Etiologies. Neurology, 99, e2535-e2547.
https://doi.org/10.1212/WNL.0000000000201186
[7] Mortamais, M., Artero, S. and Ritchie, K. (2013) Cerebral White Matter Hyperintensities in the Prediction of Cognitive Decline and Incident Dementia. International Review of Psychiatry, 25, 686-698.
https://doi.org/10.3109/09540261.2013.838151
[8] Hu, H.-Y., Ou, Y.-N., Shen, X.-N., et al. (2021) White Mat-ter Hyperintensities and Risks of Cognitive Impairment and Dementia: A Systematic Review and Meta-Analysis of 36 Prospective Studies. Neuroscience & Biobehavioral Reviews, 120, 16-27.
https://doi.org/10.1016/j.neubiorev.2020.11.007
[9] Prosser, L., Macdougall, A., Sudre, C.H., et al. (2023) Pre-dicting Cognitive Decline in Older Adults Using Baseline Metrics of AD Pathologies, Cerebrovascular Disease, and Neurodegeneration. Neurology, 100, e834-e845.
[10] 胡文立, 杨磊, 李譞婷, 等. 中国脑小血管病诊治专家共识2021[J]. 中国卒中杂志, 2021, 16(7): 716-726.
[11] Griffanti, L., Jenkinson, M., Suri, S., et al. (2018) Classification and Characterization of Periventricular and Deep White Matter Hyperintensities on MRI: A Study in Older Adults. NeuroImage, 170, 174-181.
https://doi.org/10.1016/j.neuroimage.2017.03.024
[12] Burton, E.J., Kenny, R.A., O’Brien, J., et al. (2004) White Matter Hyperintensities Are Associated with Impairment of Memory, Attention, and Global Cognitive Performance in Older Stroke Patients. Stroke, 35, 1270-1275.
https://doi.org/10.1161/01.STR.0000126041.99024.86
[13] Lampe, L., Kharabian-Masouleh, S., Kynast, J., et al. (2019) Lesion Location Matters: The Relationships between White Matter Hyperintensities on Cognition in the Healthy Elderly. Journal of Cerebral Blood Flow & Metabolism, 39, 36-43.
https://doi.org/10.1177/0271678X17740501
[14] Kloppenborg, R.P., Nederkoorn, P.J., Geerlings, M.I., et al. (2014) Presence and Progression of White Matter Hyperintensities and Cognition: A Meta-Analysis. Neurology, 82, 2127-2138.
https://doi.org/10.1212/WNL.0000000000000505
[15] Rizvi, B., Narkhede, A., Last, B.S., et al. (2018) The Effect of White Matter Hyperintensities on Cognition Is Mediated by Cortical Atrophy. Neurobiology of Aging, 64, 25-32.
https://doi.org/10.1016/j.neurobiolaging.2017.12.006
[16] Göthlin, M., Eckerström, M., Rolstad, S., et al. (2018) Better Prognostic Accuracy in Younger Mild Cognitive Impairment Patients with More Years of Education. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, 10, 402-412.
https://doi.org/10.1016/j.dadm.2018.05.001
[17] 张杰文. 关注认知储备与血管性认知障碍的关系[J]. 中华神经科杂志, 2022, 55(5): 401-405.
[18] Joutel, A., Monet-Leprêtre, M., Gosele, C., et al. (2010) Cerebrovascular Dys-function and Microcirculation Rarefaction Precede White Matter Lesions in a Mouse Genetic Model of Cerebral Ischemic Small Vessel Disease. The Journal of Clinical Investigation, 120, 433-445.
https://doi.org/10.1172/JCI39733
[19] Saggu, R., Schumacher, T., Gerich, F., et al. (2016) Astroglial NF-kB Contributes to White Matter Damage and Cognitive Impairment in a Mouse Model of Vascular Dementia. Acta Neuropathologica Communications, 4, Article No. 76.
https://doi.org/10.1186/s40478-016-0350-3
[20] Moody, D.M., Brown, W.R., Challa, V.R. and Anderson, R.L. (1995) Periventricular Venous Collagenosis: Association with Leukoaraiosis. Radiology, 194, 469-476.
https://doi.org/10.1148/radiology.194.2.7824728
[21] Lin, J., Wang, D., Lan, L., et al. (2017) Multiple Factors Involved in the Pathogenesis of White Matter Lesions. BioMed Research International, 2017, Article ID: 9372050.
https://doi.org/10.1155/2017/9372050
[22] Xu, W., Bai, Q., Dong, Q., et al. (2022) Blood-Brain Barrier Dys-function and the Potential Mechanisms in Chronic Cerebral Hypoperfusion Induced Cognitive Impairment. Frontiers in Cellular Neuroscience, 16, Article 870674.
https://doi.org/10.3389/fncel.2022.870674
[23] Ke, Z., Mo, Y., Li, J., Yang, D., et al. (2022) Glymphatic Dys-function Mediates the Influence of White Matter Hyperintensities on Episodic Memory in Cerebral Small Vessel Disease. Brain Sciences, 12, Article 1611.
https://doi.org/10.3390/brainsci12121611
[24] Shi, D., Xie, S., Li, A., Wang, Q., et al. (2022) APOE-ε4 Modu-lates the Association among Plasma Aβ42/Aβ40, Vascular Diseases, Neurodegeneration and Cognitive Decline in Non-Demented Elderly Adults. Translational Psychiatry, 12, Article No. 128.
https://doi.org/10.1038/s41398-022-01899-w
[25] 魏娜, 王拥军, 张玉梅. 脑白质病变4个分级量表的信度研究[J]. 中国康复理论与实践, 2012, 18(6): 562-565.
[26] Chen, Y., Wang, X., Guan, L. and Wang, Y. (2021) Role of White Matter Hyperintensities and Related Risk Factors in Vascular Cognitive Impairment: A Review. Biomolecules, 11, Article 1102.
https://doi.org/10.3390/biom11081102
[27] Tran, P., Thoprakarn, U., Gourieux, E., et al. (2022) Automatic Segmentation of White Matter Hyperintensities: Validation and Comparison with State-of-the-Art Methods on both Multiple Sclerosis and Elderly Subjects. NeuroImage: Clinical, 33, Article 102940.
https://doi.org/10.1016/j.nicl.2022.102940
[28] Chanraud, S., Zahr, N., Sullivan, E.V., et al. (2014) MR Diffusion Tensor Imaging: A Window into White Matter Integrity of the Working Brain. Neuropsychology Review, 20, 209-225.
https://doi.org/10.1007/s11065-010-9129-7
[29] Mascalchi, M., Ginestroni, A., Toschi, N., et al. (2010) The Burden of Microstructural Damage Modulates Cortical Activation in Elderly Subjects with MCI and Leuko-Araiosis. A DTI and FMRI Study. Human Brain Mapping, 35, 819-830.
https://doi.org/10.1002/hbm.22216
[30] Chen, H.F., Huang, L.L., Li, H.Y., et al. (2020) Microstructural Disruption of the Right Inferior Fronto-Occipital and Inferior Longitudinal Fasciculus Contributes to WMH-Related Cognitive Impairment. CNS Neuroscience & Therapeutics, 26, 576-588.
https://doi.org/10.1111/cns.13283
[31] Yuan, J.-L., Wang, S.-K., Guo, X.-J., et al. (2017) Disconnections of Cortico-Subcortical Pathways Related to Cognitive Impairment in Patients with Leukoaraiosis: A Preliminary Diffusion Tensor Imaging Study. European Neurology, 78, 41-47.
https://doi.org/10.1159/000477899
[32] Iutaka, T., De Freitas, M.B., Omar, S.S., et al. (2023) Arterial Spin Labeling: Techniques, Clinical Applications, and Interpretation. RadioGraphics, 43, e220088.
https://doi.org/10.1148/rg.220088
[33] Promjunyakul, N.O., Lahna, D.L., Kaye, J.A., et al. (2016) Comparison of Cerebral Blood Flow and Structural Penumbras in Relation to White Matter Hyperintensities: A Multi-Modal Magnetic Resonance Imaging Study. Journal of Cerebral Blood Flow & Metabolism, 36, 1528-1536.
https://doi.org/10.1177/0271678X16651268
[34] Nitkunan, A., Charlton, R.A., McIntyre, D.J., et al. (2008) Dif-fusion Tensor Imaging and MR Spectroscopy in Hypertension and Presumed Cerebral Small Vessel Disease. Magnetic Resonance in Medicine, 59, 528-534.
https://doi.org/10.1002/mrm.21461
[35] Kantarci, K., Weigand, S.D., Przybelski, S.A., et al. (2013) MRI and MRS Predictors of Mild Cognitive Impairment in a Population-Based Sample. Neurology, 81, 126-133.
https://doi.org/10.1212/WNL.0b013e31829a3329
[36] Heye, A.K., Culling, R.D., Valdés Hernández, M.D.C., et al. (2014) Assessment of Blood-Brain Barrier Disruption Using Dynamic Contrast-Enhanced MRI. A Systematic Review. NeuroImage: Clinical, 6, 262-274.
https://doi.org/10.1016/j.nicl.2014.09.002
[37] Huisa, B.N., Caprihan, A., Thompson, J., et al. (2015) Long-Term Blood-Brain Barrier Permeability Changes in Binswanger Disease. Stroke, 46, 2413-2418.
https://doi.org/10.1161/STROKEAHA.115.009589
[38] Wang, X., Shi, Y., Chen, Y., et al. (2023) Blood-Brain Barrier Breakdown Is a Sensitive Biomarker of Cognitive and Language Impairment in Patients with White Matter Hyperintensities. Neurology and Therapy, 12, 1745-1758.
https://doi.org/10.1007/s40120-023-00527-z
[39] Yuan, J., Feng, L., Hu, W. and Zhang, Y. (2018) Use of Mul-timodal Magnetic Resonance Imaging Techniques to Explore Cognitive Impairment in Leukoaraiosis. Medical Science Monitor, 24, 8910-8915.
https://doi.org/10.12659/MSM.912153
[40] Yang, D., Qin, R., Chu, L., et al. (2022) Abnormal Cerebrovascular Reactivity and Functional Connectivity Caused by White Matter Hyperintensity Contribute to Cognitive Decline. Frontiers in Neuroscience, 16, Article 807585.
https://doi.org/10.3389/fnins.2022.807585
[41] No, H.J., Yi, H.A., Won, K.S., et al. (2019) Association between White Matter Lesions and the Cerebral Glucose Metabolism in Patients with Cognitive Impairment. Revista Española de Medicina Nuclear e Imagen Molecular (English Edition), 38, 160-166.
https://doi.org/10.1016/j.remnie.2019.01.005
[42] Song, Y., Quan, M., Li, T., et al. (2022) Serum Homocysteine, Vitamin B12, Folate, and Their Association with Mild Cognitive Impairment and Subtypes of Dementia. Journal of Alzheimer’s Disease, 90, 681-691.
https://doi.org/10.3233/JAD-220410
[43] Qiao, S., Li, H., Guo, F., et al. (2022) Research Progress on Cognitive Impairment and the Expression of Serum Inflammatory Markers in Patients with White Matter Hyperintensities: A Narrative Review. Annals of Translational Medicine, 10, Article 421.
https://doi.org/10.21037/atm-22-1016
[44] Bian, L., Zhou, Y., Zhang, D., et al. (2023) Negative Correlation be-tween Serum Pyruvate Kinase M2 and Cognitive Function in Patients with Cerebral Small Vessel Disease. Clinical Neurology and Neurosurgery, 225, Article 107586.
https://doi.org/10.1016/j.clineuro.2023.107586
[45] Kalheim, L.F., Bjørnerud, A., Fladby, T., et al. (2017) White Matter Hyperintensity Microstructure in Amyloid Dysmetabolism. Journal of Cerebral Blood Flow & Metabolism, 37, 356-365.
https://doi.org/10.1177/0271678X15627465
[46] Twait, E.L., Min, B., Beran, M., et al. (2023) The Cross-Sectional Association between Amyloid Burden and White Matter Hyperintensities in Older Adults without Cognitive Impairment: A Systematic Review and Meta-Analysis. Ageing Research Reviews, 88, Article 101952.
https://doi.org/10.1016/j.arr.2023.101952
[47] Kim, H.J., Park, S., Cho, H., et al. (2018) Assessment of Extent and Role of Tau in Subcortical Vascular Cognitive Impairment Using 18F-AV1451 Positron Emission Tomography Imaging. JAMA Neurology, 75, 999-1007.
https://doi.org/10.1001/jamaneurol.2018.0975
[48] Hirao, K., Yamashita, F., Tsugawa, A., et al. (2019) Associa-tion of Serum Cystatin C with White Matter Abnormalities in Patients with Amnestic Mild Cognitive Impairment. Geriatrics & Gerontology International, 19, 1036-1040.
https://doi.org/10.1111/ggi.13767