|
[1]
|
郭书含(2020). 基于机器学习算法鉴别轻度认知障碍. 硕士学位论文, 北京: 中国科学院大学.
|
|
[2]
|
贾芷莹, 董旻晔, 施贞夙, 金春林, 李国红(2019). 基于机器学习的轻度认知功能障碍筛查研究. 上海交通大学学报: 医学版, 39(8), 908-913.
|
|
[3]
|
王荣, 陈帅, 赵彩丽, 李梓盟, 崔靖, 王晓聪, 刘龙(2023). 多基因风险评分与机器学习建模策略下轻度认知障碍发展为阿尔茨海默病的预后研究. 中华疾病控制杂志, 27(6), 684-690.
|
|
[4]
|
Abd Rahman, R., Omar, K., Noah, S. A. M., Danuri, M. S. N. M., & Al-Garadi, M. A. (2020). Application of Machine Learning Methods in Mental Health Detection: A Systematic Review. IEEE Access, 8, 183952-183964.[CrossRef]
|
|
[5]
|
Ayari, S., Abellard, A., Carayol, M., Guedj, É., & Gavarry, O. (2023). A Systematic Review of Exercise Modalities That Reduce Pro-Inflammatory Cytokines in Humans and Animals’ Models with Mild Cognitive Impairment or Dementia. Experimental Gerontology, 175, Article 112141.[CrossRef] [PubMed]
|
|
[6]
|
Brodaty, H., Heffernan, M., Kochan, N. A., Draper, B., Trollor, J. N., & Sachdev, P. S. (2016). Incidence of MCI and Dementia over Six Years in an Australian Population Sample. Alz-heimer’s & Dementia, 12, 581.[CrossRef]
|
|
[7]
|
Casagrande, M., Marselli, G., Agostini, F., Forte, G., Favieri, F., & Guarino, A. (2022). The Complex Burden of Determining Prevalence Rates of Mild Cognitive Impairment: A Systematic Review. Frontiers in Psychiatry, 13, Article 960648.[CrossRef] [PubMed]
|
|
[8]
|
Chandler, C., Diaz-Asper, C., Turner, R. S., Reynolds, B., & Elvevåg, B. (2023). An Explainable Machine Learning Model of Cognitive Decline Derived from Speech. Alzheimer’s & Dementia (Amsterdam, Netherlands), 15, e12516.[CrossRef] [PubMed]
|
|
[9]
|
Chang, C. H., Lin, C. H., & Lane, H. Y. (2021). Machine Learning and Novel Biomarkers for the Diagnosis of Alzheimer’s Disease. International Journal of Molecular Sciences, 22, Article 2761.[CrossRef] [PubMed]
|
|
[10]
|
Choi, R. Y., Coyner, A. S., Kalpathy-Cramer, J., Chiang, M. F., & Camp-bell, J. P. (2020). Introduction to Machine Learning, Neural Networks, and Deep Learning. Translational Vision Science & Technology, 9, 14.
|
|
[11]
|
Di, X., Shi, R., Diguiseppi, C., Eby, D. W., & Morandi, A. J. G. (2021). Using Naturalistic Driv-ing Data to Predict Mild Cognitive Impairment and Dementia: Preliminary Findings from the Longitudinal Research on Ag-ing Drivers (LongROAD) Study. Geriatrics, 62, Article 45.[CrossRef] [PubMed]
|
|
[12]
|
Goldman, J. G., & Sieg, E. (2020). Cognitive Impairment and Dementia in Parkinson Disease. Clinics in Geriatric Medicine, 36, 365-377.[CrossRef] [PubMed]
|
|
[13]
|
Jain, R., Aggarwal, A., & Kumar, V. (2021). A Review of Deep Learning-Based Disease Detection in Alzheimer’s Patients. In H. D. Jude (Ed.), Handbook of Decision Support Sys-tems for Neurological Disorders (pp. 1-19). Academic Press.[CrossRef]
|
|
[14]
|
Jiang, Y., Wang, P., Wen, J., Wang, J., Li, H., & Biswal, B. B. (2022). Hippocampus-Based Static Functional Connectivity Mapping within White Matter in Mild Cognitive Impair-ment. Brain Structure and Function, 227, 2285-2297.[CrossRef] [PubMed]
|
|
[15]
|
Jo, T., Nho, K., & Saykin, A. J. (2019). Deep Learning in Alz-heimer’s Disease: Diagnostic Classification and Prognostic Prediction Using Neuroimaging Data. Frontiers in Aging Neu-roscience, 11, Article 220.[CrossRef] [PubMed]
|
|
[16]
|
Jones, J. D., Rivas, R., Luna, K., Ryczek, C. A., & Thomas, K. R. (2023). Subjective Cognitive Complaints Are Important in PD-MCI Criteria: Associations with CSF Markers and Cognitive Decline. Parkinsonism & Related Disorders, 106, Article 105221.[CrossRef] [PubMed]
|
|
[17]
|
Jongsiriyanyong, S., & Limpawattana, P. (2018). Mild Cognitive Impairment in Clinical Practice: A Review Article. American Journal of Alzheimer’s Disease & Other Dementias, 33, 500-507.[CrossRef] [PubMed]
|
|
[18]
|
Mishra, P. (2023). Explainability for Ensemble Supervised Models. In Explainable AI Recipes: Implement Solutions to Model Explainability and Interpretability with Python (pp. 119-206). Springer.[CrossRef]
|
|
[19]
|
Movahed, R. A., & Rezaeian, M. (2022). Au-tomatic Diagnosis of Mild Cognitive Impairment Based on Spectral, Functional Connectivity, and Nonlinear EEG-Based Features. Computational and Mathematical Methods in Medicine, 2022, Article ID: 2014001.[CrossRef] [PubMed]
|
|
[20]
|
Qarni, T., & Salardini, A. (2019). A Multifactor Approach to Mild Cogni-tive Impairment. Seminars in Neurology, 39, 179-187.[CrossRef] [PubMed]
|
|
[21]
|
Rahim, N., El-Sappagh, S., Ali. S., Muhammad, K., Del Ser, J., & Abuhmed, T. (2023). Prediction of Alzheimer’s Progression Based on Multimodal Deep-Learning-Based Fusion and Visual Explainability of Time-Series Data. Information Fusion, 92, 363-388.[CrossRef]
|
|
[22]
|
Sakurai, R., Bartha, R., & Montero-Odasso, M. (2019). Entorhinal Cortex Volume Is Associated with Dual-Task Gait Cost among Older Adults with MCI: Results from the Gait and Brain Study. The Journals of Gerontology: Series A, 74, 698-704.[CrossRef] [PubMed]
|
|
[23]
|
Sherman, D. S., Mauser, J., Nuno, M., & Sherzai, D. (2017). The Efficacy of Cognitive Intervention in Mild Cognitive Impairment (MCI): A Meta-Analysis of Outcomes on Neuropsychological Measures. Neuropsychology Review, 27, 440-484.[CrossRef] [PubMed]
|
|
[24]
|
Su, R., Liu, X., & Wei, L. (2020). MinE-RFE: Determine the Optimal Subset from RFE by Minimizing the Subset-Accuracy-Defined Energy. Briefings in Bioinformatics, 21, 687-698.[CrossRef] [PubMed]
|
|
[25]
|
Tan, M. S., Cheah, P. L., Chin, A. V., Looi, L. M., & Chang, S. W. (2021). A Review on Omics-Based Biomarkers Discovery for Alzheimer’s Disease from the Bioinformatics Perspectives: Statistical Approach vs Machine Learning Approach. Computers in Biology and Medicine, 139, Article 104947.[CrossRef] [PubMed]
|
|
[26]
|
van Dyck, C. H., Swanson, C. J., Aisen, P., Bateman, R. J., Chen, C., Gee, M., & Iwatsubo, T. (2023). Lecanemab in Early Alzheimer’s Disease. The New England Journal of Medicine, 388, 9-21.[CrossRef]
|
|
[27]
|
Wang, Y., Sun, Y., Wang, Y., Jia, S., Qiao, Y., Zhou, Z., & Peng, D. (2023). Identification of Novel Diagnostic Panel for Mild Cognitive Impairment and Alzheimer’s Disease: Findings Based on Urine Proteomics and Machine Learning. Alzheimer’s Research & Therapy, 15, Article No. 191.[CrossRef] [PubMed]
|