冠状动脉分叉病变不同介入治疗方法的临床应用及研究进展
Clinical Application and Research Progress of Different Interventional Treatment Methods for Coronary Bifurcation Lesions
DOI: 10.12677/ACM.2024.143737, PDF, HTML, XML, 下载: 21  浏览: 45 
作者: 温晓林, 蒋 叶:新疆医科大学研究生学院,新疆 乌鲁木齐;赖红梅*:新疆维吾尔自治区人民医院,心血管内科,新疆 乌鲁木齐
关键词: 冠状动脉疾病冠状动脉分叉病变经皮冠状动脉介入治疗Coronary Artery Disease Coronary Artery Bifurcation Disease Percutaneous Coronary Intervention
摘要: 冠状动脉分叉病变占所有经皮冠状动脉介入治疗的15%~20%,是冠心病介入治疗中较难处理的一种复杂病变类型,且由于冠脉分叉病变个体差异极大、手术操作复杂、术中风险高、术后并发症多等特点,术者难以一套标准流程解决所有分叉病变。因此,明晰患者分叉病变的分型及术式选择对于临床治疗具有重要意义。本文就冠状动脉分叉病变介入治疗研究进展作一综述。
Abstract: Coronary bifurcation lesions account for 15%~20% of all percutaneous coronary interventional treatments, and are a complex lesion type that is difficult to be managed in coronary interventional therapy. Due to the characteristics of great individual differences in coronary bifurcation lesions, complicated surgical operations, high intraoperative risks, and multiple postoperative complica-tions, it is difficult for surgeons to solve all bifurcation lesions with a standard procedure. Therefore, it is of great significance for clinical treatment to clarify the classification of patients with bifurcated lesions and the selection of surgical methods. This article reviews the progress of interventional therapy for coronary bifurcation disease.
文章引用:温晓林, 蒋叶, 赖红梅. 冠状动脉分叉病变不同介入治疗方法的临床应用及研究进展[J]. 临床医学进展, 2024, 14(3): 547-554. https://doi.org/10.12677/ACM.2024.143737

1. 前言

冠心病(Coronary Artery Disease, CAD)已成为威胁人类生命的第一位疾病,目前我国约有CAD患者1100万。CAD主要发病机制是冠状动脉(Coronary Artery, CA)内膜下动脉粥样硬化(Atherosclerotic, AS)形成,导致管腔不同程度的狭窄。经皮冠状动脉动脉介入(Percutaneous coronary intervention, PCI)治疗是指经心导管技术疏通狭窄甚至闭塞的冠状动脉管腔,从而改善心肌的血流灌注的治疗方法 [1] 。在PCI治疗中,冠状动脉分叉病变(Coronary bifurcation lesions, CBL)约占15~20% [2] 。尽管近年来PCI技术、腔内影像技术与辅助药物治疗取得了重大进展,但CBL的PCI治疗仍然具有挑战性。

2. 冠状动脉分叉病变的定义及分型

2.1. 冠状动脉分叉病变的定义

心外膜冠状动脉系统是一个复杂的血管结构,类似于一棵血管树。冠状动脉分叉病变(Coronary bifurcation lesions, CBL)指冠状动脉主支狭窄,同时合并重要分支开口狭窄,其解剖学及血流动力学较复杂。由于冠状动脉分叉部位的解剖学特点,血液流经分叉嵴处往往会导致规则的层流转变为不规则的涡流或湍流,通过影响血流速度的大小和方向发生变化,从而对血管壁产生剪切应力、径向力等的变化 [3] [4] ,近年来的研究已明确冠状动脉局部血流动力学改变是CBL发生和进展的主要决定因素 [4] [5] 。而血管壁面剪切应力是发生动脉粥样硬化的最相关因素:生理性斑块通常出现在低剪切应力分布区域;较大的分叉嵴也会降低剪切应力,更容易出现斑块沉积 [6] 。高剪切应力区通过内皮细胞机械感受器感知,诱导AS保护基因表达同时抑制致AS基因表达,抑制内皮功能障碍,从而抑制AS的发生 [7] 。

2.2. 分型方法

根据患者斑块分布位置等不同可以进行分叉病变分型。目前,关于CBL分型有多种方法 [8] [9] ,主要包括Duke分型、Safian分型、Lefevre分型、Medina分型等。冠状动脉由一个隆突和三个血管段组成,即近端主血管(Proximal Main Vessel, PMV)、远端主血管(Distal Main Vessel, DMV)和分支(Side branch, SB)。与隆突部位比较,MV与SB侧壁ESS较低。相关研究 [10] 显示MV、SB侧壁更容易发生AS,且AS的坏死核心更大。

由于Medina分型简单,容易记忆,是目前应用最广泛的CBL分型方法。Medina分型方法(图1)根据PMV、DMV和SB开口各处存在≥50%狭窄标记为1,不存在≥50%狭窄标记0。定义为Medina 1,1,1、1,0,1和0,1,1分类定义为真性分叉,而其他所有分类定义为非真性CBL。与非真性CBL相比,介入治疗真性CBL难度增加同时预后较差。对于左主干远端病变的患者可考虑植入支架;对于Medina (1, 1, 0)或(1, 0, 1)型的患者可将前降支作为主支,根据支架植入后情况判断是否需要进行对吻扩张或植入第二枚支架;对于Medina (1, 1, 1)或(0, 1, 1)型的患者则可根据边支病变情况考虑是否行双支架术式。

Figure 1. Medina classification

图1. Medina 分型

3. 冠状动脉分叉病变的介入治疗技术

CBL需要个体化介入处理,对于不同解剖结构的分叉病变,所采用的介入手段也有所不同。CBL的部位、角度、SB血管直径和病变特征,如AS斑块的位置、狭窄严重程度和长度以及隆突、斑块移位和夹层的形成等均影响PCI术后预后 [11] [12] 。依据分叉病变分型标准,可确定为真性分叉病变和非真性分叉病变,表现在治疗策略上就是简单支架策略(单支架Crossover技术或临时支架技术)或复杂支架策略(双支架技术及药物球囊对吻扩张技术)的选择。

SB支架置入的首要原则是在解剖学允许的情况下保持支架置入策略尽可能简单,简单支架置入策略是治疗多数CBL的标准方法 [13] 。该策略的制定基于大量比较单支架策略和双支架策略结局所进行的随机临床实验结果。简单和复杂的CBL定义标准包括2个主要和6个次要的血管造影标准。在两个主要标准中,要求SB病变长度 ≥ 10 mm并且SB直径狭窄 ≥ 70% (对于左主干CBL)或SB直径狭窄 ≥ 90% (对于非左主干CBL),6个次要标准包括中度至重度钙化、多发病变、分叉角小于45˚或大于70˚、MV参考血管直径 < 2.5 mm、含血栓病变、MV病变长度 ≥ 25 mm,定义复杂的CBL需要一个主要标准加上任何两个次要标准 [14] 。其中,大多数临床实验未能显示双支架策略优于单支架策略,Lee等 [15] 的一项比较采用单个长支架与重叠短支架治疗急性心肌梗死的研究显示,接受单个长支架的患者血清肌酐水平 ≥ 1.5 mg/dL的发生率较高(16.3% vs. 8.9%, p = 0.009),但高血压发生率较低(46.8% vs. 55.8%, p = 0.038);两组1年内主要不良心脑血管事件的发生率具有可比性[风险比(HR),1.33;95%置信区间(CI),0.80~2.24],结果表明比较采用单个长支架和双支架两种不同支架置入方法治疗急性心肌梗死患者的效果相似,单长支架置入术似乎更安全有效。然而,CBL解剖结构复杂,包括SB直径 ≥ 2.5 mm和开口狭窄程度 ≥ 50%,以及患者合并有特定的危险因素,可能需要选择双支架策略 [16] 。

3.1. 简单支架策略

3.1.1. 临时支架

临时支架(Provisional stent, PS)策略和选择性双支架策略是治疗CBL的两种常用介入策略。近年来,一些PCI技术被开发用于优化CBL介入操作及改善预后。目前尚无适用于所有CBL的介入治疗策略。既往针对比较PS和选择性双支架策略的研究报告了不同的结果。与选择性双支架策略相比,不同研究发现PS的结果更好 [15] [17] ,相似 [18] [19] 或更差 [20] 。第十六版欧洲分叉病变俱乐部共识指出,PS策略是治疗多数CBL的标准方法,介入术中可根据CBL的复杂性调整手术计划 [2] 。当计划使用单个支架和术前预期使用2个支架时,推荐使用PS策略,其目的是尽可能保持手术简单,并旨在减少分叉病变所需支架的数量 [21] 。

PS策略是指MV置入支架,SB不进行介入治疗,仅放入导丝保护或进行单纯球囊扩张。近期完成的临床试验证实与双支架策略比较,PS策略可降低死亡率、心血管不良事件、支架内血栓形成以及靶病变失败率,支持PS策略作为处理CBL的一线治疗策略 [22] 。在启动PS策略时,需要识别SB闭塞的危险因素,包括SB狭窄病变长度大于10 mm,开口存在不稳定斑块,分叉角度小以及SBTIMI血流减慢 [23] 。PS支架策略要求导丝进入SB保护,MV支架置入后需要采用近端优化技术(Proximal optimization technique, POT),其可增加导丝重新通过SB并进一步降低由隆突移位造成SB闭塞的风险。尽管采取了POT技术,仍不能完全避免SB闭塞的风险。

3.1.2. 分支保护策略

目前可以采用几种新技术降低PS策略中SB闭塞的风险,包括主动转移斑块技术,球囊–支架对吻技术以及球囊拘禁技术 [24] 。主动转移斑块技术是指采用一个直径与SB匹配的顺应性球囊置于SB内,伸入MV内2 mm,MV病变部位送入与MV直径匹配的未扩张支架,先扩张置入SB的球囊,将SB的斑块主动移位至MV,再以命名压释放支架 [25] ,之后同时卸载MV支架球囊与SB球囊压力,撤除在SB内的导丝与球囊,随后采用POT优化MV支架近端。尽管采用球囊预扩张SB有夹层形成的风险,近期发表的一项观察性研究(n = 1136)显示,通过主动转移斑块技术可以改善SB的TIMI血流同时降低SB闭塞以及SB植入支架风险。在随访一年时,单支架与双支架策略两组患者TLF无统计学差异 [25] 。

拘禁导丝技术(jailed wire technique, JWT)多用于无须处理但必须保证通畅的分支血管,一定程度上可保持分支开通状态,即使闭塞,也可标记边支位置,有利于重新进入导丝。拘禁导丝具有锚定作用,便于指引导管插入,为后面的球囊通过边支开口提供更牢固的支撑 [26] 。极端情况下,拘禁导丝可以作为一种补救手段,通过一个小号的球囊扩开边支恢复一些血流,可“挽救分支”。大约三分之一的分叉病变的MB和SB明显狭窄的病例中,监禁钢丝作为临时支架置入策略表现良好,然而,重新连接和修复受损的SB并不总是成功的 [27] 。囚禁钢丝在MB支架置入后可能会被困住或在取出过程中断裂,因此不是一种完全安全的技术 [27] 。

拘禁球囊技术(jailed balloon technique, JBT)是指在MV置入支架前,将未扩张的球囊放于SB至MV内2 mm或以4~6 mmHg的低压力膨胀,有利于支架置入后无需操作导丝重新进入MV穿支架网眼进入SB [26] 。一些小型研究报道采用该技术SB闭塞率低。目前仍缺乏大型的病例对照研究进一步评估这一技术。

改良拘禁球囊技术(modified jailed balloon technique, MJBT)即在MB放置支架,在SB放置长半顺应球囊,用半顺应性性球囊对MB进行预扩张,然后在主支放置支架。通过分支球囊的充分扩张以确保主支支架贴壁完全,并矫正由拘禁球囊扩张引起的支架变形,降低了支架释放后的边支受累,有效保护分支开口 [28] [29] 。

球囊对吻扩张技术(kissing balloon inflation, KBI)是主支支架植入后在分叉处行球囊对吻扩张的处理策略。对吻的球囊既可以将分支开口附近及分支开口处悬空的支架贴壁,又尽可能地保证了分叉的原有结构不被支架改变,可以改善分支血流,降低界嵴移位、支架内血栓导致的主要心血管不良事件发生。但是对于单支架策略,KBI是否优于其他分支保护技术还需长期观察。

3.2. 双支架技术

双支架技术,即在主支及较大的侧支分别植入支架的双支架技术。使用较多的双支架植置入策略有支架对吻技术、挤压支架技术(Crush技术)及其改良术式、裙裤(Culotte)支架、T-支架、V支架和Y支架植入术等。虽然临时支架策略被推荐用于大多数分叉病变,但那些被认为是包括MB和SB的复杂分叉的病变,包括SB狭窄 ≥ 70%和病变长度 ≥ 10 mm,采用前置双支架技术可以获得更好的长期结果 [2] [30] 。真性分叉病变、SB直径 > 2.5 mm、SB病变长度超过SB口10~20 mm,以及在SB闭塞的情况下预测MV支架置入后不利于重新穿过,也倾向于选择双支架策略 [31] 。这在DEFINITION II试验 [32] 中得到了证实,该试验证明了双支架策略的优越性,与Culotte支架相比,DK crush技术具有明显的优越性。对于真性分叉病变患者,采用双支架策略后的全因死亡风险、支架内血栓总体发生率和心血管死亡率均显着低于单支架策略 [20] [33] 。

3.2.1. Crush技术

Crush技术首先由Colombo医生发明,最初的Crush是将主支与分支支架同时到位,将分支支架拉入主支3~5 mm时先行释放,撤出分支支架球囊及导丝后释放主支支架,最后导丝通过支架网孔进入分支后进行球囊对吻技术。Crush技术是经典双支架技术策略的一种术式,随着发展与实际应用,衍生出了Reverse Crush、Inverted Crush、step Crush、DK Crush等更加适合不同分叉病变特点方法。DK crush (double kissing crush)技术,该技术特点是在分支支架置入后进行第一次对吻扩张操作,再在主支置入支架后再行第二次对吻扩张操作。Chen等 [34] 在DK Crush V试验中,与左主干分叉病变的临时治疗策略相比,DK Crush显示出优越性,较常规Crush技术能降低支架内血栓、减少靶血管重建率。后来的研究同样证实了这一术式相较于其他双支架术式的优越性。欧洲心脏病学会和欧洲心胸外科协会推荐与PS技术相比,在左主干真性正分叉病变中使用 DK crush技术 [2] 。Wang [31] 等的一项荟萃分析显示DK Crush技术主要心血管不良事件发生率较低,这方面明显优于PS技术、Culotte支架和T形支架等其他技术。

3.2.2. Culotte技术

Culotte技术作为双支架技术,适合于各种解剖情形的真性分叉,但更适用于分支血管夹角 < 60˚,且主支血管与分支血管管径相似的情况。通常是主支血管(左主干–左前降支血管)置入支架,然后通过第一个支架在左回旋支重新置入导丝并置入第二个支架。保留左主干血管的两支架的交叉,最终再行对吻球囊扩张。

3.3. 近端优化技术

近端优化技术(POT)是在主支支架近端靠近分叉处用短而大的球囊进行支架塑形。根据远端MV直径选择支架直径,并对直径较大的近端支架进行扩张后推荐采用POT,以确保最佳的近端支架放置位置 [35] 。欧洲分叉病变俱乐部专家共识建议分叉病变应常规应用POT技术 [2] 。rePOT技术,即先主支近端优化再行边支扩张,最后主支再次近端优化的新技术。第一次近端优化有利于导丝重入分支,第二次近端优化使支架近段恢复形状 [36] 。POT可以实现多个目标支架扩张的最佳程度,与血管壁的完全贴边,以及从SB的开口去除支架支柱,支架支柱与血流分隔器对面的壁相对,有助于实现SB的良好支架 [37] 。

3.4. 药物涂层球囊

药物包被球囊(Drug-coated balloon, DCB)通过输送和扩张将抗细胞增殖药物局部释放到病变内膜,抑制再狭窄 [38] 。在无支架PCI时代,DCB可被认为是小血管病变、支架内再狭窄和分叉病变的介入选择 [39] 。先前的证据表明,紫杉醇涂层气球可显著降低支架内再狭窄风险 [40] 。这种新技术尊重分叉的原始解剖结构,这在隆突区域尤为重要,并允许在整个血管表面均匀地应用高剂量的抗增殖药物,与任何一种双支架技术相比,在SB中使用DCB消除了由于缺乏适当的分叉覆盖、口支架、MB支架变形或因金属层和聚合物的破碎而导致药物不受控制释放的可能性 [41] 。

4. 介入治疗中分叉病变严重性的评价

针对CBL采取单支架还是双支架策略一制是介入界的一个争论。由于不同研究纳入的患者CBL解剖学特征不同,如LM-CBLs,Medina分型为真分叉病变、SB病变长度等,术中采用的双支架技术如Crush技术和Culotte技术,支架置入术后是否使用对吻扩张,采用血管内影像学工具评估支架贴壁,MV与SB残余狭窄以及术后抗栓药物的使用不同。目前不同研究者对CBL采用单支架还是双支架策略未得出统一结论。

采用血管内成相技术如血管内超声(IVUS)或光学相干断层摄影(OCT)引导支架置入是近年来PCI治疗CBL的一个备受关注的话题。Liang等 [42] 的研究对25例经冠状动脉造影证实冠状动脉中间病变(狭窄40%~70%)的患者行IVUS,结论表明IVUS可用于指导急性冠状动脉综合征患者非左主干中间冠状动脉病变的治疗。一项前瞻性倾向性匹配的观察性研究 [43] (n = 1465)比较了真性CBL患者接受IVUS指导PCI和仅依靠血管造影指导的PCI结局。研究结果显示,IVUS指导PCI显著降低真性CBL组患者心血管死亡、心肌梗塞和心血管不良事件。OCT在评估血管管腔结构和易损斑块组成方面具有更大价值,其有助于指导单支架策略或双支架策略的制定。Ramasamy等 [44] 对6919名患者和7537个病变的荟萃分析显示,具有卓越图像分辨率的OCT似乎是检测非左主干病变中血流动力学显着狭窄的首选血管内成像方式。

5. 总结

由于冠状动脉解剖结构复杂以及繁多的支架技术,PCI治疗CBL是一个复杂操作过程。每种支架技术都有其自身的局限性,尽管目前已发表较多的介入治疗CBL研究,但很难推广一种支架策略来适合所有CBL。因此,在临床实践中介入医师需根据面对的不同的CBL,结合最新的循证医学证据,制定个体化的治疗策略。

NOTES

*通讯作者。

参考文献

[1] Amsterdam, E.A., Wenger, N.K., Brindis, R.G., et al. (2014) 2014 AHA/ACC Guideline for the Management of Patients with Non-ST-Elevation Acute Coronary Syndromes: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation, 130, e344-e426.
[2] Lassen, J.F., Albiero, R., Johnson, T.W., et al. (2022) Treatment of Coronary Bifurcation Lesions, Part II: Implanting Two Stents. The 16th Expert Consen-sus Document of the European Bifurcation Club. Eurointervention, 18, 457-470.
https://doi.org/10.4244/EIJ-D-22-00166
[3] Starodumov, I.O., Sokolov, S.Y., Alexandrov, D.V., et al. (2022) Modelling of Hemodynamics in Bifurcation Lesions of Coronary Arteries before and after Myocardial Revascularization. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 380, Article ID: 20200303.
https://doi.org/10.1098/rsta.2020.0303
[4] He, L., Zhang, C.L., Chen, Q., et al. (2022) Endothelial Shear Stress Signal Transduction and Atherogenesis: From Mechanisms to Therapeutics. Pharmacology & Therapeutics, 235, Article ID: 108152.
https://doi.org/10.1016/j.pharmthera.2022.108152
[5] Yamamoto, E., Siasos, G., Zaromytidou, M., et al. (2017) Low Endothelial Shear Stress Predicts Evolution to High-Risk Coronary Plaque Phenotype in the Future: A Serial Opti-cal Coherence Tomography and Computational Fluid Dynamics Study. Circulation: Cardiovascular Interventions, 10, e005455.
https://doi.org/10.1161/CIRCINTERVENTIONS.117.005455
[6] Kelsey, L.J., Bellinge, J.W., Majeed, K., et al. (2021) Low Endothelial Shear Stress Is Associated with High-Risk Coronary Plaque Features and Microcalcification Ac-tivity. JACC: Cardiovascular Imaging, 14, 2262-2264.
https://doi.org/10.1016/j.jcmg.2021.06.016
[7] Wojtasińska, A., Frąk, W., Lisińska, W., et al. (2023) Novel In-sights into the Molecular Mechanisms of Atherosclerosis. International Journal of Molecular Sciences, 24, Article No. 13434.
https://doi.org/10.3390/ijms241713434
[8] Ludwig, J., Mohamed, M. and Mamas, M.A. (2021) Left Main Bifurcation Lesions: Medina Reclassification Revisited—As Easy as ABC. Catheterization and Cardiovascular Inter-ventions, 97, 186-187.
https://doi.org/10.1002/ccd.29121
[9] Riley, R.F., Henry, T.D., Mahmud, E., et al. (2020) SCAI Position State-ment on Optimal Percutaneous Coronary Interventional Therapy for Complex Coronary Artery Disease. Catheterization and Cardiovascular Interventions, 96, 346-362.
https://doi.org/10.1002/ccd.28994
[10] Li, Y., Li, Z., Holck, E.N., et al. (2018) Local Flow Patterns after Implantation of Bioresorbable Vascular Scaffold in Coronary Bifurcations-Novel Findings by Computational Fluid Dynamics. Circulation Journal, 82, 1575-1583.
https://doi.org/10.1253/circj.CJ-17-1332
[11] Shen, C., Gharleghi, R., Li, D.D., et al. (2021) Secondary Flow in Bifurcations—Important Effects of Curvature, Bifurcation Angle and Stents. Journal of Biomechanics, 129, Article ID: 110755.
https://doi.org/10.1016/j.jbiomech.2021.110755
[12] Radunović, A., Vidaković, R., Timčić, S., et al. (2023) Mul-tislice Computerized Tomography Coronary Angiography Can Be a Comparable Tool to Intravascular Ultrasound in Evaluating “True” Coronary Artery Bifurcations. Frontiers in Cardiovascular Medicine, 10, Article ID: 1292517.
https://doi.org/10.3389/fcvm.2023.1292517
[13] Banning, A.P., Lassen, J.F., Burzotta, F., et al. (2019) Percuta-neous Coronary Intervention for Obstructive Bifurcation Lesions: The 14th Consensus Document from the European Bi-furcation Club. Eurointervention, 15, 90-98.
https://doi.org/10.4244/EIJ-D-19-00144
[14] Ge, Z., Gao, X.F., Zhan, J.J., et al. (2022) Coronary Bifurcation Le-sions. Interventional Cardiology Clinics, 11, 405-417.
https://doi.org/10.1016/j.iccl.2022.02.002
[15] Lee, D.H., Oh, S., Kim, M.C., et al. (2023) Comparative Treatment Outcomes of a Single Long Stent vs. Overlapped Short Stents in Acute Myocardial Infarction. Frontiers in Cardiovascular Medicine, 10, Article ID: 1284396.
https://doi.org/10.3389/fcvm.2023.1284396
[16] Azzalini, L., Moroni, F. and Santiago, R. (2022) Subintimal Shift at the Bifurcation: A Cause of Side Branch Occlusion in Chronic Total Occlusion Intervention. Cardiovascular Revascu-larization Medicine, 40, 298-301.
https://doi.org/10.1016/j.carrev.2021.06.124
[17] Nasir, M., Shafique, H.M., Hussain, S., et al. (2020) Percutane-ous Coronary Intervention for Left Main Coronary Artery Bifurcation Lesions: Two-Stent versus One-Stent Strategy for Comparison of 6-Month MACE. JCPSP-Journal of College of Physicians and Surgeons Pakistan, 30, 894-899.
https://doi.org/10.29271/jcpsp.2020.09.894
[18] Choi, K.H., Bruno, F., Cho, Y.K., et al. (2023) Comparison of Outcomes between 1- and 2-Stent Techniques for Medina Classification 0.0.1 Coronary Bifurcation Lesions. JACC: Cardiovascular Interventions, 16, 2083-2093.
https://doi.org/10.1016/j.jcin.2023.06.013
[19] Arunothayaraj, S., Behan, M.W., Lefèvre, T., et al. (2023) Stepwise Provisional versus Systematic Culotte for Stenting of True Coronary Bifurcation Lesions: Five-Year Follow-Up of the Multicentre Randomised EBC Two Trial. Eurointervention, 19, E297-E304.
https://doi.org/10.4244/EIJ-D-23-00211
[20] Meng, S., Kong, X., Nan, J., et al. (2023) Comparing the Clinical Outcomes of Single vs. Systematic Dual Stenting Strategies for Unprotected Left Main Bifurcation Lesion: A Systematic Review and Meta-Analysis. Frontiers in Cardiovascular Medicine, 10, Article ID: 1145412.
https://doi.org/10.3389/fcvm.2023.1145412
[21] Burzotta, F., Lassen, J.F., Louvard, Y., et al. (2020) European Bifurcation Club White Paper on Stenting Techniques for Patients with Bifurcated Coronary Artery Lesions. Catheteriza-tion and Cardiovascular Interventions, 96, 1067-1079.
https://doi.org/10.1002/ccd.29071
[22] Zhang, Q., Huan, H.S., Han, Y., et al. (2022) Clinical Outcomes Following Simple or Complex Stenting for Coronary Bifurcation Lesions: A Meta-Analysis. Clinical Medicine Insights: Cardiology, 16.
https://doi.org/10.1177/11795468221116842
[23] Guo, Y., Peng, H., Zhao, Y., et al. (2021) Predictors and Com-plications of Side Branch Occlusion after Recanalization of Chronic Total Occlusions Complicated with Bifurcation Le-sions. Scientific Reports, 11, Article No. 4460.
https://doi.org/10.1038/s41598-021-83458-9
[24] Qin, Q., Zheng, B., Liu, J., et al. (2021) Active versus Conven-tional Side Branch Protection Strategy for Coronary Bifurcation Lesions. International Heart Journal, 62, 1241-1248.
https://doi.org/10.1536/ihj.21-467
[25] Shen, H., Yang, L.X., Wang, Z.J., et al. (2019) Efficacy and Safety of Ac-tive Transfer of Plaque versus Provisional Stenting with Drug-Eluting Stents for the Treatment of Coronary Bifurcation Lesions. Chinese Journal of Cardiovascular Diseases, 47, 549-553.
[26] Zhang, D., Zhao, Z., Gao, G., et al. (2022) Jailed Balloon Technique Is Superior to Jailed Wire Technique in Reducing the Rate of Side Branch Occlusion: Subgroup Analysis of the Conventional versus Intentional Strategy in Patients with High Risk Prediction of Side Branch Occlusion in Coronary Bifurcation Intervention Trial. Frontiers in Cardiovascular Medicine, 9, Article ID: 814873.
https://doi.org/10.3389/fcvm.2022.814873
[27] Hidalgo, F., González-Manzanares, R., Ojeda, S., et al. (2023) Jailed Pressure Wire Technique for Coronary Bifurcation Lesions: Structural Damage and Clinical Outcomes. Revista Española de Cardiología (Engl Ed), 76, 531-538.
https://doi.org/10.1016/j.recesp.2022.11.005
[28] Khan, B.K., Rahman, M.N., Tai, J.M., et al. (2020) Jailed Bal-loons for Side Branch Protection: A Review of Techniques and Literature: Jailed Balloons for Side Branch Protection. AsiaIntervention, 6, 15-24.
https://doi.org/10.4244/AIJ-D-19-00025
[29] Shishido, K., Moriyama, N., Hayashi, T., et al. (2020) The Efficacy of Modified Jailed Balloon Technique for True Bifurcation Lesions. Catheterization and Cardiovascular Interventions, 96, 20-28.
https://doi.org/10.1002/ccd.28812
[30] Pellegrini, D., Ielasi, A., Tespili, M., et al. (2023) Percutaneous Treatment of Left Main Disease: A Review of Current Status. Journal of Clinical Medicine, 12, Article No. 4972.
https://doi.org/10.3390/jcm12154972
[31] Wang, R., Ding, Y., Yang, J., et al. (2022) Stenting Techniques for Coronary Bifurcation Disease: A Systematic Review and Network Meta-Analysis Demonstrates Superiority of Dou-ble-Kissing Crush in Complex Lesions. Clinical Research in Cardiology, 111, 761-775.
https://doi.org/10.1007/s00392-021-01979-9
[32] Zhang, J.J., Ye, F., Xu, K., et al. (2020) Multicentre, Random-ized Comparison of Two-Stent and Provisional Stenting Techniques in Patients with Complex Coronary Bifurcation Le-sions: The DEFINITION II Trial. European Heart Journal, 41, 2523-2536.
https://doi.org/10.1093/eurheartj/ehaa543
[33] Gaede, L. (2022) Bifurcation Lesions: Are New Strategies and De-vices Needed? Herz, 47, 485-494.
https://doi.org/10.1007/s00059-022-05140-8
[34] Chen, X., Li, X., Zhang, J.J., et al. (2019) 3-Year Outcomes of the DKCRUSH-V Trial Comparing DK Crush with Provisional Stenting for Left Main Bifurcation Lesions. JACC: Car-diovascular Interventions, 12, 1927-1937.
https://doi.org/10.1016/j.jcin.2019.04.056
[35] Chevalier, B., Mamas, M.A., Hovasse, T., et al. (2021) Clinical Outcomes of the Proximal Optimisation Technique (POT) in Bifurcation Stenting. Eurointervention, 17, e910-e918.
https://doi.org/10.4244/EIJ-D-20-01393
[36] Dérimay, F., Aminian, A., Lattuca, B., et al. (2024) One Year Results of Coronary Bifurcation Revascularization with the Re-POT Provisional Sequential Technique. The CABRIOLET Regis-try. International Journal of Cardiology, 397, Article ID: 131632.
https://doi.org/10.1016/j.ijcard.2023.131632
[37] Watanabe, Y., Murasato, Y., Yamawaki, M., et al. (2021) Prox-imal Optimisation Technique versus Final Kissing Balloon Inflation in Coronary Bifurcation Lesions: The Randomised, Multicentre PROPOT Trial. Eurointervention, 17, 747-756.
https://doi.org/10.4244/EIJ-D-20-01386
[38] Yerasi, C., Case, B.C., Forrestal, B.J., et al. (2020) Drug-Coated Balloon for De Novo Coronary Artery Disease: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 75, 1061-1073.
https://doi.org/10.1016/j.jacc.2019.12.046
[39] Rissanen, T.T., Uskela, S., Eränen, J., et al. (2019) Drug-Coated Balloon for Treatment of De-Novo Coronary Artery Lesions in Patients with High Bleeding Risk (DEBUT): A Sin-gle-Blind, Randomised, Non-Inferiority Trial. The Lancet, 394, 230-239.
https://doi.org/10.1016/S0140-6736(19)31126-2
[40] Li, Y., Mao, Q., Liu, H., et al. (2022) Effect of Paclitax-el-Coated Balloon Angioplasty on Side Branch Lesion and Cardiovascular Outcomes in Patients with De Novo True Coronary Bifurcation Lesions Undergoing Percutaneous Coronary Intervention. Cardiovascular Drugs and Therapy, 36, 859-866.
https://doi.org/10.1007/s10557-021-07225-8
[41] Dash, D., Mody, R., Ahmed, N., et al. (2022) Drug-Coated Balloon in the Treatment of Coronary Bifurcation Lesions: A Hope or Hype? Indian Heart Journal, 74, 450-457.
https://doi.org/10.1016/j.ihj.2022.10.193
[42] Liang, H.B., Guo, Q., Zhang, X.L., et al. (2017) Clinical Outcomes of Intravascular Ultrasound in Guiding the Treatment of Non-Left Main Intermediate Coronary Lesions for Patients with Acute Coronary Syndrome. Journal of Southern Medical University, 37, 707-711.
[43] Chen, L., Xu, T., Xue, X.J., et al. (2018) Intravascular Ultrasound-Guided Drug-Eluting Stent Implantation Is Associated with Improved Clinical Outcomes in Patients with Unstable Angina and Complex Coronary Artery True Bifurcation Lesions. The Inter-national Journal of Cardiovascular Imaging, 34, 1685-1696.
https://doi.org/10.1007/s10554-018-1393-2
[44] Ramasamy, A., Chen, Y., Zanchin, T., et al. (2020) Optical Co-herence Tomography Enables More Accurate Detection of Functionally Significant Intermediate Non-Left Main Coronary Artery Stenoses than Intravascular Ultrasound: A Meta-Analysis of 6919 Patients and 7537 Lesions. International Journal of Cardiology, 301, 226-234.
https://doi.org/10.1016/j.ijcard.2019.09.067