高原缺氧环境在女性生殖中的研究进展
Advances in Research on Female Reproduction in High Altitude Hypoxia Environment
DOI: 10.12677/JCPM.2024.31013, PDF, HTML, XML, 下载: 27  浏览: 69 
作者: 孙阿姣:青海大学研究生院,青海 西宁;熊正方*:青海省人民医院生殖中心,青海 西宁
关键词: 海拔生殖缺氧Altitude Reproduction Hypoxia
摘要: 随着经济的发展,选择去高原地区工作和旅行的女性逐渐增加。高海拔地区的低氧环境可能影响生理适应和女性生殖健康。本研究探讨了高原缺氧环境对女性的影响和适应机制,旨在提供更好的医疗和生育支持。
Abstract: With the development of economy, more and more women choose to work and travel in high alti-tude areas. The low oxygen environment in high altitude areas may affect physiological adaptation and female reproductive health. This study will explore the effects and adaptive mechanisms of hy-poxic environment on women, with the aim of providing better medical and reproductive support.
文章引用:孙阿姣, 熊正方. 高原缺氧环境在女性生殖中的研究进展[J]. 临床个性化医学, 2024, 3(1): 78-84. https://doi.org/10.12677/JCPM.2024.31013

1. 引言

随着经济的不断发展,选择在海拔高于2500米的高原地区工作和旅行的人数逐年增加 [1] 。随着海拔的逐渐升高,大气压力和氧气含量会逐渐下降,为保护人体稳态免受极端环境条件的影响,长期生活在平原地区的人们短暂停留在高原地区,可出现一系列急性或长期的适应性表现,涉及呼吸、心脑血管、血液学和代谢 [2] [3] [4] 。然而,高原环境对女性生育的影响仍然存在争议,有研究表明 [5] [6] ,生活在平原环境下的女性比长期生活在高原缺氧环境下的女性更易在高原地区出现妊娠并发症和生殖问题。另一些研究表明 [7] [8] ,女性生殖在缺氧环境中存在着适应性表现。女性生殖健康对于妇女而言是一项不可忽视的议题。为此,我们将探讨高原缺氧环境对女性生殖的影响、背后的机制以及改善措施,便于为生活在高原地区的女性提供更好的医疗和生育支持。

2. 高原缺氧环境对女性生殖的影响

高原缺氧是一种不可避免的情况,当处于高原地区人们迁移到较低的海拔时,完成生育率会随之增加 [9] [10] 。高原缺氧环境对女性生殖的影响与接触时间有关,生活在平原环境下女性短期接触高原缺氧环境会增加不孕风险并影响母婴健康,进而影响女性生育,而长期接触的人群可产生适应性变化,对女性生育的影响相对较小。在细胞水平,低氧会影响各个方面的细胞功能,包括代谢、生长、细胞分裂和细胞死亡,也会引发卵巢上一系列生理功能的变化 [11] [12] [13] 。

性激素具有促进受精、维持妊娠、促进胎儿发育等作用,性激素减少可引起不孕症、复发性流产等疾病出现,对生育至关重要。巨噬细胞迁移抑制因子(macrophage migration inhibitory factor, MIF)在准备怀孕的周期子宫中发现,由人胎盘在着床部位产生,MIF的产生由低氧张力调节,表征妊娠早期的子宫环境 [14] 。Yamada等 [15] 揭示了MIF在怀孕期间的重要性,表明反复早期流产的妇女的母体MIF血浆水平较低。高原缺氧环境可改变机体激素水平和MIF进而影响生殖结果。有研究 [16] 对比生活在海平面水平女性在中高海拔地区徒步旅行前后的激素水平激素和巨噬细胞迁移抑制因子的变化,发现旅行结束后所有参与者的孕酮(Progesterone, P)显着下降,尽管大多数参与者处于黄体期。巨噬细胞迁移抑制因子在唾液中的浓度在高海拔地区大幅下降,但在回到海平面水平地区后完全恢复。另一项研究对比海平面和高海拔地区(~3500米)本地女性的循环类固醇激素、促性腺激素和促炎细胞因子巨噬细胞迁移抑制因子 [17] ,表明与生活在海平面的女性相比,高海拔地区妇女在黄体期的黄体生成素(Luteinizing hormone, LH) (2.6 mIU/ml VS. 4.4 mIU/ml, P < 0.05)和P (4.1 ng/ml VS. 9.4 ng/ml, P < 0.05)水平方面存在差异。催产素升高(83.5 ng/ml vs. 76.3 ng/ml, P < 0.05)和巨噬细胞迁移抑制因子水平升高(70.2 ng/ml VS. 49.7 ng/ml, P< 0.01)。LH降低可能导致卵巢黄体发育不良,进而降低P水平。高原缺氧环境对性激素的影响更多可能是对于短期接触高原环境后的女性。

多囊卵巢综合征可引起子宫内膜容受性受损和排卵障碍,是导致不孕症的重要原因之一 [18] 。有研究表明 [5] ,海拔越高,多囊卵巢综合征的发病率越高。另一项研究表明 [19] ,缺氧可导致雌激素生物合成失调、促炎细胞因子产生异常、血管生成能力增加和免疫功能抑制,进而增加女性患子宫内膜异位症的风险。高原缺氧环境可能会通过增加女性患与生育有关疾病的风险,进而增加不孕风险,影响女性生育力。然而,鲜少有研究表明短期或长期居住在高原地区的不孕女性进行辅助生殖技术的效果和成功率是否直接会受高原缺氧环境的影响。高海拔地区的居民可能会出现一些生理适应性变化,例如更高的代谢需求,这些适应性变化是否会影响卵巢的反应以及促排卵药物的治疗效果,还需进一步研究。

3. 高原缺氧环境对产科结局的影响

3.1. 影响胎儿的发育

在全球范围内,出生体重和海拔高度之间存在反比关系 [20] 。有研究表明,从海平面开始,母亲的所处海拔的高度就与出生体重有关 [21] 。妊娠的早期阶段,长期和短期暴露于高原地区均会对胚胎–胎儿的生长产生负面影响,对初次接触高原缺氧环境者更甚 [22] 。Hernández-Vásquez等表明 [23] 居住在海拔2500至3499米和≥3500米的母亲的孩子发生低出生体重儿的概率更高。这可能环境造成胎儿供氧减少,出现宫内生长受损有关。然而,并非在所有人群中都受到高原缺氧环境影响 [24] 。Bigham等 [25] 对比新移民和多代高海拔居民的妊娠结局,研究表明对于常居住于高原缺氧环境下的人群,胚胎发育并未受到抑制。胎儿出生体重受海拔的影响同样与时间具有相关性。妊娠期间长期暴露于高原缺氧对后代心血管系统同样会造成影响。Zhang等 [26] 将处于妊娠期的羊暴露在高海拔(3820 m)或海平面(~300 m)下110天后发现,妊娠期间长期暴露于高原缺氧会增加胎羊心脏对缺血/再灌注损伤和心功能不全的易感性。

3.2. 妊娠并发症风险增加

妊娠期缺氧会严重影响子宫血管适应,并增加妊娠并发症的风险,其主要是妊娠期高血压疾病。有研究表明 [27] ,在高海拔地区(≥2500 m),妊娠期高血压的患病率几乎是低海拔地区的两倍(OR, 1.31 [1.03~1.65]; P < 0.05)。另一项研究 [28] 比较617,958名生活在高海拔和低海拔(<2500 m)女性的妊娠高血压、先兆子痫(有或没有严重特征)、子痫、HELLP综合征或所有妊娠期高血压疾病组合的发病率,研究表明在全州范围内,高海拔地区妊娠期高血压疾病单独或合并的发生率增加了33%。在缺氧条件下,细胞可能会经历一系列的生物化学和分子变化,以试图存活并适应环境。Ahmed等 [29] 分析了已知与高海拔缺氧适应相关的遗传变体,研究结果表明,与正常妊娠相比,EPAS1、ADAM9和EGLN1的遗传变体在妊高症病例中增加了约三倍。EPAS1基因在高海拔适应中发挥重要作用,高海拔的适应性基因也可以在疾病如先兆子痫、高血压等因缺氧途径调节紊乱而导致的疾病中发挥保护作用。

4. 高原环境影响生殖的机制:氧化应激

机体活性氧(reactive oxygen species, ROS)的生成过多和(或)抗氧化能力降低,氧化和抗氧化系统平衡紊乱,从而导致潜在性损伤的病理过程被称为氧化应激(oxidative stress)。ROS在激素信号传导、卵母细胞成熟、卵巢类固醇生成、排卵、黄体溶解、妊娠期黄体维持、着床、囊胚发育、生殖细胞功能和黄体形成中充当重要介质。ROS的过量产生可能对卵子的质量产生不良影响。高水平的ROS可能导致DNA损伤和蛋白质氧化,这会降低卵子的质量,从而降低受精的成功率 [30] [31] 。缺氧可引起O2可用性降低,进而消耗大量的腺嘌呤核苷三磷酸导致磷酸腺苷生成,磷酸腺苷会进一步催化生成黄嘌呤和次黄嘌呤,即ROS的主要来源。如果发生进一步的再氧化,则黄嘌呤和次黄嘌呤代谢成过氧化氢和超氧化物,从而产生氧化应激 [32] 。一项研究 [33] 发现,在海拔6000米时,全血脂过氧化增加23%,海拔8000米时增加79%,海拔8848米时增加94%。Mrakic-Sposta等 [34] 研究14名生活在低海拔地区的受试者暴露在3269 m处后第1、2、4、7和14天的血液和尿液,测定样本中ROS的产生,结果表明低海拔地区居民在高海拔暴露期间会产生过多的ROS。氧化应激似乎与海拔高度成正比,对生殖系统和生殖结果产生负面影响。

5. 适应性表现机制

从平原地区短期移居于高原地区的女性相比长期居住在高原地区的女性,面临环境对生育的影响更大,背后的关键可能在于长期居住于高原地区的女性机体逐渐适应了高原环境,从基因到生理机制都有可能发生了一定的调整,从而降低了环境对机体的影响。了解适应性表现背后的机制可以帮助我们解决与高原缺氧环境相关的生殖健康问题。

5.1. 线粒体基因组改变

线粒体是细胞内能量产生的主要地方,同时也是活性氧物质的主要产生源。ROS的生成超过了机体的抗氧化防御系统的清除能力。这可能导致脱氧核糖核酸、蛋白质和脂质等生物分子的氧化损伤,从而引发一系列生理和病理变化,包括ROS可能对卵子的质量产生不利影响,包括影响卵泡发育和卵子的释放、子宫内膜的生长和着床等,且对人类胚胎的发育有害 [35] [36] 。

有研究 [37] 对生活在不同海拔的藏族和汉族人群进行了线粒体单倍群分类和变异基因分型。结果表明,高海拔群体单倍群G和M9a1a1c1b的频率显著高于低海拔组(P = 0.01和0.002)。有研究 [38] 对比241名西藏藏族受试者及220名陕西省汉族受试者的线粒体基因组(Mitochondrial DNA, mtDNA)拷贝数和血液生化指标,结果表明,与汉族受试者相比,藏族人的相对mtDNA拷贝数显著降低,二氧化碳结合能力与mtDNA含量呈负相关。二氧化碳结合能力的增加以及较低的mtDNA含量可能提供适应性潜力。高原地区人群线粒体基因组的多样性可能会改变线粒体功能和代谢,使得在适应低氧环境方面发挥作用。

5.2. DNA甲基化

内皮PAS结构域包含蛋白-1(Endothelial PAS Domain-Containing Protein 1, EPAS1),也被称为缺氧诱导因子-2α (Hypoxia-Inducible Factor-2α, HIF-2α),是一种编码蛋白质的基因。EPAS1是低氧诱导因子(Hypoxia-Inducible Factor, HIF)家族的成员之一,与HIF-1α (Hypoxia-Inducible Factor-1α)密切相关。EPAS1基因编码的蛋白质在低氧环境下发挥重要作用。多项研究表明,EPAS1基因可能在高海拔适应中发挥重要作用 [39] [40] 。当氧气供应不足时,EPAS1蛋白质被稳定,并与HIF-1α一起形成HIF复合物,促进一系列基因的表达,这些基因有助于提高细胞对低氧环境的生存能力。高原地区居民的高原适应性与EPAS1的甲基化变化有关。DNA甲基化(DNA methylation, DNAm)指的是将甲基基团(-CH3)添加到DNA分子上的胞嘧啶位点,从而影响某些基因的表达。有研究 [41] 分析从2800米徒步到5160米研究参与者分别在3440 m、4240 m、5160 m处时的唾液样本并使用定量亚硫酸氢盐焦磷酸测序来确定DNA甲基化的变化,研究表明EPAS1 (仅在4240 m处)和PPARa的甲基化水平增加。另一项研究 [42] 对汉族、藏族、壮族和蒙古族四个主要民族的32名中国人进行了双链亚硫酸氢盐测序(DSBS, Double-Strand Bisulfite Sequencin)。发现藏族和非藏族的差异甲基化区域在EPAS1和egl-9家族缺氧诱导因子1 (Egl Nine Homolog 1, EGLN1)等高海拔基因周围富集。然而,研究未进一步将EPAS1的甲基化变化与其他遗传和表观遗传因素相结合,对全面了解表观遗传学在高原适应性中作用具有一定限制。

6. 结语

高原缺氧环境对女性生殖系统可以产生一系列不良影响,包括生殖激素水平变化、卵巢功能的受损、妊娠并发症的增加、胚胎发育的不稳定性等。定制化的生殖保健服务,可以确保女性的生殖健康,这可能包括更好的预防措施、早期干预和妊娠并发症的管理。开发更有效的干预措施,需要研究者们更深入地研究高原缺氧环境对生殖系统的分子机制。此外,有必要探讨高原地区女性接受辅助生殖技术的效果和成功率,以确定是否需要特殊的治疗方案。总之,高原缺氧环境对女性生殖的研究仍需要不断发展,以更好地了解这一问题并提供更好的保健和治疗选择。这对于保障高原地区女性的生殖健康至关重要。

NOTES

*通讯作者。

参考文献

[1] Bigham, A.W. (2016) Genetics of Human Origin and Evolution: High-Altitude Adaptations. Current Opinion in Genet-ics & Development, 41, 8-13.
https://doi.org/10.1016/j.gde.2016.06.018
[2] Doutreleau, S. (2021) Réponses Physiologiques et Pathologiques à L’Altitude. Revue des Maladies Respiratoires, 38, 1013-1024.
https://doi.org/10.1016/j.rmr.2020.12.007
[3] Zhang, X., Zhang, Z., Ye, R., et al. (2022) Prevalence of Hyperten-sion and Its Relationship with Altitude in Highland Areas: A Systematic Review and Meta-Analysis. Hypertension Re-search, 45, 1225-1239.
https://doi.org/10.1038/s41440-022-00955-8
[4] Koufakis, T., Karras, S.N., Mustafa, O.G., et al. (2019) The Ef-fects of High Altitude on Glucose Homeostasis, Metabolic Control, and Other Diabetes-Related Parameters: From Ani-mal Studies to Real Life. High Altitude Medicine & Biology, 20, 1-11.
https://doi.org/10.1089/ham.2018.0076
[5] Moore, L.G. (2021) HYPOXIA AND REPRODUCTIVE HEALTH: Reproductive Challenges at High Altitude: Fertility, Pregnancy and Neonatal Well-Being. Reproduction (Cambridge, England), 161, F81-F90.
https://doi.org/10.1530/REP-20-0349
[6] Zhang, B., Wu, W., Shi, G., et al. (2021) Maternal Exposure to Low-to-Medium Altitude and Birth Outcomes: Evidence from a Population-Based Study in Chinese Newborns. Journal of Developmental Origins of Health and Disease, 12, 443-451.
https://doi.org/10.1017/S204017442000063X
[7] Moore, L.G. (2017) Measuring High-Altitude Adaptation. Journal of Applied Physiology (1985), 123, 1371-1385.
https://doi.org/10.1152/japplphysiol.00321.2017
[8] He, Y., Guo, Y., Zheng, W., et al. (2023) Polygenic Adapta-tion Leads to a Higher Reproductive Fitness of Native Tibetans at High Altitude. Current Biology, 33, 4037-4051.E5.
https://doi.org/10.1016/j.cub.2023.08.021
[9] Shaw, S., Ghosh, D., Kumar, U., et al. (2018) Impact of High Alti-tude on Key Determinants of Female Reproductive Health: A Review. International Journal of Biometeorology, 62, 2045-2055.
https://doi.org/10.1007/s00484-018-1609-0
[10] Abelson, A.E. (1976) Altitude and Fertility. Human Biology, 48, 83-91.
[11] Parraguez, V.H., Urquieta, B., Pérez, L., et al. (2013) Fertility in a High-Altitude Environment Is Compro-mised by Luteal Dysfunction: The Relative Roles of Hypoxia and Oxidative Stress. Reproductive Biology and Endocri-nology: RB&E, 11, Article No. 24.
https://doi.org/10.1186/1477-7827-11-24
[12] Ding, M., Lu, Y., Huang, X., Xing, C., Hou, S., Wang, D., Zhang, Y., Wang, W., Zhang, C., Zhang, M., Meng, F., Liu, K., Liu, G., Zhao, J. and Song, L. (2022) Acute Hypoxia Induced Dysregulation of Clock-Controlled Ovary Functions. Frontiers in Physiology, 13, Ar-ticle ID: 1024038.
https://doi.org/10.3389/fphys.2022.1024038
[13] Braga, D.P.A.F., Setti, A.S., De Cássia, S., Figueira, R., et al. (2012) Patient Selection Criteria for Blastocyst Transfers in Extended Embryo Culture Programs. Journal of Assisted Reproduction and Genetics, 29, 1357-1362.
https://doi.org/10.1007/s10815-012-9875-y
[14] Ietta, F., Wu, Y., Romagnoli, R., et al. (2007) Oxygen Regulation of Macrophage Migration Inhibitory Factor in Human Placenta. American Journal of Physiology. Endocrinology and Metabolism, 292, E272-E280.
https://doi.org/10.1152/ajpendo.00086.2006
[15] Yamada, H., Kato, E.H., Morikawa, M., et al. (2003) Decreased Serum Levels of Macrophage Migration Inhibition Factor in Miscarriages with Normal Chromosome Karyotype. Human Reproduction, 18, 616-620.
https://doi.org/10.1093/humrep/deg147
[16] Verratti, V., Ietta, F., Paulesu, L., et al. (2017) Physiological Effects of High-Altitude Trekking on Gonadal, Thyroid Hormones and Macrophage Migration Inhibitory Factor (MIF) Responses in Young Lowlander Women. Physiological Reports, 5, e13400.
https://doi.org/10.14814/phy2.13400
[17] Shaw, S., Gidugu, H., Bhaumik, G., et al. (2021) Anti-Mullerian Hormone and Macrophage Migration Inhibitory Factor De-termine the Reproductive Health of Ladakhi Women Residing at 3,500 M. High Altitude Medicine & Biology, 22, 317-326.
https://doi.org/10.1089/ham.2021.0024
[18] Palomba, S., Piltonen, T.T. and Giudice, L.C. (2021) Endometrial Function in Women with Polycystic Ovary Syndrome: A Comprehensive Review. Human Reproduction Update, 27, 584-618.
https://doi.org/10.1093/humupd/dmaa051
[19] Li, W., Wu, M. and Tsai, S. (2021) HYPOXIA and REPRODUCTIVE HEALTH: The Role of Hypoxia in the Development and Progression of Endometriosis. Reproduc-tion (Cambridge, England), 161, F19-F31.
https://doi.org/10.1530/REP-20-0267
[20] Grant, I.D., Giussani, D.A. and Aiken, C.E. (2022) Fetal Growth and Spontaneous Preterm Birth in High-Altitude Pregnancy: A Systematic Review, Meta-Analysis, and Meta-Regression. International Journal of Gynaecology and Obstetrics: The Official Organ of the International Federation of Gynaecology and Obstetrics, 157, 221-229.
https://doi.org/10.1002/ijgo.13779
[21] Yang, L., Helbich-Poschacher, V., Cao, C., et al. (2020) Maternal Altitude and Risk of Low Birthweight: A Systematic Review and Meta-Analyses. Placenta, 101, 124-131.
https://doi.org/10.1016/j.placenta.2020.09.010
[22] Parraguez, V.H., Mamani, S., Cofré, E., et al. (2015) Disturb-ances in Maternal Steroidogenesis and Appearance of Intrauterine Growth Retardation at High-Altitude Environments Are Established from Early Pregnancy. Effects of Treatment with Antioxidant Vitamins. PLOS ONE, 10, E140902.
https://doi.org/10.1371/journal.pone.0140902
[23] Hernández-Vásquez, A., Bartra Reátegui, A. and Var-gas-Fernández, R. (2023) Altitude and Its Association with Low Birth Weight among Children of 151,873 Peruvian Women: A Pooled Analysis of a Nationally Representative Survey. International Journal of Environmental Research and Public Health, 20, Article No. 1411.
https://doi.org/10.3390/ijerph20021411
[24] Moore, L.G. (2022) How Hypoxia Slows Fetal Growth: Insights from High Altitude. Pediatric Research, 91, 17-18.
https://doi.org/10.1038/s41390-021-01784-0
[25] Bigham, A.W., Julian, C.G., Wilson, M.J., et al. (2014) Maternal PRKAA1 and EDNRA Genotypes Are Associated with Birth Weight, and PRKAA1 with Uterine Artery Diameter and Metabolic Homeostasis at High Altitude. Physiological Genomics, 46, 687-697.
https://doi.org/10.1152/physiolgenomics.00063.2014
[26] Zhang, P., Ke, J., Li, Y., et al. (2019) Long-Term Ex-posure to High Altitude Hypoxia during Pregnancy Increases Fetal Heart Susceptibility to Ischemia/Reperfusion Injury and Cardiac Dysfunction. International Journal of Cardiology, 274, 7-15.
https://doi.org/10.1016/j.ijcard.2018.07.046
[27] Grant, I.D., Giussani, D.A. and Aiken, C.E. (2021) Blood Pres-sure and Hypertensive Disorders of Pregnancy at High Altitude: A Systematic Review and Meta-Analysis. American Journal of Obstetrics & Gynecology MFM, 3, Article ID: 100400.
https://doi.org/10.1016/j.ajogmf.2021.100400
[28] Bailey, B., Euser, A.G., Bol, K.A., Julian, C.G. and Moore, L.G. (2022) High-Altitude Residence Alters Blood-Pressure Course and Increases Hypertensive Disorders of Pregnancy. The Journal of Maternal-Fetal & Neonatal Medicine, 35, 1264-1271.
https://doi.org/10.1080/14767058.2020.1745181
[29] Ahmed, S.I.Y., Ibrahim, M.E. and Khalil, E.A.G. (2017) High Altitude and Pre-Eclampsia: Adaptation or Protection. Medical Hypotheses, 104, 128-132.
https://doi.org/10.1016/j.mehy.2017.05.007
[30] Mauchart, P., Vass, R.A., Nagy, B., et al. (2023) Oxidative Stress in Assisted Reproductive Techniques, with a Focus on an Underestimated Risk Factor. Current Issues in Molecular Bi-ology, 45, 1272-1286.
https://doi.org/10.3390/cimb45020083
[31] Wang, L., Tang, J., Wang, L., Tan, F., Song, H., Zhou, J. and Li, F. (2021) Oxidative Stress in Oocyte Aging and Female Reproduction. Journal of Cellular Physiology, 236, 7966-7983.
https://doi.org/10.1002/jcp.30468
[32] Dosek, A., Ohno, H., Acs, Z., Taylor, A.W. and Radak, Z. (2007) High Al-titude and Oxidative Stress. Respiratory Physiology & Neurobiology, 158, 128-131.
https://doi.org/10.1016/j.resp.2007.03.013
[33] Joanny, P., Steinberg, J., Robach, P., Richalet, J.P., Gortan, C., Gardette, B. and Jammes, Y. (2001) Operation Everest III (Comex’97): The Effect of Simulated Sever Hypobaric Hy-poxia on Lipid Peroxidation and Antioxidant Defence Systems in Human Blood at Rest and after Maximal Exercise. Re-suscitation, 49, 307-314.
https://doi.org/10.1016/S0300-9572(00)00373-7
[34] Mrakic-Sposta, S., Gussoni, M., Dellanoce, C., et al. (2021) Effects of Acute and Sub-Acute Hypobaric Hypoxia on Oxidative Stress: A Field Study in the Alps. European Journal of Applied Physiology, 121, 297-306.
https://doi.org/10.1007/s00421-020-04527-x
[35] Haas, J., Bassil, R., Samara, N., et al. (2020) GnRH Agonist and HCG (Dual Trigger) Versus HCG Trigger for Final Follicular Maturation: A Double-Blinded, Randomized Controlled Study. Human Reproduction (Oxford, England), 35, 1648-1654.
https://doi.org/10.1093/humrep/deaa107
[36] Almog, B., Eldar, I., Barkan, G., et al. (2014) Embryo Quality in Controlled Ovarian Stimulation for in Vitro Fertilization in Young Poor Responders. Gynecological Endocrinology: The Official Journal of the International Society of Gynecological Endocrinology, 30, 657-659.
https://doi.org/10.3109/09513590.2014.920003
[37] Li, Q., Lin, K., Sun, H., et al. (2016) Mitochondrial Haplog-roup M9a1a1c1b Is Associated with Hypoxic Adaptation in the Tibetans. Journal of Human Genetics, 61, 1021-1026.
https://doi.org/10.1038/jhg.2016.95
[38] Li, Y., Huang, W., Yu, Q., et al. (2016) Lower Mitochondrial DNA Con-tent Relates to High-Altitude Adaptation in Tibetans. Mitochondrial DNA Part A, DNA Mapping, Sequencing, and Anal-ysis, 27, 753-757.
https://doi.org/10.3109/19401736.2014.915526
[39] Petousi, N. and Robbins, P.A. (2014) Human Adaptation to the Hypoxia of High Altitude: The Tibetan Paradigm from the Pregenomic to the Postgenomic Era. Journal of Applied Physiology (Bethesda, Md.: 1985), 116, 875-884.
https://doi.org/10.1152/japplphysiol.00605.2013
[40] Xu, X., Huang, X., Qun, L., et al. (2014) Two Functional Loci in the Promoter of EPAS1 Gene Involved in High-Altitude Adaptation of Tibetans. Scientific Reports, 4, Article No. 7465.
https://doi.org/10.1038/srep07465
[41] Childebayeva, A., Harman, T., Weinstein, J., et al. (2019) DNA Methylation Changes Are Associated with an Incremental Ascent to High Altitude. Frontiers in Genetics, 10, Article No. 1062.
https://doi.org/10.3389/fgene.2019.01062
[42] Lin, Z., Lu, Y., Yu, G., et al. (2023) Genome-Wide DNA Methylation Landscape of Four Chinese Populations and Epigenetic Variation Linked to Tibetan High-Altitude Adapta-tion. Science China Life Sciences, 66, 2354-2369.
https://doi.org/10.1007/s11427-022-2284-8