瘤内扰流装置Woven EndoBridge在治疗侧壁颅内动脉瘤的临床应用进展
Advances in the Clinical Application of the Woven EndoBridge Intrasacclar Flow-Diverter for the Treatment of Sidewall Intracranial Aneurysm
DOI: 10.12677/ACM.2024.143772, PDF, HTML, XML, 下载: 12  浏览: 32 
作者: 张 伟, 陈维福*:重庆医科大学附属第二医院神经外科,重庆
关键词: 侧壁颅内动脉瘤瘤内扰流装置Woven EndoBridge综述Sidewall Intracranial Aneurysm Intrasacclar Flow-Diverter Woven EndoBridge Review
摘要: Woven EndoBridge (WEB)最初被批准用于治疗颅内宽颈囊状分叉部动脉瘤。最近的研究表明,它用于治疗侧壁颅内动脉瘤也取得了不错的疗效。作者对临床应用WEB治疗侧壁颅内动脉瘤的进展进行综述。
Abstract: The Woven EndoBridge device (WEB) was originally approved to treat intracranial wide-neck sac-cular bifurcation aneurysms. Recent studies suggested its use for the treatment of sidewall intra-cranial aneurysms with variable success. This paper reviewed the progress of clinical application of the WEB for the treatment of sidewall intracranial aneurysms.
文章引用:张伟, 陈维福. 瘤内扰流装置Woven EndoBridge在治疗侧壁颅内动脉瘤的临床应用进展[J]. 临床医学进展, 2024, 14(3): 796-801. https://doi.org/10.12677/ACM.2024.143772

1. 前言

在以人群为基础的研究中,蛛网膜下腔出血的发生率为7.9/10万人年 [1] ,颅内动脉瘤破裂出血是SAH最常见的病因(大约占85%) [2] 。颅内动脉瘤的治疗方式包括夹闭、弹簧圈栓塞、支架或球囊辅助栓塞以及血流分流装置。随着血管内治疗的发展,血管内治疗已经超过手术夹闭成为颅内动脉瘤的一线治疗方式 [3] [4] [5] 。但是对于一些单纯弹簧圈栓塞无法彻底治愈的宽颈颅内动脉瘤,支架、球囊辅助技术和血流分流装置是有必要的 [6] 。然而与单纯的弹簧圈栓塞相比,这些血管内技术在技术上更具有挑战性,并且并发症也有所增加 [7] 。此外,支架和血流分流装置术后还需长期使用抗血小板聚集治疗。因此WEB旨在克服这些限制,提高宽颈分叉部动脉瘤治疗的安全性,而且不需要抗血小板聚集治疗,其安全性和有效性已经在一些研究中得到验证 [7] 。根据这些经验,供应商也对其设计和输送系统进行了一些调整和改进,值得注意的是,该设备目前有更小的尺寸和更好的可见性,输送系统也减小到0.017英寸可以输送3~7毫米的设备 [8] 。通过这些调整,WEB的使用已经逐渐发展到包括更小的和位于更远端的颅内动脉瘤。此外,一些已发表的报告表明,在确保安全的情况下,将其适应症扩大到侧壁颅内动脉瘤是可行的 [9] [10] [11] [12] 。本文就WEB的使用及在侧壁颅内动脉瘤中应用进行综述。

2. WEB特点

WEB是由多根镍钛合金网丝编织而成,可自扩张、回收、电热解脱的颅内动脉瘤介入的新材料,其近端和远端由两个不透射线的铂进行标记 [13] 。根据其形态特征,WEB两端的金属覆盖率可达100%,将其放置在动脉瘤内后,近端高金属覆盖率部分在瘤颈处可影响血流进出动脉瘤,最终动脉瘤内形成血栓而使动脉瘤闭塞 [13] [14] 。2010年第一代WEB (WEB DL)获得FDA批准上市,用于治疗宽颈分叉动脉瘤。WEB DL由多根镍钛合金网丝编织成的桶状结构,它的直径在5~11 mm之间,高度为3~9 mm,它需要内径0.027~0.033英寸的配套微导管进行输送。2013年,新一代的单层笼状结构WEB (SL)和单层球形WEB (SLS)获得CE Marker,其中宽度为3~7毫米的装置可用0.021英寸配套微导管输送,宽度为8~9毫米的需要0.027英寸的微导管输送,最大尺寸为10~11毫米的装置则需要用0.033英寸的导管进行输送 [8] [14] 。2016年更新一代WEB17被投入使用,WEB17是专门为很小的动脉瘤而设计的,其宽度为3~7毫米,其配套的微导管内径为0.017英寸,最小可以治疗直径2~3毫米的动脉瘤 [8] 。总之,在治疗颅内动脉瘤时根据动脉瘤大小、形态选择合适的WEB进行治疗。

3. WEB治疗侧壁颅内动脉瘤的临床效果

Rodriguez-Calienes等 [15] 对使用WEB治疗的288个侧壁颅内动脉瘤进行meta分析,其中92%为宽颈动脉瘤,80%动脉瘤位于前循环,平均随访时间为10.4个月,随访范围为3.3~29.5个月。在最后的随访中,动脉瘤充分闭塞率为89% (95% CI: 81%~94%, I2 = 0%, p = 0.66);植入的技术成功率为99% (95% CI: 79%~100%, I2 = 0%, p = 1.00);即刻完全闭塞率为37% (95% CI: 30%~43%, I2 = 0%, p = 0.5);最后随访时完全闭塞率为64% (95% CI: 57%~70%, I2 = 13%, p = 0.32)。良好的临床结局率(Mrs 0~2)为89% (95% CI: 75%~96%, I2 = 48%, p = 0.07),再治疗率为9% (95% CI: 5%~13%, I2 = 0%, p = 0.82)。术中并发症发生率为6% (95% CI: 4%~10%, I2 = 0%, p = 0.94),其中血栓并发症发生率为2% (95% CI: 1%~5%, I2 = 0%, p = 1.00),出血性并发症发生率为1% (95% CI: 0%~14%, I2 = 0%, p = 0.91),设备部署问题发生率为1% (95% CI: 0%~3%, I2 = 0%, p = 0.99),血管夹层并发症发生率为1% (95% CI: 0%~4%, I2 = 0%, p = 1.00),术后并发症发生率为1% (95% CI: 0%~1%, I2 = 33%, p = 0.14)。总死亡率为2% (95% CI: 1%~7%, I2 = 0%, p = 0.73)。在亚组分析当中,动脉瘤的充分闭塞率在直径 < 7 mm和≥7 mm是一致的,动脉瘤宽度(OR = 0.5, 95% CI: 0.26~0.95, p = 0.3)是最后一次随访中完全闭塞的唯一独立预测因子。使用WEB治疗侧壁颅内动脉瘤有足够的闭塞率和较低的手术并发症,该研究支持将WEB作为治疗侧壁颅内动脉瘤的一种选择。

4. 术中WEB选择

在使用WEB治疗颅内侧壁动脉瘤时,有多种不同尺寸的WEB可供选择,一个适当大小的WEB将在动脉瘤颈部形成密封,导致整个动脉瘤内血栓形成,所以选择合适的装置是手术成功的关键。术中需根据动脉瘤的大小来选择WEB的尺寸,在测量动脉瘤大小时,应获得二维和三维血管造影图像,以测量至少两个正交投影图像中的动脉瘤大小(直径、高度和颈部宽度) [16] ,但是在计算动脉瘤颈体比时,三维图像上测出的值显著低于二维图像上测出的值,导致被定义为“宽颈”的动脉瘤的比例显著增加,所以在血管内治疗时,选择在二维图像上测量动脉瘤尺寸可能更加准确 [17] 。最后在选择WEB尺寸时按照所测量的动脉瘤高度减小1 mm、宽度增加1 mm的原则,但是对于特别大的动脉瘤,宽度可以增加2 mm,其宽度大于动脉瘤宽度的目的是使WEB的更好地固定在动脉瘤里,对于非囊状动脉瘤,亦可遵循上述原则 [13] [18] 。由于WEB不会进入动脉瘤子囊内,所以在测量时不应包含动脉瘤子囊部分。但是,对于形态比较尖的子囊,WEB可以配合线圈一起使用,可以用弹簧圈辅助栓塞子囊,特别是在治疗破裂动脉瘤时,可以加快动脉瘤内血栓形成 [16] 。

5. 围手术期抗血小板聚集药物使用

将WEB从微导管分离后,WEB封闭动脉瘤颈,不影响载瘤动脉血流,因此在治疗后不需要强制性地长期地抗血小板聚集治疗 [14] [19] 。即使装置近端地显影标记突入载瘤动脉瘤内也不会引起明显的血栓风险,而WEB的网丝突入载瘤动脉内则容易导致血栓形成 [5] [7] 。因此,对于这部分患者术后应给予适当的抗血小板药物治疗。对于未破裂动脉瘤,术前有效的抗血小板治疗,术中在WEB部署不理想时可以直接使用支架辅助,也使术者有足够的时间在血管造影图像上评估WEB的部署情况,并可能降低术中血栓栓塞并发症的风险。术中若装置释放理想,术后则不必继续抗血小板聚集治疗或根据情况应用阿司匹林或其他抗血小板聚集治疗方案 [16] [18] [20] 。

6. WEB释放与解脱过程

WEB的布置建议在透视下进行,目前推荐经股动脉通路使用三轴通路将6Fr长鞘植入颈内动脉或椎动脉,中间导管头端可置入颈内动脉颅或椎动脉颅内段 [13] [14] ,然后通过微导丝将配套的VIA导管头端标记点置入动脉瘤内。由于侧壁动脉瘤的长轴与载瘤动脉夹角普遍较大,可以将微导管塑形以更好地将其置入动脉瘤内 [16] 。

在置入WEB时,当远端marker和导管尖端平齐时,建议重新推一个新的路途,然后缓慢地推进WEB导丝至远端marker完全突出微导管成为“萌芽”状态,再缓慢推进导丝,装置头端膨胀进入“开花”状态,此时WEB膨胀部分可定位在动脉瘤内,整个装置作用在动脉瘤壁的力量变得分散,此时释放过程变得相对安全,称之为“部署窗口”。此时将整个系统推向动脉瘤远端,使以膨胀部分充分填充动脉瘤远端,然后再进一步推微导丝,使WEB剩余部分完全打开 [16] 。

在WEB解脱前,需保持整个系统处于无张力状态,在此状态下进行造影评估十分有必要,以评估WEB尺寸与动脉瘤是否匹配、WEB压缩情况以及载瘤动脉是否通畅。如果造影剂通过WEB周围进入动脉瘤内,则需要更换更大尺寸的设备。若此时WEB已经解脱,则可以在WEB与动脉瘤壁的空隙当中部署一些弹簧圈 [16] [17] ,相反,若WEB近端的显影点或网丝稍微突出到动脉瘤内,在不影响远端血流的情况下是可以接受的,如果WEB突出过多,为避免载瘤动脉内形成血栓,需更换更大尺寸的设备或使用支架辅助。装置部署的另一个关键点是横向压缩,WEB部署后需要横向压缩,以保证结构的稳定性。在确保装置合适后,可使用电热解脱。解脱是在直接透视下进行的,成功解脱通常通过观察近端标记点相对微导管尖端轻微相对移动来证明 [16] 。

7. WEB治疗侧壁动脉瘤的并发症

WEB治疗侧壁动脉瘤的主要并发症为动脉瘤破裂、血栓形成、血管夹层、术后迟发出血及WEB假解脱等 [14] [19] [22] 。

Mehdi等 [23] 对瘤内扰流装置治疗侧壁动脉瘤和分叉部动脉瘤时的并发症进行了meta分析,一共治疗动脉瘤1208例,其中侧壁动脉瘤654例(54%),分叉部动脉瘤554例(46%)。结果显示治疗的总并发症为24%,侧壁动脉瘤组的并发症为27.12% (95% CI: 16.56%~41.09%, p < 0.0001),与分叉组动脉瘤组20.40% (95% CI: 13.24%~30.08%, p < 0.0001)没有统计学差异。

8. 栓塞分级与术后随访

在WEB使用早期,由于还没有专门用于评估WEB治疗动脉瘤闭塞程度的量表,研究者们使用已有的改良Raymond分级、Bicêtre闭塞评分(BOSS)或O’Kelly-Marotta (OKM)分级来进行动脉瘤闭塞程度分级。但由于WEB有近端凹陷,经常被认为存在瘤颈部残余 [24] ,所以Lubicz [25] 等人基于改良Raymond分级提出了新的WEB栓塞动脉瘤闭塞量表(WEB occlusion scale, WOS)。WOS分为4级:1级:动脉瘤完全闭塞;2级:动脉瘤闭塞但有“凹处显影”;3级:瘤颈部残余;4级:瘤体部残余。这种分级方法相对简便,多人阅片结果一致性更高 [26] 。在WOS的应用当中,分级为1级和2级被认为是动脉瘤完全闭塞,1级、2级和3级被归为充分闭塞 [27] 。

WEB置入动脉瘤后,可采用MR血管成像、CT血管成像及DSA进行随访,但是CT血管成像及DSA的影响随访结果更准确 [28] [29] 。

WEB治疗后随访当中有一个常见的现象,即设备的高度降低,其实更应该是WEB近端和远端凹陷的加深,称之为“压缩”。其形成的原因可能是水锤效应或装置内血栓机化相关,但其具体机制还需进一步研究来确定 [30] 。

9. 小结与展望

虽然详细描述动脉瘤的位置、角度、大小和形态学特征是选择最佳治疗的基础,但是WEB也是治疗颅内侧壁动脉瘤的重要工具,特别是对于手术夹闭风险高和有抗血小板聚集治疗禁忌症的患者,其具有较高的动脉瘤闭塞率和较低的并发症发生率,且扩充了神经外科医生治疗颅内动脉瘤的工具箱。此外,随着WEB设备及其输送系统的不断发展,它的使用在技术上变得不那么具有挑战性,允许其使用的范围不断扩展。对于标准的难以治疗的动脉瘤,瘤内扰流技术可能成为一种有价值的治疗选择。

NOTES

*通讯作者。

参考文献

[1] Ingall, T., Asplund, K., Mahonen, M., et al. (2000) A Multinational Comparison of Subarachnoid Hemorrhage Epidemi-ology in the WHO MONICA Stroke Study. Stroke, 31, 1054-1061.
https://doi.org/10.1161/01.STR.31.5.1054
[2] Etminan, N., Chang, H., Hackenberg, K., et al. (2019) Worldwide Incidence of Aneurysmal Subarachnoid Hemorrhage According to Region, Time Period, Blood Pressure, and Smoking Prevalence in the Population: A Systematic Review and Meta-Analysis. JAMA Neurology, 76, 588-597.
https://doi.org/10.1001/jamaneurol.2019.0006
[3] Rosenwasser, R.H., Chalouhi, N., Tjoumakaris, S., et al. (2014) Open vs Endovascular Approach to Intracranial Aneurysms. Neurosurgery, 61, 121-129.
https://doi.org/10.1227/NEU.0000000000000377
[4] Holbrook, I., Beetham, R., Cruickshank, A., et al. (2007) Subarachnoid Haemorrhage. The Lancet, 369, 904-904.
https://doi.org/10.1016/S0140-6736(07)60442-5
[5] Li, H., et al. (2013) Clipping versus Coiling for Ruptured In-tracranial Aneurysms: A Systematic Review and Meta-Analysis. Stroke, 44, 29-37.
https://doi.org/10.1161/STROKEAHA.112.663559
[6] Phan, K., Huo, R.Y., Jia, F., et al. (2016) Meta-Analysis of Stent-Assisted Coiling versus Coiling-Only for the Treatment of Intracranial Aneurysms. Journal of Clinical Neuro-science, 31, 15-22.
https://doi.org/10.1016/j.jocn.2016.01.035
[7] Algra, M.A., Lindgren, A., Vergouwen, I.D.M., et al. (2019) Pro-cedural Clinical Complications, Case-Fatality Risks, and Risk Factors in Endovascular and Neurosurgical Treatment of Unruptured Intracranial Aneurysms: A Systematic Review and Meta-Analysis. JAMA Neurology, 76, 282-293.
https://doi.org/10.1001/jamaneurol.2018.4165
[8] Van Rooij, S.B.T., Peluso, J.P., Sluzewski, M., et al. (2018) The New Low-Profile WEB 17 System for Treatment of Intracranial Aneurysms: First Clinical Experiences. American Journal of Neuroradiology, 39, 859-863.
https://doi.org/10.3174/ajnr.A5608
[9] Zimmer, S., Maus, V., Maurer, C., et al. (2021) Widening the Indications for Intrasaccular Flow Disruption: WEB 17 in the Treatment of Aneurysm Locations Different from Those in the Good Clinical Practice Trials. American Journal of Neuroradiology, 42, 524-529.
https://doi.org/10.3174/ajnr.A6946
[10] Nimer, A., Mahmoud, D., Bengzon, D.J.D., et al. (2022) Multicenter Study for the Treatment of Sidewall versus Bifurcation Intracranial Aneurysms with Use of Woven EndoBridge (WEB). Radiology, 304, Article ID: 212006.
[11] Goertz, L., Liebig, T., Siebert, E., et al. (2019) Extending the Indication of Woven EndoBridge (WEB) Embolization to Internal Carotid Artery Aneurysms: A Multicenter Safety and Feasibility Study. World Neurosurgery, 126, E965-E974.
https://doi.org/10.1016/j.wneu.2019.02.198
[12] Pierot, L., Biondi, A., Narata, A., et al. (2016) Should Indications for WEB Aneurysm Treatment Be Enlarged? Report of a Series of 20 Pa-tients with Aneurysms in “Atypical” Locations for WEB Treatment. Journal of Neuroradiology, 44, 203-209.
https://doi.org/10.1016/j.neurad.2016.12.011
[13] Benjamin, M., Laurent, P. and Boris, L. (2014) Intrasaccular Flow-Diversion for Treatment of Intracranial Aneurysms: The Woven EndoBridge. Expert Review of Medical Devices, 11, 315-325.
https://doi.org/10.1586/17434440.2014.907741
[14] Pierot, L., Moret, J., Turjman, F., et al. (2015) WEB Treat-ment of Intracranial Aneurysms: Feasibility, Complications, and 1-Month Safety Results with the WEB DL and WEB SL/SLS in the French Observatory. American Journal of Neuroradiology, 36, 922-927.
https://doi.org/10.3174/ajnr.A4230
[15] Nitin, G., Daniel, H., Julie, D., et al. (2020) How to WEB: A Practical Re-view of Methodology for the Use of the Woven EndoBridge. Journal of Neurointerventional Surgery, 12, 512-520.
https://doi.org/10.1136/neurintsurg-2019-015506
[16] Rodriguez-Calienes, A., Vivanco-Suarez, J., Galecio-Castillo, M., et al. (2023) Use of the Woven EndoBridge Device for Sidewall Aneurysms: Systematic Review and Meta-Analysis. American Journal of Neuroradiology, 44, 165-170.
https://doi.org/10.3174/ajnr.A7766
[17] Brinjikji, W., Cloft, H., Lanzino, G., et al. (2009) Comparison of 2D Digi-tal Subtraction Angiography and 3D Rotational Angiography in the Evaluation of Dome-to-Neck Ratio. American Jour-nal of Neuroradiology, 30, 831-834.
https://doi.org/10.3174/ajnr.A1444
[18] Cristian, M., Jildaz, C., Igor, P., et al. (2019) Safety and Efficiency of the Fifth Generation Woven EndoBridge Device: Technical Note. Journal of Neurointerventional Surgery, 11, 511-515.
https://doi.org/10.1136/neurintsurg-2018-014343
[19] Christoph, K., Lukas, G., Eberhard, S., et al. (2019) WEB Embolization versus Stent-Assisted Coiling: Comparison of Complication Rates and Angiographic Outcomes. Journal of Neurointerventional Surgery, 11, 812-816.
https://doi.org/10.1136/neurintsurg-2018-014555
[20] Hurst, R. (2014) Response to Letter to the Editor. Antiplate-let Therapy and the WEB II Device. The Neuroradiology Journal, 27, 370.
https://doi.org/10.15274/NRJ-2014-10049
[21] Pierot, L., Cognard, C., Spelle, L., et al. (2012) Safety and Efficacy of Balloon Remodeling Technique during Endovascular Treatment of Intracranial Aneurysms: Critical Review of the Lit-erature. American Journal of Neuroradiology, 33, 12-15.
https://doi.org/10.3174/ajnr.A2403
[22] Kainaat, J., Adisson, F., Ryan, H., et al. (2023) Identifying Risk Factors for Perioperative Thromboembolic Complications in Pa-tients Treated with the Woven EndoBridge Device. Interventional Neuroradiology, 29, 561-569.
https://doi.org/10.1177/15910199221113907
[23] Abbasi, M., Savasatano, L.E., Brinjikji, W., et al. (2022) Endo-luminal Flow Diverters in the Treatment of Sidewall and Bifurcation Aneurysm: A Systematic Review and Me-ta-Analysis of Complications and Angiographic Outcomes. Interventional Neuroradiology, 28, 229-239.
https://doi.org/10.1177/15910199211026713
[24] David, F., Adam, A., James, B., et al. (2015) Interobserver Var-iability in the Assessment of Aneurysm Occlusion with the WEB Aneurysm Embolization System. Journal of Neuroin-terventional Surgery, 7, 591-595.
https://doi.org/10.1136/neurintsurg-2014-011251
[25] Lubicz, B., Klisch, J., Gauvrit, J.Y., et al. (2014) WEB-DL Endovascular Treatment of Wide-Neck Bifurcation Aneurysms: Short- and Midterm Results in a European Study. Amer-ican Journal of Neuroradiology, 35, 432-438.
https://doi.org/10.3174/ajnr.A3869
[26] Jildaz, C., Cristian, M., Titien, T., et al. (2016) Occlusion Assessment of Intracranial Aneurysms Treated with the WEB Device. Neuroradiology, 58, 887-891.
https://doi.org/10.1007/s00234-016-1715-9
[27] Lukas, G., Thomas, L., Eberhard, S., et al. (2021) Intrasaccular Flow-Disruption with the Woven EndoBridge for Narrow-Necked Aneurysms: A Safety and Feasibility Study. World Neurosurgery, 151, E278-E285.
https://doi.org/10.1016/j.wneu.2021.04.018
[28] Timsit, C., Soize, S., Benaissa, A., et al. (2016) Con-trast-Enhanced and Time-of-Flight MRA at 3T Compared with DSA for the Follow-Up of Intracranial Aneurysms Treated with the WEB Device. American Journal of Neuroradiology, 37, 1684-1689.
https://doi.org/10.3174/ajnr.A4791
[29] Teresa, M.N., Jan, S., Andreas, F., et al. (2018) Multiparametric MRI of Intracranial Aneurysms Treated with the Woven EndoBridge (WEB): A Case of Faraday’s Cage? Journal of Neurointer-ventional Surgery, 10, 988-994.
https://doi.org/10.1136/neurintsurg-2017-013625
[30] Laurent, P. (2015) Letter: WEB Aneurysm Treatment: Oc-clusion Stability and “Compression”. Neurosurgery, 77, E666-E667.
https://doi.org/10.1227/NEU.0000000000000880