血清AFP升高型胃癌的临床病理特征性分析
Clinicopathological Characteristics of Gastric Cancer with Elevated Serum AFP
DOI: 10.12677/JCPM.2024.31015, PDF, HTML, XML, 下载: 27  浏览: 109 
作者: 焦培培*:青海大学肿瘤内科,青海 西宁;李 燕:青海大学附属医院肿瘤内科,青海 西宁
关键词: AFP阳性胃癌发病机制病理特征影响因素治疗及进展AFP Positive Gastric Cancer Pathogenesis Pathological Feature Influence Factor Treatment and Progress
摘要: 胃癌(GC)是全球最常见的恶性肿瘤之一,也是癌症死亡的第三大常见原因。而AFP阳性GC是一种相对罕见的胃恶性肿瘤类型,最初由Bourreille等人于1970年报道。目前得到证实的是,与普通型GC相比,AFP阳性GC更具侵袭性,更易发生早期淋巴结转移和远处转移。特别是肝转移的发生率大大增加,预后更差。近年来,AFP阳性GC的治疗逐渐得到重视。本研究旨在分析AFP阳性GC患者的发病机制、病理特征、影响因素及治疗现状与进展,进一步为临床上AFP阳性GC患者的发生做出早发现、早诊断、早治疗,以期降低患者的死亡率。
Abstract: Gastric cancer (GC) is one of the most common malignant tumors worldwide and the third most common cause of cancer death. AFP positive GC is a relatively rare type of gastricmalignant tumor, initially reported by Bourreille et al. in 1970. Currently, it has been confirmed that compared to the common type of GC, AFP positive GC is more invasive and more prone to early lymph node metasta-sis and distant metastasis. Especially, the incidence of liver metastasis has greatly increased, and the prognosis is worse. In recent years, the treatment of AFP positive GC has gradually received at-tention. The aim of this study is to analyze the pathogenesis, pathological characteristics, influenc-ing factors, treatment status and progress of AFP positive GC patients, and further provide early detection, diagnosis, and treatment for the occurrence of AFP positive GC patients in clinical practice, in order to reduce the mortality rate of patients.
文章引用:焦培培, 李燕. 血清AFP升高型胃癌的临床病理特征性分析[J]. 临床个性化医学, 2024, 3(1): 91-99. https://doi.org/10.12677/JCPM.2024.31015

1. 血清AFP升高型胃癌定义、发病机制研究

甲胎蛋白(AFP)是一种具有糖蛋白结构的癌胎蛋白。在临床实践中,它在肝细胞癌、卵黄囊肿瘤和非癌性肝病中升高。在肺癌、结肠癌、胰腺癌、膀胱癌和卵巢肿瘤中也可能升高,尤其是在胃癌中 [1] 。其特征是血清甲胎蛋白(AFP)水平升高(>20 ng/mL) [2] 。AFP GC的发病机制尚不完全清楚,胃癌常见的特异性标记物包括CA7-25、CEA、CA199等,那么为什么这种胃癌AFP高表达呢?一种观点倾向于产生胃和肝组织来自内胚层的理论,它们从胚胎期的胚胎前肠进化而来,而有一个前肠和卵黄囊的直接延续。原始细胞可以产生AFP。在胃癌发生过程中,由于细胞分化发生错误,一些被抑制的基因被激活,导致AFP充分表达的潜力。其组织形态类似于肝细胞癌组织或卵黄囊瘤。SALL4已被鉴定为性腺器官中生殖细胞肿瘤,特别是卵黄囊肿瘤的诊断标志物。SALL4基因在早期胚胎发育、器官形成、胚胎干细胞增殖和多能性维持过程中起着重要作用。为了明确SALL4作为癌胎蛋白的意义,Ushiku等通过免疫组化发现,AFP阳性GC中SALL4的表达与AFP的表达密切相关,而正常胃癌中SALL4和AFP的表达均为阴性。结果似乎反映了AFP阳性GC的胎儿肠道分化,但我们在文献中没有发现SALL4基因可以促进AFP的高表达。也有学者在其单细胞特征及恶性调控上进行研究,通过将单细胞转录组测序应用于产生AFP的胃癌(AFPGC),通过联合公共数据库发现了一个关键基因DKK1,该基因可能调节AFP阳性GC的恶性表型和AFP表达。为了获得更大的样本量以获得可靠的AFP阳性GC结果,我们从GEO数据库中招募了626例GC患者,其中617例有预后信息。其中,61例患者根据共识聚类被确定为AFP阳性GC。检测免疫细胞浸润的部分,并进行相关性分析。此外,生存分析显示,DKK1高表达的胃癌患者的总生存率低于DKK1低表达的胃癌患者。在AFP阳性GC中也观察到了这种现象。采用连续体外实验验证DKK1对AFP阳性GC的影响。在DKK1实验中,在CCK8刺激下,FU97细胞的增殖水平加快,缩短了倍增时间。此外,与对照组相比,各组中DKK1刺激后FU97细胞的侵袭能力明显增强,伤口愈合试验证实。此外,DKK1增强了AFP阳性GC的上皮–间充质转化(EMT)水平,这可以通过上调n-钙粘蛋白、波形蛋白和蜗牛和下调e-钙粘蛋白的表达来证明,综上所述,体外实验提示DKK1可能介导AFPGC的恶性表型,导致AFPGC预后不良 [2] 。另一种观点是,甲胎蛋白来自于转移性的肝组织。在部分AFPGC患者中,AFP为阴性,肝转移患者中AFP水平明显升高,AFP阳性GC患者的肝转移发生率高于非AFP阳性GC患者。假设可能是肝转移瘤周围肝细胞的再生或增殖产生AFP。这就说明了高表达的原因 [3] 。因此可知,AFP阳性GC可发生肝转移。

2. 血清AFP升高型胃癌病理特征性分析

AFP阳性GC的临床症状与普通胃腺癌相比,二者无明显差异。如:反酸、烧心、嗳气、上腹部不适等。此外,AFP阳性GC多见于老年男性,好发于胃体及胃窦部,分化程度多为中分化及低分化 [4] 。与AFP阴性胃癌相比,APFGC的静脉侵犯和肝转移发生率更高 [5] 。其他远处转移部位包括肺、远处淋巴结、胰腺、脑、小脑触角和肾上腺大淋巴结。相关研究结果证实,AFP阳性GC患者的肿瘤更大,细胞分化更弱,组织病理学类型更差,浆膜浸润更深,更晚期,VEGF阳性表达更多 [6] 。在各种研究中,AFP阳性GC患者的肝转移率被报道为14.3%~75.6%。同样,Hirajima [7] 等也发现AFP阳性GC组肝脏转移率较高,普通胃腺癌组腹膜转移率较高,以此为代表的学者认为高于正常水平的AFP与肝转移易发性并存。据文献报道 [8] ,血清AFP阳性胃癌的5年生存率为9%~66%。Adachi [9] 等研究发现血清AFP阳性胃癌患者5年生存率和中位生存期分别为22%和14个月,此外,我们还观察到神经侵犯的发生率也高于AFP阴性GC。

3. 血清AFP升高型胃癌的影响因素研究

学者们在探究AFP与AFPGC之间的相关性时,也发现其他的一些分子与AFPGC存在一定程度的相关性,并在疾病的诊断、治疗及预后方面表现出一定的作用。

(1) HER2:是一种原癌基因,是HER家族的成员 [10] ,编码具有酪氨酸激酶活性的跨膜受体,可调节增殖、存活、分化、迁移和其他细胞对癌症的反应。HER2的过表达会诱导恶性转化和转移 [11] 。主要见于乳腺癌,其预测价值也已在GC中得到证实 [12] 。曲妥珠单抗是FDA批准用于治疗HER-2阳性GC的第一种单克隆抗体 [13] 。TOGA试验首次证明,曲妥珠单抗和氟尿嘧啶联合治疗HER-2阳性晚期GC,并显著延长患者的总生存期(OS) [14] 。多项研究证实了曲妥珠单抗对晚期HER-2阳性GC的疗效和安全性 [15] 。然而,对曲妥珠单抗的获得性耐药性一直是一个重大挑战,并且在一些患者中具有遗传基础,这最终限制了其治疗效果 [16] 。早期的临床研究还报告了曲妥珠单抗的心脏副作用,如左心功能不全和充血性心力衰竭 [17] 。目前针对GC的免疫治疗策略包括非特异性免疫增强剂、肿瘤疫苗、过继细胞移植和单克隆抗体 [18] 。尽管几种HER-2靶向药物已进入GC患者的临床试验,但FDA仅批准曲妥珠单抗用于晚期GC患者的一线治疗。因此,针对HER-2阳性AFP阳性GC的治疗还有待探索。

(2) 血管内皮生长因子(vascular endothelial growth factor, VEGF):肿瘤以及非肿瘤的病理过程中存在VEGF广泛表达,VEGF特异性地作用于内皮细胞的一种多功能分子物质,其在诱导以及调节肿瘤血管的形成中起重要的推动促进作用 [19] 。Kamei等人 [20] 通过对比研究比较AFP阳性和阴性胃癌组的血管内皮生长因子-C(VEGF-C)表达频率,发现AFP阳性组VEGF-C表达频率明显高于阴性组,并且其表达情况与AFP水平呈正相关。因此,他们认为AFP可能通过与转录因子或关键蛋白相互作用来上调VEGF-C的表达。VEGF-C是VEGF亚型之一,它作为淋巴管生成因子并产生过多的淋巴管 [21] 。VEGFR-2是VEGF-C的受体之一,在血管上皮和淋巴上皮表达。最近,米村等人 [22] 发现VEGF-C表达与胃癌预后不良密切相关。综上所述,我们推断血清AFP升高胃癌的侵袭性和不良预后可能与AFP上调VEGF-C表达有关。

(3) 肝细胞生长因子(hepatocyte growth factor, HGF)及其受体(C-Met):HGF是酪氨酸激酶受体C-Met的配体,HGF/C-Met 信号通路是HGF作用于C-Met后,引发了有关信号传导的一系列级联酶促反应,产生相应生物学效应的信号传导途径 [19] 。最近,我们报道了c-Met过表达在产生AFP的胃癌中比在不产生AFP的分期匹配胃癌中更常见 [23] 。c-Met原癌基因编码c-Met受体,已知c-Met受体调节细胞增殖或迁移 [24] [25] [26] ,肝细胞生长因子(HGF)已被确定为其配体 [27] 。HGF/c-Met系统对胃癌细胞系的调控作用已被发现 [28] [29] 。这些结果表明,与不产生AFP的胃癌细胞相比,产生AFP的c-Met表达较高的胃癌细胞在癌组织中大量产生的HGF的反应中生长得更快。此外,也有报道称,与AFP阴性胃癌相比,产生AFP的胃癌具有高增殖活性、弱凋亡和丰富新生血管的特性 [30] 。这些发现提示,手术或其他治疗来源的HGF可能会影响高c-Met表达的产afp胃癌的增殖或迁移,导致微转移或肿瘤残体的快速生长。更好地理解和操纵c-Met/HGF系统在产生AFP的胃癌中对改善这类癌症的治疗具有重要意义。Kaji等 [31] 报道了反义c-Met寡核苷酸对胃癌细胞系生长和迁移的抑制作用。综上所述,产生AFP的胃癌具有侵袭性行为,其临床或生物学特征与常见的AFP阴性胃癌有很大不同。为了开发有效的多模式治疗方法,从细胞和分子水平上更好地了解产磷酸胃癌的特征是很重要的。

(4) 异常凝血酶原:血清肿瘤标志物检测是临床上用于筛查、诊断肿瘤高危人群的常见手段,在肿瘤诊断、临床分期和疗效评估中具有较高的应用价值。异常凝血酶原(DCP)又名维生素K缺乏或拮抗剂-II诱导的蛋白质(PIVKA-II),分子量720KDa。正常凝血酶原是在肝细胞内主要依赖维生素K的γ谷氨酰羧化酶及相关辅酶参与下,将结构Gla结构域中的第6,7,14,16,19,20,25,26,29和32位的10个Glu残基γ羧化为Gla,使之成为有活性的正常凝血酶原。上述任何位点的一个或多个Glu残基羧化不全,都可能形成DCP,失去凝血功能 [32] [33] 。异常凝血酶原升高多见于维生素K缺乏、使用华法林治疗及肝细胞癌(HCC)患者,因此DCP可以作为HCC诊断的标志物 [34] 。近年来,越来越多的数据表明,在临床中可观察到以下现象:血清DCP阳性与血管侵犯、肝内转移、肿瘤大小、肿瘤淋巴结转移以及肝癌复发的高风险有关。因此,DCP被认为是一种潜在的肝细胞癌进展的自体生长刺激物 [35] 。在肝癌早期,细胞外基质的破坏主要是由基质金属蛋白酶的激活介导的 [36] 。通过激活ERK1/2-MAPK信号通路,发现DCP可诱导肝癌细胞基质金属蛋白酶活性 [37] 。在体外实验中,DCP通过降解重组细胞外基质(基质胶)显著增加了PHC的迁移,明胶酶谱分析和Westernblot实验表明,DCP显著增加了PHC细胞培养上清液中MMP-2和MMP-9的分泌和表达。MMP-2和MMP-9与纤维连接蛋白、层粘连蛋白、弹性蛋白和胶原有很强的亲和力并能降解它们,促进内皮细胞侵入周围的间质基质 [38] 。此外,MMP-2和MMP-9也可能激活许多其他促进有丝分裂的细胞因子,如EGFR、VEGF、EGF-2和TGF-β,它们在肝癌的增殖中起着重要作用。相关研究表明,在对原发性肝癌的早期诊断监测方面,DCP的临床诊断应用价值优于AFP,DCP作为PHC的肿瘤标记物可在临床继续推广应用或两者联合使用。该靶标联合传统肿瘤标志物甲胎蛋白(AFP)用于HCC的早期诊断的价值已经得到广泛认可 [32] [34] 。

(5) Ki-67:抗原Ki-67,也称为MKI67 (由单克隆抗体Ki-67鉴定的抗原),是一种由基因MKI67编码的细胞增殖相关蛋白,其表达与细胞增殖密切相关。Ki-67/MKI67存在于细胞周期的G1、S、G2和有丝分裂期 [39] ,并可作为免疫组化染色评估细胞增殖的指标,在常规病理学中被广泛用作测量人肿瘤细胞生长分数的“增殖标志物” [40] 。最近的一项研究证实,特定的Ki-67/MKI67剪接变体通过影响细胞周期来促进癌症进展 [41] 。据报道,P53通过调节P53和SP1依赖性通路对Ki-67启动子发挥抑制作用 [42] 。我们发现MKI67与基因RRM2、CCNB2、GTSE1、CDK1、CCNB1和CHEK1相互作用,这些基因是参与P53信号网络的关键分子,与细胞周期进程有关。癌细胞的增殖活性与癌的生物学行为密切相关,特别是侵袭、转移和预后 [43] 。DNA非整倍体是恶性肿瘤细胞的标志物之一。我们曾报道 [44] ,DNA非整倍体与胃癌的远隔脏器转移,特别是与血行转移(肝、肾上腺转移)密切相关,可作为客观预测胃癌血行转移危险性和判断预后的生物学指标。研究结果表明,DNA非整倍体与Ki-67的表达有关,后者也与远处的转移密切相关(P < 0.01)。这些结果表明 [45] ,Ki-67和a-整倍体DNA模式的表达是预测远处器官转移可能性的两种客观标志物,对预测远处器官转移的高可能性可能具有重要意义,并且这两种标志物的联合检测可能是预测远处器官转移和预后更有用的方法。

(6) 微卫星不稳定性:微卫星是重复的DNA基序,广泛分布在基因组中,并与许多重要基因密切相关 [46] 。由于DNA错配修复(MMR)基因的突变或表观遗传变化,DNA MMR系统的正常功能被破坏,微卫星碱基对的数量发生改变,称为微卫星不稳定性(MSI)。MSI被认为与肿瘤发生密切相关,是胃肠道、子宫内膜和结直肠肿瘤的一种诊断表型 [47] 。因此,许多研究人员已经研究了MSI与GC的发生、预后和化学敏感性之间的相关性。大多数研究表明 [48] ,与低水平MSI(MSI-L)或微卫星稳定(MSS)的患者相比,高水平MSI(MSI-H)的患者表现出更好的抗肿瘤免疫反应、抑制肿瘤细胞生长的能力和改善的预后 [49] [50] 。胃癌(GC)的微卫星不稳定性高(MSI-H)亚群的特征是肿瘤突变负荷高、淋巴细胞浸润增加和炎性细胞因子增强。MSI高亚型占一小部分(仅8%~20%),这可能因癌症而异 [51] [52] [53] 。新出现的证据表明,MSI-H亚型肿瘤患者更有可能从免疫检查点阻断(ICB)治疗的管理中受益 [54] 。上皮–间充质转化(EMT)在肿瘤生长和转移中起着至关重要的作用,这是一个可逆的动态过程 [55] 。EMT对临床肿瘤学具有重要意义,因为它可能是ICB临床反应的新型预测生物标志物 [56] 。EMT状态已被证明是GC的预后标志物,EMT相关基因是预测MSI-H GC患者预后的重要来源。在我们的研究中 [57] [58] ,我们确定的高危人群也具有EMT信号通路激活和较差预后的特征,胃癌的间充质亚型(由EMT阳性特征定义)通常表现出对放疗和化疗药物的耐药性增加,以及对ICB治疗的不良反应 [59] [60] 。有趣的是,无论免疫浸润水平是否升高,PD-1阻断诱导的肿瘤免疫在具有富集EMT特征的GC患者中失活,这表明EMT相关因子对肿瘤免疫微环境的复杂影响 [61] 。研究还发现,参与炎症的通路,如干扰素反应信号通路,在风险评分较高的患者中也富集,尽管在生存预测中没有统计学意义。这表明EMT通常与肿瘤微环境中失调的免疫相关信号通路同时发生 [62] 。相互作用的不同类型细胞之间的正反馈回路导致免疫抑制物质诱导免疫细胞释放,从而促进肿瘤侵袭和转移。研究表明 [61] ,MSI-H GC可分为两种亚型,根据EMT信号通路的富集,具有不同的结果。为了探究该特征与肿瘤微环境之间的潜在相关性,进行了一系列多重IHC。我们发现,基质相关的信号转导激活可能有助于以T细胞失调和免疫抑制性巨噬细胞聚集为特征的免疫抑制环境,从而可能损害MSI-H状态的保护因子。相信我们可能为提高免疫治疗的疗效提供新的见解。

4. 治疗现状与进展

血清AFP阳性GC是一种特殊的胃癌亚型,尽管它在所有胃癌中的比例不高,但由于其生物学特性和临床表现与其他胃癌有所不同,因此对其治疗策略和预后评估具有特殊意义。迄今为止 [62] ,针对AFP阳性GC还未找到合适的治疗方案,更多的是基于普通GC的治疗模式。传统观点认为一旦确诊,首选治疗方案以根治性手术为主,积极行转移灶的局部治疗,辅以化疗、靶向、免疫等治疗手段。然而,AFP阳性GC治疗效果往往差于普通GC,一方面,AFP阳性GC疾病进展迅速,侵袭能力强,经临床确诊时往往已经进入局部晚期甚至发生远处转移,因而丧失根治性手术的机会;另一方面,肿瘤细胞对化疗药物的敏感性高低是决定治疗效果的关键所在,AFP阳性GC更易对治疗GC的传统化疗药物氟尿嘧啶类、铂类及丝裂霉素产生多药耐药。因此,因生物学行为及临床特点不同,不可将GC的治疗模式按部就班地应用在AFP阳性GC上,必须在其基础上寻找新的突破点。近年来,虽然有靶向疗法可用于GC,但晚期疾病的预后仍然较差,5年生存率低于20%。据报道,晚期AFP阳性GC的中位OS为9.3个月 [63] ,较差。AFP阳性GC化疗的一般ORR作为一线治疗为8.3%至66.7%,由于样本量小,不同报告之间存在很大差异。靶向VEGFR2的阿帕替尼已被证明可有效治疗晚期GC。与阿帕替尼在普通GC中的几项试验数据(ORR: 2.84%~13.04%, DCR: 34.78%~58.33%)相比,更多的患者达到疾病控制(70%),ORR (10%)似乎几乎有效。考虑到VEGF表达在AFPGC中的重要性,在一项研究中 [64] ,作为一线或二线治疗,阿帕替尼的PFS为10个月,OS为14个月,远优于当前研究中的三线或三线以上治疗(3.2,6.4个月)。三联疗法化疗(多西紫杉醇、顺铂、5-氟尿嘧啶;DCF)显示,AFPGC的第一线OS为9.3个月;然而,DCF的AE是突出的。与作为一线治疗的DCF方案相比,阿帕替尼的疗效值得探讨。这一线优势为我们在AFPGC中阿帕替尼的策略提供了有希望的想法。在AFPGC中早期使用抗VEGF治疗可能有益,阿帕替尼在AFPGC的多线和一线治疗中具有低毒性的初步可接受疗效。结果表明,抗血管生成药物阿帕替尼可改善AFPGC患者的预后 [65] 。因此,在临床上,提高对AFP阳性GC的形成机制和临床病理特征的认识,为临床诊疗提供参考,是降低恶性肿瘤患者病死率和延长生存时间、提高生存质量的重要措施。

NOTES

*通讯作者。

参考文献

[1] Vatansever, S., Özer, M.K. and Erdoğan, E.I. (2022) Prognostic Significance of α-Fetoprotein in Gastric Adenocarcino-ma. Przegląd Gastroenterologiczny, 17, 35-40.
https://doi.org/10.5114/pg.2022.114595
[2] Mei, Y., Li, M., Wen, J., Kong, X. and Li, J. (2023) Single-Cell Characteristics and Malignancy Regulation of Alpha-Fetoprotein-Producing Gastric Cancer. Cancer Medicine, 12, 12018-12033.
https://doi.org/10.1002/cam4.5883
[3] Gong, W., Su, Y., Liu, A., et al. (2018) Clinical Characteristics and Treatments of Patients with Alpha-Fetoprotein Producing Gastric Carcinoma. Neoplasma, 65, 326-330.
https://doi.org/10.4149/neo_2018_170207N84
[4] Liu, X., Sheng, W. and Wang, Y. (2012) An Analysis of Clinicopathological Features and Prognosis by Comparing Hepatoid Adenocarcinoma of the Stomach with AFP-Producing Gastric Cancer. Journal of Surgical Oncology, 106, 299-303.
https://doi.org/10.1002/jso.23073
[5] Chen, E.-B., Wei, Y.-C., Liu, H.-N., Tang, C., Liu, M.-L., Peng, K. and Liu, T. (2019) Hepatoid Adenocarcinoma of Stomach: Emphasis on the Clinical Relationship with Alpha-Fetoprotein-Positive Gastric Cancer. BioMed Research International, 2019, Article ID: 6710428.
https://doi.org/10.1155/2019/6710428
[6] Li, X.-D., Wu, C.-P., Ji, M., Wu, J., Lu, B., Shi, H.-B. and Jiang, J.-T. (2013) Characteristic Analysis of α-Fetoprotein Producing Gastric Carcinoma in China. World Journal of Surgical On-cology. 11, Article No. 246.
https://doi.org/10.1186/1477-7819-11-246
[7] Hirajima, S., Komatsu, S., Ichikawa, D., Kubota, T., Okamoto, K., Shiozaki, A., Fujiwara, H., Konishi, H., Ikoma, H. and Otsuji, E. (2013) Liver Metastasis Is the Only Independent Prognostic Factor in AFP-Producing Gastric Cancer. World Journal of Gastroenterology, 19, 6055-6061.
https://doi.org/10.3748/wjg.v19.i36.6055
[8] Asahi, Y., Kamiyama, T., Homma, S., Hatanaka, K.C., Yokoo, H., Nakagawa, T., Kamachi, H., Nakanishi, K., Tahara, M., Kakisaka, T., Wakayama, K., Todo, S. and Taketomi, A. (2015) Resection of Liver Metastasis Derived from Alpha-Fetoprotein-Producing Gastric Cancer-Report of 4 Cases. Interna-tional Cancer Conference Journal, 5, 98-103.
https://doi.org/10.1007/s13691-015-0236-4
[9] Harada, M., Tsujimoto, H., Ichikura, T., Nagata, H., Ito, N., Nomura, S., Horiguchi, H., Yaguchi, Y., Kishi, Y. and Ueno, H. (2019) A Case of a Long-Term Survival Achieved by Surgical Treatment and Chemotherapy for Late Recurrence of AFP-Producing Gastric Cancer. Surgical Case Reports, 5, Article No. 106.
https://doi.org/10.1186/s40792-019-0664-z
[10] Fanotto, V., Ongaro, E., Rihawi, K., Avallone, A., Silvestris, N., Fornaro, L., Vasile, E., Antonuzzo, L., Leone, F., Rosati, G., Giuliani, F., Bordonaro, R., Scartozzi, M., De Maglio, G., Negri, F.V., Fasola, G. and Aprile, G. (2016) HER-2 Inhibition in Gastric and Colorectal Cancers: Tangible Achieve-ments, Novel Acquisitions and Future Perspectives. Oncotarget, 7, 69060-69074.
https://doi.org/10.18632/oncotarget.11264
[11] Marano, L. and Roviello, F. (2015) The Distinctive Nature of HER2-Positive Gastric Cancers. European Journal of Surgical Oncology, 41, 271-273.
https://doi.org/10.1016/j.ejso.2014.12.007
[12] Carlomagno, N., Incollingo, P., Tammaro, V., et al. (2017) Diag-nostic, Predictive, Prognostic, and Therapeutic Molecular Biomarkers in Third Millennium: A Breakthrough in Gastric Cancer. BioMed Research International, 2017, Article ID: 7869802.
https://doi.org/10.1155/2017/7869802
[13] Yang, Y.-M., Hong, P., Xu, W.W., He, Q.-Y. and Li, B. (2020) Ad-vances in Targeted Therapy for Esophageal Cancer. Signal Transduction and Targeted Therapy, 5, Article No. 229.
https://doi.org/10.1038/s41392-020-00323-3
[14] Van Cutsem, E., Bang, Y.J., Feng-Yi, F., et al. (2015) HER2 Screening Data from ToGA: Targeting HER2 in Gastric and Gastroesophageal Junction Cancer. Gastric Cancer, 18, 476-484.
https://doi.org/10.1007/s10120-014-0402-y
[15] An, E., Ock, C.-Y., Kim, T.-Y., et al. (2017) Quantita-tive Proteomic Analysis of HER2 Expression in the Selection of Gastric Cancer Patients for Trastuzumab Treatment. An-nals of Oncology, 28, 110-115.
https://doi.org/10.1093/annonc/mdw442
[16] Okines, A.F.C. and Turner, N.C. (2021) Heterogeneous HER2 Am-plification—A New Clinical Category of HER2-Positive Breast Cancer? Cancer Discovery, 11, 2369-2371.
https://doi.org/10.1158/2159-8290.CD-21-0936
[17] Dokmanovic, M., King, K.E., Mohan, N., Endo, Y. and Wu, W.J. (2017) Cardiotoxicity of ErbB2-Targeted Therapies and Its Impact on Drug Development, a Spotlight on Trastuzumab. Expert Opinion on Drug Metabolism & Toxicology, 13, 755-766.
https://doi.org/10.1080/17425255.2017.1337746
[18] Song, Y., Tong, C., Wang, Y., et al. (2018) Effective and Persistent Antitumor Activity of HER2-Directed CAR-T Cells against Gastric Cancer Cells in vitro and Xenotransplanted Tumors in vivo. Protein & Cell, 9, 867-878.
https://doi.org/10.1007/s13238-017-0384-8
[19] 刘端瑞. 血清AFP阳性胃癌患者的临床病理特征及预后分析[D]: [硕士学位论文]. 济南: 山东大学, 2018.
[20] Kamei, S., Kono, K., Amemiya, H., et al. (2003) Evaluation of VEGF and VEGF-C Expression in Gastric Cancer Cells Producing Alpha-Fetoprotein. Journal of Gastroenterology, 38, 540-547.
https://doi.org/10.1007/s00535-002-1099-y
[21] Jeltsch, M., Kaipainen, A., Joukov, V., et al. (1997) Hyperplasia of Lymphatic Vessels in VEGF-C Transgenic Mice. Science, 276, 1423-1425.
https://doi.org/10.1126/science.276.5317.1423
[22] Yonemura, Y., Endo, Y., Fujita, H., et al. (1999) Role of Vas-cular Endothelial Growth Factor C Expression in the Development of Lymph Node Metastasis in Gastric Cancer. Clinical Cancer Research, 5, 1823-1829.
[23] Amemiya, H., Kono, K., Mori, Y., et al. (2000) High Frequency of c-Met Ex-pression in Gastric Cancers Producing Alpha-Fetoprotein. Oncology, 59, 145-151.
https://doi.org/10.1159/000012152
[24] Matsumoto, K. and Nakamura, T. (1997) Hepatocyte Growth Factor (HGF) as a Tissue Organizer for Organogenesis and Regeneration. Biochemical and Biophysical Research Communications, 239, 639-644.
https://doi.org/10.1006/bbrc.1997.7517
[25] Halaban, R., Rubin, J.S., Funasaka, Y., et al. (1992) Met and Hepatocyte Growth Factor/Scatter Factor Signal Transduction in Normal Melanocytes and Melanoma Cells. Oncogene, 7, 2195-2206.
[26] Tajima, H., Matsumoto, K. and Nakamura, T. (1992) Regulation of Cell Growth and Motility by Hepatocyte Growth Factor and Receptor Expression in Various Cell Species. Experimental Cell Research, 202, 423-431.
https://doi.org/10.1016/0014-4827(92)90095-P
[27] Matsumoto, K. and Nakamura, T. (1992) Hepatocyte Growth Factor: Molecular Structure, Roles in Liver Regeneration, and Other Biological Functions. Critical Reviews in Oncogene-sis, 3, 27-54.
[28] Ponzetto, C., Giordano, S., Peverali, F., et al. (1991) c-Met Is Amplified but Not Mutated in a Cell Line with an Activated Met Tyrosine Kinase. Oncogene, 6, 553-559.
[29] Kaji, M., Yonemura, Y., Harada, S., Liu, X., Terada, I. and Yamamoto, H. (1996) Participation of c-Met in the Progression of Human Gastric Cancers: Anti-c-Met Oligonucleotides Inhibit Proliferation or Invasiveness of Gastric Cancer Cells. Cancer Gene Therapy, 3, 393-404.
[30] Koide, N., Nishio, A., Igarashi, J., Kajikawa, S., Adachi, W. and Amano, J. (1999) Al-pha-Fetoprotein-Producing Gastric Cancer: Histochemical Analysis of Cell Proliferation, Apoptosis, and Angiogenesis. American Journal of Gastroenterology, 94, 1658-1663.
https://doi.org/10.1111/j.1572-0241.1999.01158.x
[31] Naraki, T., Kohno, N., Saito, H., et al. (2002) Gam-ma-Carboxyglutamic Acid Content of Hepatocellular Carcinoma-Associated Des-Gamma-Carboxy Prothrombin. Bio-chimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1586, 287-298.
https://doi.org/10.1016/S0925-4439(01)00107-7
[32] Inagaki, Y., Tang, W., Xu, H., et al. (2008) Des-Gamma-Carboxyprothrombin: Clinical Effectiveness and Biochemical Importance. Bioscience Trends, 2, 53-60.
[33] Widdershoven, J., Van Munster, P., De Abreu, R., et al. (1987) Four Methods Compared for Measuring Des-Car- boxy-Prothrombin (PIVKA-II). Clinical Chemistry, 33, 2074-2078.
https://doi.org/10.1093/clinchem/33.11.2074
[34] Tameda, M., Shiraki, K., Sugimoto, K., et al. (2013) Des-γ-Carboxy Prothrombin Ratio Measured by P-11 and P-16 Antibodies Is a Novel Biomarker for Hepatocellular Car-cinoma. Cancer Science, 104, 725-731.
https://doi.org/10.1111/cas.12149
[35] Field, S.L., Hogg, P.J., Daly, E.B., et al. (1999) Lupus Anticoagulants Form Immune Complexes with Prothrombin and Phospholipid that Can Augment Thrombin Production in Flow. Blood, 94, 3421-3431.
https://doi.org/10.1182/blood.V94.10.3421.422k27_3421_3431
[36] Färber, P., Brost, I., Adam, R. and Holzapfel, W. (2000) HPLC Based Method for the Measurement of the Reduction of Aflatoxin B1 by Bacterial Cultures Isolated from Different African Foods. Mycotoxin Research, 16, 141.
https://doi.org/10.1007/BF02940021
[37] Deugnier, Y. (2003) Iron and Liver Cancer. Alcohol, 30, 145-150.
https://doi.org/10.1016/S0741-8329(03)00129-0
[38] 王琪. 异常凝血酶原对原发性肝癌的诊断价值[D]: [硕士学位论文]. 苏州: 苏州大学, 2019.
[39] Oshima, C.T., Iriya, K. and Forones, N.M. (2005) Ki-67 as a Prognostic Marker in Colorectal Cancer but Not in Gastric Cancer. Neoplasma, 52, 420-424.
[40] Schlüter, C., Duchrow, M., Wohlenberg, C., Becker, M.H., Key, G., Flad, H.D. and Gerdes, J. (1993) The Cell Proliferation-Associated Antigen of Antibody Ki-67: A Very Large, Ubiquitous Nuclear Protein with Numerous Repeated Elements, Representing a New Kind of Cell Cycle-Maintaining Proteins. Journal of Cell Biology, 123, 513-522.
https://doi.org/10.1083/jcb.123.3.513
[41] Chierico, L., Rizzello, L., Guan, L., Joseph, A.S., Lewis, A. and Battaglia, G. (2017) The Role of the Two Splice Variants and Extranuclear Pathway on Ki-67 Regulation in Non-Cancer and Cancer Cells. PLOS ONE, 12, e0171815.
https://doi.org/10.1371/journal.pone.0171815
[42] Nakano, T., Ohno, T., Ishikawa, H., Suzuki, Y. and Takahashi, T. (2010) Current Advancement in Radiation Therapy for Uterine Cervical Cancer. Journal of Radiation Research, 51, 1-8.
https://doi.org/10.1269/jrr.09132
[43] Xu, L., Zhang, S.M., Wang, Y.P., Zhao, F.K., Wu, D.Y. and Yan, X. (1999) Relationship between DNA Ploidy, Expression of Ki-67 Antigen and Gastric Cancer Metastasis. World Journal of Gastroenterology. 5, 10-11.
https://doi.org/10.3748/wjg.v5.i1.10
[44] 辛彦, 吴东英, 赵凤凯, 等. Ki-67抗原表达与胃癌病理生物学行为关系的研究[J]. 中华肿瘤杂志, 1997, 19(5): 382-384.
[45] Cullis, C.A. (2002) The Use of DNA Polymorphisms in Genetic Mapping. In: Setlow, J.K., Eds., Genetic Engineering. Genetic Engineering: Principles and Methods, Vol. 24, Springer, Boston, 179-189.
https://doi.org/10.1007/978-1-4615-0721-5_8
[46] Hause, R.J., Pritchard, C.C., Shendure, J. and Salipante, S.J. (2016) Classification and Characterization of Microsatellite Instability across 18 Cancer Types. Nature Medicine, 22, 1342-1350.
https://doi.org/10.1038/nm.4191
[47] Choi, Y.Y., Bae, J.M., An, J.Y., et al. (2014) Is Microsatellite Instability a Prognostic Marker in Gastric Cancer?: A Systematic Review with Meta-Analysis. Journal of Surgical On-cology, 110, 129-135.
https://doi.org/10.1002/jso.23618
[48] Kim, C.G., Ahn, J.B., Jung, M., et al. (2016) Effects of Microsatellite Insta-bility on Recurrence Patterns and Outcomes in Colorectal Cancers. British Journal of Cancer, 115, 25-33.
https://doi.org/10.1038/bjc.2016.161
[49] Mohan, H.M., Ryan, E., Balasubramanian, I., et al. (2016) Microsatellite Instability Is Associated with Reduced Disease Specific Survival in Stage III Colon Cancer. European Journal of Surgi-cal Oncology, 42, 1680-1686.
https://doi.org/10.1016/j.ejso.2016.05.013
[50] The Cancer Genome Atlas Research Network (2014) Comprehen-sive Molecular Characterization of Gastric Adenocarcinoma. Nature, 513, 202-209.
https://doi.org/10.1038/nature13480
[51] Cortes-Ciriano, I., Lee, S., Park, W.Y., Kim, T.M. and Park, P.J. (2017) A Molecular Portrait of Microsatellite Instability across Multiple Cancers. Nature Communications, 8, Article No. 15180.
https://doi.org/10.1038/ncomms15180
[52] Travaglino, A., Raffone, A., Gencarelli, A., et al. (2020) TCGA Classi-fication of Endometrial Cancer: The Place of Carcinosarcoma. Pathology & Oncology Research, 26, 2067-2073.
https://doi.org/10.1007/s12253-020-00829-9
[53] Muro, K., Chung, H.C., Shankaran, V., et al. (2016) Pembroli-zumab for Patients with PD-L1-Positive Advanced Gastric Cancer (KEYNOTE-012): A Multicentre, Open-Label, Phase 1b Trial. The Lancet Oncology, 17, 717-726.
https://doi.org/10.1016/S1470-2045(16)00175-3
[54] Thiery, J.P., Acloque, H., Huang, R.Y. and Nieto, M.A. (2009) Epithelial-Mesenchymal Transitions in Development and Disease. Cell, 139, 871-890.
https://doi.org/10.1016/j.cell.2009.11.007
[55] Wang, H., Wu, X. and Chen, Y. (2019) Stromal-Immune Score-Based Gene Signature: A Prognosis Stratification Tool in Gastric Cancer. Frontiers in Oncology, 9, Article 1212.
https://doi.org/10.3389/fonc.2019.01212
[56] Lamprecht, S., Kaller, M., Schmidt, E.M., et al. (2018) PBX3 Is Part of an EMT Regulatory Network and Indicates Poor Outcome in Colorectal Cancer. Clinical Cancer Research, 24, 1974-1986.
https://doi.org/10.1158/1078-0432.CCR-17-2572
[57] Zhou, S., Wang, X., Ding, J., Yang, H. and Xie, Y. (2022) Increased ATG5 Expression Predicts Poor Prognosis and Promotes EMT in Cervical Carcinoma. Frontiers in Cell and Developmental Biology, 9, Article 839706.
https://doi.org/10.3389/fcell.2021.839706
[58] Thompson, J.C., Hwang, W.T., Davis, C., et al. (2020) Gene Sig-natures of Tumor Inflammation and Epithelial-to-Mesenchymal Transition (EMT) Predict Responses to Immune Check-point Blockade in Lung Cancer with High Accuracy. Lung Cancer, 139, 1-8.
https://doi.org/10.1016/j.lungcan.2019.10.012
[59] Zhang, P.-F., Wang, F., Wu, J., et al. (2019) LncRNA SNHG3 Induces EMT and Sorafenib Resistance by Modulating the miR-128/CD151 Pathway in Hepatocellular Carcinoma. Journal of Cellular Physiology, 234, 2788-2794.
https://doi.org/10.1002/jcp.27095
[60] Lou, Y., Diao, L., Cuentas, E.R., et al. (2016) Epithelial-Mesenchymal Transition Is Associated with a Distinct Tumor Microenvironment Including Elevation of Inflammatory Signals and Mul-tiple Immune Checkpoints in Lung Adenocarcinoma. Clinical Cancer Research, 22, 3630-3642.
https://doi.org/10.1158/1078-0432.CCR-15-1434
[61] Zhan, H.X., Zhou, B., Cheng, Y.G., et al. (2017) Crosstalk between Stromal Cells and Cancer Cells in Pancreatic Cancer: New Insights into Stromal Biology. Cancer Letters, 392, 83-93.
https://doi.org/10.1016/j.canlet.2017.01.041
[62] Zhang, M., Cao, C., Li, X., Gu, Q., Xu, Y., Zhu, Z., Xu, D., Wei, S., Chen, H., Yang, Y., Gao, H., Yu, L. and Li, J. (2023) Five EMT-Related Genes Signature Predicts Overall Survival and Immune Environment in Microsatellite Instability-High Gastric Cancer. Cancer Medicine, 12, 2075-2088.
https://doi.org/10.1002/cam4.4975
[63] Bozkaya, Y., Demirci, N.S., Kurtipek, A., Erdem, G.U., Ozdemir, N.Y. and Zengin, N. (2017) Clinicopathological and Prognostic Characteristics in Patients with AFP-Secreting Gastric Carci-noma. Molecular and Clinical Oncology, 7, 267-274.
https://doi.org/10.3892/mco.2017.1288
[64] Li, J., Qin, S., Xu, J., Guo, W., Xiong, J., Bai, Y., Sun, G., Yang, Y., Wang, L., Xu, N., Cheng, Y., Wang, Z., Zheng, L., Tao, M., Zhu, X., Ji, D., Liu, X. and Yu, H. (2013) Apatinib for Chemotherapy-Refractory Advanced Metastatic Gastric Cancer: Results from a Randomized, Placebo-Controlled, Paral-lel-Arm, Phase II Trial. Journal of Clinical Oncology, 31, 3219-3225.
https://doi.org/10.1200/JCO.2013.48.8585
[65] Arakawa, Y., Tamura, M., Aiba, K., Morikawa, K., Aizawa, D., Ikegami, M., Yuda, M. and Nishikawa, K. (2017) Significant Response to Ramucirumab Monotherapy in Chemothera-py-Resistant Recurrent Alpha-Fetoprotein-Producing Gastric Cancer: A Case Report. Oncology Letters, 14, 3039-3042.
https://doi.org/10.3892/ol.2017.6514