GLP-1RA促进脂肪组织米色化
GLP-1RA Promotes Beige Differentiation in Adipose Tissue
DOI: 10.12677/ACM.2024.143795, PDF, HTML, XML, 下载: 23  浏览: 41 
作者: 刘 臻:山东第一医科大学附属中心医院代谢疾病中心,山东 济南
关键词: 肥胖GLP-1RA棕色脂肪组织米色化Obesity GLP-1RA Brown Adipose Tissue Beige Differentiation
摘要: 肥胖症是一种与脂肪组织功能失调相关的代谢病。在肥胖症中观察到棕色脂肪组织数量减少,棕色脂肪组织专门从事非颤抖产热能量消耗。在过去的研究中发现一种称为“米色化”的分化机制,可以产生棕色脂肪细胞,进而增强产热作用抵抗肥胖。除食欲抑制剂和营养吸收抑制剂外,棕色脂肪组织激活剂也是治疗肥胖的一种选择。最近研究表明,肠道激素胰高血糖素样肽-1 (GLP-1)除调节外周葡萄糖外,在肥胖治疗中抑制食欲和能量代谢也起到一定作用。GLP-1受体激动剂也被证明作用于神经系统、胃肠道、脂肪组织调节能量稳态。本文综合论述了过去研究中GLP-1受体激动剂促进脂肪组织米色化进而治疗肥胖症的生理现象以及相关机制。
Abstract: Obesity is a metabolic disorder associated with dysfunction of adipose tissue. In obesity, a decrease in the number of brown adipose tissue is observed, which specializes in non-trembling thermogenic energy consumption. In previous studies, a differentiation mechanism called “beige differentiation” has been found to produce brown adipocytes, thereby enhancing thermogenesis and resisting obe-sity. In addition to appetite inhibitors and nutrient absorption inhibitors, brown adipose tissue ac-tivators are also an option for treating obesity. Recent studies have shown that the gut hormone glucagon like peptide-1 (GLP-1) not only regulates peripheral glucose, but also plays a certain role in inhibiting appetite and energy metabolism in obesity treatment. GLP-1 receptor agonists have also been shown to act on the nervous system, gastrointestinal tract, and adipose tissue to regulate energy homeostasis. This article comprehensively discusses the physiological phenomena and re-lated mechanisms of GLP-1 receptor agonists promoting beige differentiation in adipose tissue and treating obesity in previous studies.
文章引用:刘臻. GLP-1RA促进脂肪组织米色化[J]. 临床医学进展, 2024, 14(3): 947-953. https://doi.org/10.12677/ACM.2024.143795

1. 引言

肥胖已经成为中国的公共卫生问题,在过去十年中,成年人平均BMI仍呈上升趋势 [1] 。肥胖往往是热量摄入和能量消耗之间的不平衡造成的,容易并发多种疾病,包括非酒精性脂肪肝、高血压、心血管疾病等 [2] [3] 。

脂肪组织被认为是一种被动的组织,主要以脂肪的形式储存多余的能量。然而,越来越明显的是,它也通过内分泌信号在代谢稳态中发挥重要作用,例如控制营养摄入量,控制对胰岛素的敏感性和炎症进程 [4] 。根据形态学差异,脂肪组织可分为白色脂肪组织、棕色脂肪组织和米色脂肪组织 [5] 。棕色脂肪组织通过燃烧葡萄糖和脂肪酸来产生热量调节热量耗散,这一过程被称为“适应性产热”或“非颤栗产热” [6] ,因此棕色脂肪组织产热活性在调节能量代谢中发挥重要作用,肥胖症患者的脂肪组织往往具有功能障碍,一部分原因是脂肪组织缺乏棕色脂肪细胞导致脂肪燃烧减少 [7] 。与白色脂肪细胞相比,棕色脂肪细胞含有大量的小脂滴,具有较高的线粒体密度,最重要的是,表达高水平的解偶联蛋白1 (UCP1),UCP1是一种整合到线粒体内膜中的膜蛋白,当被脂肪酸激活时,UCP1有助于线粒体内膜的质子电导率的增加,从而在没有ATP产生的情况下减少质子动力,这个过程产生热量,而不是ADP磷酸化;线粒体铁含量及其在棕色脂肪细胞中的丰富使棕色脂肪组织具有特有的颜色 [8] 。因此长期激活棕色脂肪组织可能有助于肥胖症患者的代谢平衡。棕色脂肪还有其特定表达的基因:CCAAT/增强子结合蛋白(C/EBP)家族和过氧化物酶体增殖激活受体(PPARs)在脂肪形成中起顺序和协同作用;CIDE-A被用作区分白色脂肪组织和棕色脂肪组织的独特标记;PPARγ共激活因子-1α (PGC-1α)是线粒体生物发生和氧化磷酸化的主调控因子;PRDM16是一种转录调控因子,控制骨骼肌母细胞和棕色脂肪细胞之间的双向转换;棕色脂肪前体中PRDM16的缺失会导致棕色脂肪特性的丧失,并促进肌肉分化 [9] 。

胰高血糖素样肽-1 (GLP-1)是一种肠道L细胞分泌的一种具有多种功能的肠道激素,功能包括刺激胰腺β-细胞释放胰岛素而抑制分泌胰高血糖素 [10] ,通过增强饱腹感调节食物摄入 [11] ,延迟胃排空 [12] ,控制热量平衡。GLP-1的胰岛素分泌效应是由GLP-1受体介导的,在胰岛、肾脏、心脏、胃、肠、肌肉、中枢和周围神经系统中均有表达 [13] [14] [15] 。GLP-1受体激动剂显示对能量代谢和食欲可能直接影响脑干和下丘脑 [16] ,和肠脑的重要作用调节轴,连接中枢神经系统和肠道周围神经系统的关键中心 [17] 。最近研究表明人脂肪组织 [18] [19] [20] 、前脂肪细胞 [20] [21] 都有GLP-1受体分布。近年来,许多研究表明GLP-1受体激动剂如利拉鲁肽、艾塞那肽等可以通过作用于神经系统或脂肪的GLP-1受体促进米色化,本文将对该现象及其分子机制进行综合论述。

2. GLP-1RA作用于中枢神经系统促进脂肪细胞米色化

能量稳态受到营养物质、神经信号传导、脂肪因子和肠道多肽之间复杂的相互作用的控制,它们的作用是通过直接与中枢神经系统中的神经元受体结合来介导的 [17] ;肠道和自主神经系统都参与将由营养物质或胃肠道激素启动的传入信号通过迷走神经或脊髓通路从肠道传递到中枢神经系统,以及从中枢神经系统的传出信号传回肠道 [17] 。

在寒冷暴露下,皮肤热感受器的传入信号传递到大脑,刺激交感神经系统,从而刺激交感神经流出到棕色脂肪组织,导致神经曲张释放去甲肾上腺素,并与棕色脂肪细胞上的肾上腺素能受体相互作用,这种相互作用诱导细胞内脂解,进而释放游离脂肪酸 [22] 。

下丘脑中GLP-1受体敲低诱导肝脂肪变性、血浆甘油三酯增加和肝脏特异性脂肪从头生成升高,这些作用共同导致了胰岛素抵抗;同时减少了能量消耗、棕色脂肪组织温度和UCP1的表达,进而增加体重导致肥胖 [23] 。下丘脑腹内侧核的大脑GLP-1受体对棕色脂肪组织产热作用的激活、白色脂肪的棕色化至关重要,POMC神经元中SIRT1的缺失导致了交感神经活动、棕色脂肪样特征和白色脂肪组织中UCP-1表达的减少两种作用都是通过对能量传感器AMPK的特异性抑制来介导的 [24] 。

特异性靶向激活腹内侧下丘脑的GLP-1受体可激活棕色脂肪组织产热,诱导白色脂肪组织棕色化。艾塞那肽介导的脂肪组织棕色化和下丘脑结构的改变都需要有完整的GLP-1受体信号通路 [25] 。在小鼠下丘脑注射利拉鲁肽可以促进棕色脂肪组织产热和脂肪细胞棕色化;肥胖2型糖尿病患者使用艾塞那肽或利拉鲁肽治疗后饮食习惯改变、能量消耗增加;GLP-1A影响体重可能通过下丘脑调节食物摄入或通过促进脂肪细胞米色化增加能量消耗 [26] 。参与GLP-1RA作用于神经系统促进脂肪细胞米色化、降低体重的过程涉及多种方面。在小鼠脑室内注射艾塞那肽激活中枢神经系统兴奋交感神经支配脂肪组织,激活棕色脂肪组织使其UCP-1蛋白水平增加、脂质含量降低,棕色脂肪组织通过燃烧三酰基甘油产生热量并吸收葡萄糖进行脂肪从头生成,使血浆中甘油三酯和葡萄糖浓度降低,最终导致脂肪组织产热作用增加、体重降低 [27] 。

上述研究支持这样一种观点,即中枢GLP-1受体激动不仅通过减少食欲和饥饿来减少食物摄入,还通过增加能量消耗来诱导体重减轻,很可能是通过棕色脂肪组织产热介导的。

3. GLP-1受体激动剂作用于脂肪组织促进脂肪细胞米色化

GLP-1受体激动剂的抗肥胖作用通过作用于脂肪组织发生适应性产热,并通过不同的细胞信号通路发挥作用。在成熟的棕色脂肪细胞中,儿茶酚胺通过β3-肾上腺素受体发出信号来激活产热机制 [28] ,并通过α1-肾上腺素能受体通过增加2型脱碘酶活性来促进细胞内甲状腺激素的激活 [29] 。另一方面,甲状腺激素通过结合甲状腺激素受体增强脂肪细胞中的肾上腺素能信号传导 [30] ,并通过甲状腺素受体介导的信号传导直接增加产热相关基因的表达 [31] 。上文中提到GLP-1受体激动剂可激活神经系统兴奋交感神经,其释放的儿茶酚胺可能激活上述机制。利拉鲁肽腹腔注射也可直接上调小鼠棕色脂肪组织的耗氧量和β3-肾上腺素诱导的耗氧量,增加棕色脂肪组织2型脱碘酶活性,并在诱导白色脂肪组织中2型脱碘酶活性方面表现出对β3-肾上腺素能刺激的加性效应,从而增加棕色脂肪组织和白色脂肪组织中UCP-1蛋白水平,激活棕色脂肪组织 [32] 。

有研究表明皮下注射利拉鲁肽显著上调了小鼠白色脂肪组织中UCP1 [33] 、PRDM16、CEBPb、CIDEA和PGC-1α [34] 蛋白水平增加,促进白色脂肪组织米色化。进一步研究中,皮下注射利拉鲁肽能通过促进单磷酸腺苷活化蛋白激酶-α (AMPK-α)和Sirtuin-1 (SIRT-1)蛋白的表达,诱导骨骼肌中棕色脂肪细胞分化,表现为UCP-1和PRDM-16表达升高 [35] 。类似研究指出利拉鲁肽通过AMPK-SIRT-1-PGC1-α细胞信号通路诱导白色脂肪细胞米色化,其PRDM-16、UCP-1、C/EBP-α和C/EBP-β、PPARα蛋白水平显著提高,部分改善了线粒体功能 [9] 。皮下注射艾塞那肽可以降低高热量饮食诱导的肥胖小鼠的脂肪质量,增强了白色脂肪细胞的脂解和氧化能力 [36] 。同时可以改善小鼠肝脂肪变性,增强棕色脂肪组织的产热作用,这可能部分归因于降低BMP4的表达,下调Smad和P38信号通路来实现的 [37] 。

基因工程重组融合蛋白技术将GLP-1受体激动剂类似物导入小鼠体内促进了肥胖小鼠的体重减轻;这与改善与肥胖相关的代谢紊乱有关,包括高血糖、高脂血症和肝脂肪变性;此外,代谢条件的有益作用与抑制食物摄入和白色脂肪组织的棕色化重构有关,延长半衰期和代谢有益作用为研究GLP-1生物学提供了另一种新工具,并可能为治疗肥胖及其相关代谢紊乱提供了一个新的治疗靶点 [38] 。

在体外研究中,艾塞那肽可以通过上调分化中的3T3-L1脂肪细胞中SIRT1的表达和活性来增加脂解和脂肪酸氧化;相反,RNA干扰诱导的SIRT1敲低减弱了艾塞那肽对分化中的3T3-L1脂肪细胞脂解和氧化反应。因此GLP-1受体激动剂以SIRT1依赖的方式促进白色脂肪组织的棕色化重构;这可能是其对减肥产生影响的机制之一 [36] 。MicroRNAs (miRNAs)是具有19~22个核苷酸的短非编码RNA,miR-27b与脂质代谢密切相关,可调节棕色脂肪组织的生成;本文证明利拉鲁肽通过cAMP/PKA通路调控miR-27b的表达,诱导3T3-L1前脂肪细胞成功分化为成熟的白色脂肪细胞米色化,其脂肪细胞形态也变得更小;在大鼠脂肪细胞中也得到了同样的研究结果:利拉鲁肽以浓度依赖性的方式抑制成熟脂肪细胞中的脂滴积累,UCP1、PRDM16、CEBPβ、CIDEA和PGC-1α mRNA、和蛋白水平增加,因而促进了白色脂肪细胞米色化 [34] 。

上述研究支持这样一种观点,即GLP-1受体激动剂能直接作用于脂肪组织或脂肪细胞。可以影响前脂肪细胞,促进其分化为棕色脂肪细胞;还可作用于白色成熟脂肪细胞,促进其转化为米色脂肪细胞;其影响途径可能是多种通路共同介导的,最终导致体重减轻,改善肥胖。

4. 影响GLP-1受体激动剂作用的因素

联合激动部分其他受体可对GLP-1受体激动剂有加成作用。通过赖氨酸或三唑sEx4-GCG (K)分别连接sEx-4和天然胰高血糖素(GCG)构建了GLP-1R-胰高血糖素受体,结果显示sEx4-GCG (K)和sEx4-GCG (T)均显示了GLP-1和胰高血糖素的有益代谢作用:它们促进体重减轻,改善胰岛素抵抗和肝脂肪变性;还增加了棕色脂肪组织的产热作用,以及白色脂肪组织的脂解和β-氧化,同时抑制了脂肪生成;此外,双激动剂均激活5'-AMP活化蛋白激酶信号通路,并阻止骨骼肌细胞诱导的氧化应激。因此sEx4-GCG (T)和sEx4-GCG (K)通过互补双激动作用,比传统激动剂诱导更显著的体重减轻和代谢改善作用,可开发为治疗人类肥胖和相关代谢紊乱的新型治疗药物 [39] 。

β3肾上腺素能受体激动剂和利拉鲁肽联合给药后,增强了整体负能量平衡(减少食物摄入量、体重增加、脂肪/非脂肪质量比、肝脏脂肪含量和游离脂肪酸、甘油三酯、低密度脂蛋白和瘦素的循环水平,这些影响还伴随着血浆胰岛素和IL6水平的升高 [40] 。在棕色脂肪组织和白色脂肪组织中,调节产热作用的解偶联蛋白的基因表达增加;参与脂肪从头生成(Chrebp, Acaca, Fasn, Scd1, Insig1, Srebp1)或脂肪酸β-氧化(Cpt1b)的表达在白色脂肪组织或肌肉中增强,但在棕色脂肪组织中降低;Pparα和Pparγ是脂质通量/储存的必需品,在棕色脂肪组织和白色脂肪组织中降低,但在肌肉和肝脏中增加 [40] 。胆固醇合成调节因子(Insig2, Srebp2, Hmgcr)在肌肉中特别过表达;这些GLP-1、β3-肾上腺素能受体诱导的代谢效应与CAMP依赖的信号通路(PKA/AKT/AMPK)的下调相关;GLP-1和β3-肾上腺素能受体的联合激活可以提高调节脂质/胆固醇代谢的外周途径的变化,这有利于能量可用性、消耗的转换,并可能对肥胖治疗有用 [40] 。

部分因素也会影响对GLP-1R受体激动剂产生负面作用。在肥胖的早期阶段,暴露于致肥胖饮食环境中后,间歇时间接触致肥胖饮食,第三脑室注射和腹腔注射艾塞那肽减少了美味食物摄入量;在较长时间的持续接触致肥胖饮食期间(24小时/天,连续15天),只有第三脑室注射艾塞那肽的小鼠减少了食物摄入量和体重,然而,这种暴露于致肥胖饮食白色脂肪组织中GLP1受体的表达减少,阻断了UCP-1的增加;该数据表明在肥胖的早期阶段,暴露于致肥胖饮食可以减少外周和中枢GLP1受体激动剂的影响,使白色脂肪组织减少表达功能性GLP-1受体,也就是说肥胖的发展或表现,可以改变对GLP-受体激动剂的反应 [41] 。

GLP-1通过迷走神经传入神经元控制饱足感和葡萄糖代谢。为评估迷走神经在全身能量稳态和调节GLP-1效应中的作用,对接受迷走神经切断术和假手术对照组的大鼠进行了综合评估,迷走神经切除大鼠的食物摄入量、体重、体重增加、白色脂肪组织和棕色脂肪组织质量显著降低,棕色脂肪组织/白色脂肪组织比值较高,对照组相比无显著差异;切除迷走神经大鼠空腹饥饿素显著升高,血糖和胰岛素水平也显著降低。在给予GLP-1后,迷走神经切除的大鼠表现出迟钝的厌食反应和更高的血浆瘦素水平;因此,迷走神经通过改变食物摄入量、体重和身体成分来影响全身的能量稳态,在迷走神经切除大鼠中,GLP-1干预后升高的瘦素水平表明存在GLP-1-瘦素轴,证明该轴依赖于肠-脑迷走神经通路的完整性 [42] 。

近年来,迷走神经传入神经元在棕色脂肪组织产热中的作用而受到越来越多的关注。使用在选择性迷走神经传入神经元GLP-1受体敲低(kd)的大鼠模型。迷走神经传入神经元GLP-1受体敲低减弱了艾塞那肽对能量代谢和棕色脂肪组织产热的急性抑制作用;与这一发现相一致的是,与高热量饮食喂养的对照组相比,迷走神经传入神经元GLP-1受体增加了能量代谢和棕色脂肪组织活性,减少了体重增加,并改善了胰岛素敏感性;使用病毒跨突触示踪剂来识别这种肠道-棕色脂肪组织相互作用的可能的神经元底物,对参与棕色脂肪组织交感神经调节的主要下丘脑和后脑区域的顺行跨突触病毒追踪,从总分色脂肪组织结合激光捕获显微解剖进行的逆行追踪显示,一个表达GLP-1受体的迷走神经传入神经元群体与棕色脂肪组织有突触连接。该研究结果揭示了迷走神经元-GLP-1受体信号通路在能量代谢和棕色脂肪组织产热调控中发挥重要作用,通过这种肠-脑-棕色脂肪组织连接,肠道GLP-1在高热量饮食导致的代谢综合征中发挥作用 [43] 。

5. 结论

综上所述,棕色脂肪组织可以被药物激活,GLP-1受体激动剂就是其中一类。这些发现为GLP-1在肥胖中发挥有益作用的机制开辟了一个新的模式。然而,在临床研究中,有证据表明GLP-1受体激动剂有助于棕色脂肪组织激活的证据稀缺。需要进一步的研究来探索GLP-1受体激动剂对肥胖个体棕色化脂肪组织激活的影响。

参考文献

[1] Wang, L., Zhou, B., Zhao, Z., Yang, L., Zhang, M., Jiang, Y., et al. (2021) Body-Mass Index and Obesity in Urban and Rural China: Findings from Consecutive Nationally Representative Surveys during 2004-18. The Lancet, 398, 53-63.
https://doi.org/10.1016/S0140-6736(21)00798-4
[2] Luukkonen, P., Qadri, S., Ahlholm, N., Porthan, K., Män-nistö, V., Sammalkorpi, H., et al. (2022) Distinct Contributions of Metabolic Dysfunction and Genetic Risk Factors in the Pathogenesis of Non-Alcoholic Fatty Liver Disease. Journal of Hepatology, 76, 526-535.
https://doi.org/10.1016/j.jhep.2021.10.013
[3] Wahab, A., Dey, A., Bandyopadhyay, D., Katikineni, V., Chopra, R., Vedantam, K., et al. (2021) Obesity, Systemic Hypertension, and Pulmonary Hypertension: A Tale of Three Diseases. Current Problems in Cardiology, 46, Article ID: 100599.
https://doi.org/10.1016/j.cpcardiol.2020.100599
[4] Coelho, M., Oliveira, T. and Fernandes, R. (2013) Biochem-istry of Adipose Tissue: An Endocrine Organ. Archives of Medical Science: AMS, 9, 191-200.
https://doi.org/10.5114/aoms.2013.33181
[5] Chait, A. and Den Hartigh, L. (2020) Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Frontiers in Cardiovas-cular Medicine, 7, Article 22.
https://doi.org/10.3389/fcvm.2020.00022
[6] Ouellet, V., Routhier-Labadie, A., Bellemare, W., Lakhal-Chaieb, L., Turcotte, E., Carpentier, A., et al. (2011) Outdoor Temperature, Age, Sex, Body Mass Index, and Diabetic Status Deter-mine the Prevalence, Mass, and Glucose-Uptake Activity of 18F-FDG-Detected BAT in Humans. The Journal of Clini-cal Endocrinology and Metabolism, 96, 192-199.
https://doi.org/10.1210/jc.2010-0989
[7] Palma, G., Sorice, G., Genchi, V., Giordano, F., Caccioppoli, C., D’Oria, R., et al. (2022) Adipose Tissue Inflammation and Pulmonary Dys-function in Obesity. International Journal of Molecular Sciences, 23, Article 7349.
https://doi.org/10.3390/ijms23137349
[8] Wang, W. and Seale, P. (2016) Control of Brown and Beige Fat De-velopment. Nature Reviews Molecular Cell Biology, 17, 691-702.
https://doi.org/10.1038/nrm.2016.96
[9] Zhou, J., Poudel, A., Chandramani-Shivalingappa, P., Xu, B., Welchko, R. and Li, L. (2019) Liraglutide Induces Beige Fat De-velopment and Promotes Mitochondrial Function in Diet Induced Obesity Mice Partially through AMPK- SIRT-1-PGC1-α Cell Signaling Pathway. Endocrine, 64, 271-283.
https://doi.org/10.1007/s12020-018-1826-7
[10] D’Alessio, D., Kahn, S., Leusner, C. and Ensinck, J. (1994) Glu-cagon-Like Peptide 1 Enhances Glucose Tolerance Both by Stimulation of Insulin Release and by Increasing Insu-lin-Independent Glucose Disposal. The Journal of Clinical Investigation, 93, 2263-2266.
https://doi.org/10.1172/JCI117225
[11] Baggio, L. and Drucker, D. (2014) Glucagon-Like Peptide-1 Receptors in the Brain: Controlling Food Intake and Body Weight. The Journal of Clinical Investigation, 124, 4223-4226.
https://doi.org/10.1172/JCI78371
[12] Flint, A., Raben, A., Ersbøll, A., Holst, J. and Astrup, A. (2001) The Effect of Physiological Levels of Glucagon-Like Peptide-1 on Appetite, Gastric Emptying, Energy and Substrate Metabolism in Obesity. International Journal of Obesity, 25, 781-792.
https://doi.org/10.1038/sj.ijo.0801627
[13] Campbell, J. and Drucker, D. (2013) Pharmacology, Physiology, and Mechanisms of Incretin Hormone Action. Cell Metabolism, 17, 819-837.
https://doi.org/10.1016/j.cmet.2013.04.008
[14] Bertin, E., Arner, P., Bolinder, J. and Hagström-Toft, E. (2001) Action of Glucagon and Glucagon-Like Peptide-1-(7-36) Amide on Lipolysis in Human Subcutaneous Adipose Tissue and Skeletal Muscle in Vivo. The Journal of Clinical Endocrinology and Metabolism, 86, 1229-1234.
https://doi.org/10.1210/jc.86.3.1229
[15] Muller, T.D., Finan, B., Bloom, S.R., D’Alessio, D., Drucker, D.J., Flatt, P.R., et al. (2019) Glucagon-Like Peptide 1 (GLP-1). Molecular Metabolism, 30, 72-130.
https://doi.org/10.1016/j.molmet.2019.09.010
[16] Salehi, M. and Purnell, J.Q. (2019) The Role of Glucagon-Like Peptide-1 in Energy Homeostasis. Metabolic Syndrome and Related Disorders, 17, 183-191.
https://doi.org/10.1089/met.2018.0088
[17] Carabotti, M., Scirocco, A., Maselli, M. and Severi, C. (2015) The Gut-Brain Axis: Interactions between Enteric Microbiota, Central and Enteric Nervous Systems. Annals of Gastroenter-ology, 28, 203-209.
[18] Dozio, E., Vianello, E., Malavazos, A.E., Tacchini, L., Schmitz, G., Iacobellis, G., et al. (2019) Epicardial Adipose Tissue GLP-1 Receptor Is Associated with Genes Involved in Fatty Acid Oxidation and White-to-Brown Fat Differentiation: A Target to Modulate Cardiovascular Risk? International Journal of Cardiology, 292, 218-224.
https://doi.org/10.1016/j.ijcard.2019.04.039
[19] Iacobellis, G., Camarena, V., Sant, D.W. and Wang, G. (2017) Human Epicardial Fat Expresses Glucagon-Like Peptide 1 and 2 Receptors Genes. Hormone and Metabolic Research, 49, 625-630.
https://doi.org/10.1055/s-0043-109563
[20] Vendrell, J., El Bekay, R., Peral, B., Garcia-Fuentes, E., Me-gia, A., Macias-Gonzalez, M., et al. (2011) Study of the Potential Association of Adipose Tissue GLP-1 Receptor with Obesity and Insulin Resistance. Endocrinology, 152, 4072-4079.
https://doi.org/10.1210/en.2011-1070
[21] Cantini, G., Trabucco, M., Di Franco, A., Mannucci, E. and Luconi, M. (2019) Glucagon Modulates Proliferation and Differenti-ation of Human Adipose Precursors. Journal of Molecular Endocrinology, 63, 249-260.
https://doi.org/10.1530/JME-19-0095
[22] Van Marken Lichtenbelt, W., Vanhommerig, J., Smulders, N., Drossaerts, J., Kemerink, G., Bouvy, N., et al. (2009) Cold-Activated Brown Adipose Tissue in Healthy Men. The New England Journal of Medicine, 360, 1500-1508.
https://doi.org/10.1056/NEJMoa0808718
[23] Lee, S.J., Sanchez-Watts, G., Krieger, J.P., Pignalosa, A., Norell, P.N., Cortella, A., et al. (2018) Loss of Dorsomedial Hypothalamic GLP-1 Signaling Reduces BAT Thermogenesis and Increases Adiposity. Molecular Metabolism, 11, 33-46.
https://doi.org/10.1016/j.molmet.2018.03.008
[24] Lopez, M., Dieguez, C. and Nogueiras, R. (2015) Hypothalamic GLP-1: The Control of BAT Thermogenesis and Browning of White Fat. Adipocyte, 4, 141-145.
https://doi.org/10.4161/21623945.2014.983752
[25] Rozo, A.V., Babu, D.A., Suen, P.A., Groff, D.N., Seeley, R.J., Simmons, R.A., et al. (2017) Neonatal GLP1R Activation Limits Adult Adiposity by Durably Altering Hypothalamic Architecture. Molecular Metabolism, 6, 748-759.
https://doi.org/10.1016/j.molmet.2017.05.006
[26] Beiroa, D., Imbernon, M., Gallego, R., Senra, A., Herranz, D., Villarroya, F., et al. (2014) GLP-1 Agonism Stimulates Brown Adipose Tissue Thermogenesis and Browning through Hypothalamic AMPK. Diabetes, 63, 3346-3358.
https://doi.org/10.2337/db14-0302
[27] Kooijman, S., Wang, Y., Parlevliet, E.T., Boon, M.R., Edelschaap, D., Snaterse, G., et al. (2015) Central GLP-1 Receptor Signalling Accelerates Plasma Clearance of Triacylglycerol and Glu-cose by Activating Brown Adipose Tissue in Mice. Diabetologia, 58, 2637-2646.
https://doi.org/10.1007/s00125-015-3727-0
[28] Kooijman, S., Van Den Heuvel, J. and Rensen, P. (2015) Neu-ronal Control of Brown Fat Activity. Trends in Endocrinology and Metabolism, 26, 657-668.
https://doi.org/10.1016/j.tem.2015.09.008
[29] Silva, J. and Larsen, P. (1983) Adrenergic Activation of Triiodo-thyronine Production in Brown Adipose Tissue. Nature, 305, 712-713.
https://doi.org/10.1038/305712a0
[30] Pelletier, P., Gauthier, K., Sideleva, O., Samarut, J. and Silva, J. (2008) Mice Lacking the Thyroid Hormone Receptor-α Gene Spend More Energy in Thermogenesis, Burn More Fat, and Are Less Sensitive to High-Fat Diet-Induced Obesity. Endocrinology, 149, 6471-6486.
https://doi.org/10.1210/en.2008-0718
[31] Ribeiro, M., Carvalho, S., Schultz, J., Chiellini, G., Scanlan, T., Bianco, A., et al. (2001) Thyroid Hormone—Sympathetic Interaction and Adaptive Thermogenesis Are Thyroid Hormone Re-ceptor Isoform—Specific. The Journal of Clinical Investigation, 108, 97-105.
https://doi.org/10.1172/JCI200112584
[32] Oliveira, F.C.B., Bauer, E.J., Ribeiro, C.M., Pereira, S.A., Beserra, B.T.S., Wajner, S.M., et al. (2021) Liraglutide Activates Type 2 Deiodinase and Enhances β3-Adrenergic-Induced Thermogenesis in Mouse Adipose Tissue. Frontiers in Endocrinology, 12, Article 803363.
https://doi.org/10.3389/fendo.2021.803363
[33] Zhao, L., Zhu, C., Lu, M., Chen, C., Nie, X., Abudukerimu, B., et al. (2019) The Key Role of a Glucagon-Like Peptide-1 Receptor Agonist in Body Fat Redistribution. Journal of Endo-crinology, 240, 271-286.
https://doi.org/10.1530/JOE-18-0374
[34] Wang, X., Chen, S., Lv, D., Li, Z., Ren, L., Zhu, H., et al. (2021) Li-raglutide Suppresses Obesity and Promotes Browning of White Fat via MiR-27b in Vivo and in Vitro. Journal of Inter-national Medical Research, 49, 1-14.
https://doi.org/10.1177/03000605211055059
[35] Zhou, J.Y., Poudel, A., Welchko, R., Mekala, N., Chandrama-ni-Shivalingappa, P., Rosca, M.G., et al. (2019) Liraglutide Improves Insulin Sensitivity in High Fat Diet Induced Dia-betic Mice through Multiple Pathways. European Journal of Pharmacology, 861, Article ID: 172594.
https://doi.org/10.1016/j.ejphar.2019.172594
[36] Xu, F., Lin, B., Zheng, X., Chen, Z., Cao, H., Xu, H., et al. (2016) GLP-1 Receptor Agonist Promotes Brown Remodelling in Mouse White Adipose Tissue through SIRT1. Dia-betologia, 59, 1059-1069.
https://doi.org/10.1007/s00125-016-3896-5
[37] Wang, X., Ma, B., Chen, J., You, H., Sheng, C., Yang, P., et al. (2021) Glucagon-Like Peptide-1 Improves Fatty Liver and Enhances Thermogenesis in Brown Adipose Tissue via Inhib-iting BMP4-Related Signaling Pathway in High-Fat-Diet-Induced Obese Mice. International Journal of Endocrinology, 2021, Article ID: 6620289.
https://doi.org/10.1155/2021/6620289
[38] Wan, Y., Bao, X., Huang, J., Zhang, X., Liu, W., Cui, Q., et al. (2017) Novel GLP-1 Analog Supaglutide Reduces HFD-Induced Obesity Associated with Increased Ucp-1 in White Adipose Tissue in Mice. Frontiers in Physiology, 8, Article 294.
https://doi.org/10.3389/fphys.2017.00294
[39] Park, B.G., Kim, G.M., Lee, H.J., Ryu, J.H., Kim, D.H., Seong, J.Y., et al. (2021) Antiobesity Therapeutics with Complementary Dual-Agonist Activities at Glucagon and Glucagon-Like Peptide 1 Receptors. Diabetes, Obesity and Metabolism, 24, 50-60.
https://doi.org/10.1111/dom.14546
[40] Decara, J., Rivera, P., Arrabal, S., Vargas, A., Serrano, A., Pavón, F.J., et al. (2017) Cooperative Role of the Glucagon-Like Peptide-1 Receptor and β3-Adrenergic-Mediated Signalling on Fat Mass Reduction through the Downregulation of PKA/AKT/AMPK Signalling in the Adipose Tissue and Muscle of Rats. Acta Physiologica, 222, e13008.
https://doi.org/10.1111/apha.13008
[41] Mattar, P., Jaque, C., Teske, J.A., Morselli, E., Kerr, B., Cortés, V., et al. (2023) Impact of Short and Long Exposure to Cafeteria Diet on Food Intake and White Adipose Tissue Lipolysis Medi-ated by Glucagon-Like Peptide 1 Receptor. Frontiers in Endocrinology, 14, Article 1164047.
https://doi.org/10.3389/fendo.2023.1164047
[42] Morais, T., Pereira, S.S., Andrade, S., Neves, D., et al. (2023) GLP-1 Increases Circulating Leptin Levels in Truncal Vagotomized Rats. Biomedicines, 11, Article 1322.
https://doi.org/10.3390/biomedicines11051322
[43] Krieger, J.P., Santos Da Conceição, E.P., Sanchez-Watts, G., Arnold, M., Pettersen, K.G., Mohammed, M., et al. (2018) Glucagon-Like Peptide-1 Regulates Brown Adipose Tissue Thermogenesis via the Gut-Brain Axis in Rats. American Journal of Physiology-Regulatory, Integrative and Compara-tive Physiology, 315, R708-R720.
https://doi.org/10.1152/ajpregu.00068.2018