|
[1]
|
Vatansever, S., Özer, M.K. and Erdoğan, E.I. (2022) Prognostic Significance of α-Fetoprotein in Gastric Adenocarcino-ma. Przegląd Gastroenterologiczny, 17, 35-40. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Mei, Y., Li, M., Wen, J., Kong, X. and Li, J. (2023) Single-Cell Characteristics and Malignancy Regulation of Alpha-Fetoprotein-Producing Gastric Cancer. Cancer Medicine, 12, 12018-12033. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Gong, W., Su, Y., Liu, A., et al. (2018) Clinical Characteristics and Treatments of Patients with Alpha-Fetoprotein Producing Gastric Carcinoma. Neoplasma, 65, 326-330. [Google Scholar] [CrossRef]
|
|
[4]
|
Liu, X., Sheng, W. and Wang, Y. (2012) An Analysis of Clinicopathological Features and Prognosis by Comparing Hepatoid Adenocarcinoma of the Stomach with AFP-Producing Gastric Cancer. Journal of Surgical Oncology, 106, 299-303. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Chen, E.-B., Wei, Y.-C., Liu, H.-N., Tang, C., Liu, M.-L., Peng, K. and Liu, T. (2019) Hepatoid Adenocarcinoma of Stomach: Emphasis on the Clinical Relationship with Alpha-Fetoprotein-Positive Gastric Cancer. BioMed Research International, 2019, Article ID: 6710428. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Li, X.-D., Wu, C.-P., Ji, M., Wu, J., Lu, B., Shi, H.-B. and Jiang, J.-T. (2013) Characteristic Analysis of α-Fetoprotein Producing Gastric Carcinoma in China. World Journal of Surgical On-cology. 11, Article No. 246. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Hirajima, S., Komatsu, S., Ichikawa, D., Kubota, T., Okamoto, K., Shiozaki, A., Fujiwara, H., Konishi, H., Ikoma, H. and Otsuji, E. (2013) Liver Metastasis Is the Only Independent Prognostic Factor in AFP-Producing Gastric Cancer. World Journal of Gastroenterology, 19, 6055-6061. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Asahi, Y., Kamiyama, T., Homma, S., Hatanaka, K.C., Yokoo, H., Nakagawa, T., Kamachi, H., Nakanishi, K., Tahara, M., Kakisaka, T., Wakayama, K., Todo, S. and Taketomi, A. (2015) Resection of Liver Metastasis Derived from Alpha-Fetoprotein-Producing Gastric Cancer-Report of 4 Cases. Interna-tional Cancer Conference Journal, 5, 98-103. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Harada, M., Tsujimoto, H., Ichikura, T., Nagata, H., Ito, N., Nomura, S., Horiguchi, H., Yaguchi, Y., Kishi, Y. and Ueno, H. (2019) A Case of a Long-Term Survival Achieved by Surgical Treatment and Chemotherapy for Late Recurrence of AFP-Producing Gastric Cancer. Surgical Case Reports, 5, Article No. 106. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Fanotto, V., Ongaro, E., Rihawi, K., Avallone, A., Silvestris, N., Fornaro, L., Vasile, E., Antonuzzo, L., Leone, F., Rosati, G., Giuliani, F., Bordonaro, R., Scartozzi, M., De Maglio, G., Negri, F.V., Fasola, G. and Aprile, G. (2016) HER-2 Inhibition in Gastric and Colorectal Cancers: Tangible Achieve-ments, Novel Acquisitions and Future Perspectives. Oncotarget, 7, 69060-69074. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Marano, L. and Roviello, F. (2015) The Distinctive Nature of HER2-Positive Gastric Cancers. European Journal of Surgical Oncology, 41, 271-273. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Carlomagno, N., Incollingo, P., Tammaro, V., et al. (2017) Diag-nostic, Predictive, Prognostic, and Therapeutic Molecular Biomarkers in Third Millennium: A Breakthrough in Gastric Cancer. BioMed Research International, 2017, Article ID: 7869802. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Yang, Y.-M., Hong, P., Xu, W.W., He, Q.-Y. and Li, B. (2020) Ad-vances in Targeted Therapy for Esophageal Cancer. Signal Transduction and Targeted Therapy, 5, Article No. 229. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Van Cutsem, E., Bang, Y.J., Feng-Yi, F., et al. (2015) HER2 Screening Data from ToGA: Targeting HER2 in Gastric and Gastroesophageal Junction Cancer. Gastric Cancer, 18, 476-484. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
An, E., Ock, C.-Y., Kim, T.-Y., et al. (2017) Quantita-tive Proteomic Analysis of HER2 Expression in the Selection of Gastric Cancer Patients for Trastuzumab Treatment. An-nals of Oncology, 28, 110-115. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Okines, A.F.C. and Turner, N.C. (2021) Heterogeneous HER2 Am-plification—A New Clinical Category of HER2-Positive Breast Cancer? Cancer Discovery, 11, 2369-2371. [Google Scholar] [CrossRef]
|
|
[17]
|
Dokmanovic, M., King, K.E., Mohan, N., Endo, Y. and Wu, W.J. (2017) Cardiotoxicity of ErbB2-Targeted Therapies and Its Impact on Drug Development, a Spotlight on Trastuzumab. Expert Opinion on Drug Metabolism & Toxicology, 13, 755-766. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Song, Y., Tong, C., Wang, Y., et al. (2018) Effective and Persistent Antitumor Activity of HER2-Directed CAR-T Cells against Gastric Cancer Cells in vitro and Xenotransplanted Tumors in vivo. Protein & Cell, 9, 867-878. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
刘端瑞. 血清AFP阳性胃癌患者的临床病理特征及预后分析[D]: [硕士学位论文]. 济南: 山东大学, 2018.
|
|
[20]
|
Kamei, S., Kono, K., Amemiya, H., et al. (2003) Evaluation of VEGF and VEGF-C Expression in Gastric Cancer Cells Producing Alpha-Fetoprotein. Journal of Gastroenterology, 38, 540-547. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Jeltsch, M., Kaipainen, A., Joukov, V., et al. (1997) Hyperplasia of Lymphatic Vessels in VEGF-C Transgenic Mice. Science, 276, 1423-1425. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Yonemura, Y., Endo, Y., Fujita, H., et al. (1999) Role of Vas-cular Endothelial Growth Factor C Expression in the Development of Lymph Node Metastasis in Gastric Cancer. Clinical Cancer Research, 5, 1823-1829.
|
|
[23]
|
Amemiya, H., Kono, K., Mori, Y., et al. (2000) High Frequency of c-Met Ex-pression in Gastric Cancers Producing Alpha-Fetoprotein. Oncology, 59, 145-151. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Matsumoto, K. and Nakamura, T. (1997) Hepatocyte Growth Factor (HGF) as a Tissue Organizer for Organogenesis and Regeneration. Biochemical and Biophysical Research Communications, 239, 639-644. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Halaban, R., Rubin, J.S., Funasaka, Y., et al. (1992) Met and Hepatocyte Growth Factor/Scatter Factor Signal Transduction in Normal Melanocytes and Melanoma Cells. Oncogene, 7, 2195-2206.
|
|
[26]
|
Tajima, H., Matsumoto, K. and Nakamura, T. (1992) Regulation of Cell Growth and Motility by Hepatocyte Growth Factor and Receptor Expression in Various Cell Species. Experimental Cell Research, 202, 423-431. [Google Scholar] [CrossRef]
|
|
[27]
|
Matsumoto, K. and Nakamura, T. (1992) Hepatocyte Growth Factor: Molecular Structure, Roles in Liver Regeneration, and Other Biological Functions. Critical Reviews in Oncogene-sis, 3, 27-54.
|
|
[28]
|
Ponzetto, C., Giordano, S., Peverali, F., et al. (1991) c-Met Is Amplified but Not Mutated in a Cell Line with an Activated Met Tyrosine Kinase. Oncogene, 6, 553-559.
|
|
[29]
|
Kaji, M., Yonemura, Y., Harada, S., Liu, X., Terada, I. and Yamamoto, H. (1996) Participation of c-Met in the Progression of Human Gastric Cancers: Anti-c-Met Oligonucleotides Inhibit Proliferation or Invasiveness of Gastric Cancer Cells. Cancer Gene Therapy, 3, 393-404.
|
|
[30]
|
Koide, N., Nishio, A., Igarashi, J., Kajikawa, S., Adachi, W. and Amano, J. (1999) Al-pha-Fetoprotein-Producing Gastric Cancer: Histochemical Analysis of Cell Proliferation, Apoptosis, and Angiogenesis. American Journal of Gastroenterology, 94, 1658-1663. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Naraki, T., Kohno, N., Saito, H., et al. (2002) Gam-ma-Carboxyglutamic Acid Content of Hepatocellular Carcinoma-Associated Des-Gamma-Carboxy Prothrombin. Bio-chimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1586, 287-298. [Google Scholar] [CrossRef]
|
|
[32]
|
Inagaki, Y., Tang, W., Xu, H., et al. (2008) Des-Gamma-Carboxyprothrombin: Clinical Effectiveness and Biochemical Importance. Bioscience Trends, 2, 53-60.
|
|
[33]
|
Widdershoven, J., Van Munster, P., De Abreu, R., et al. (1987) Four Methods Compared for Measuring Des-Car- boxy-Prothrombin (PIVKA-II). Clinical Chemistry, 33, 2074-2078. [Google Scholar] [CrossRef]
|
|
[34]
|
Tameda, M., Shiraki, K., Sugimoto, K., et al. (2013) Des-γ-Carboxy Prothrombin Ratio Measured by P-11 and P-16 Antibodies Is a Novel Biomarker for Hepatocellular Car-cinoma. Cancer Science, 104, 725-731. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Field, S.L., Hogg, P.J., Daly, E.B., et al. (1999) Lupus Anticoagulants Form Immune Complexes with Prothrombin and Phospholipid that Can Augment Thrombin Production in Flow. Blood, 94, 3421-3431. [Google Scholar] [CrossRef]
|
|
[36]
|
Färber, P., Brost, I., Adam, R. and Holzapfel, W. (2000) HPLC Based Method for the Measurement of the Reduction of Aflatoxin B1 by Bacterial Cultures Isolated from Different African Foods. Mycotoxin Research, 16, 141. [Google Scholar] [CrossRef]
|
|
[37]
|
Deugnier, Y. (2003) Iron and Liver Cancer. Alcohol, 30, 145-150. [Google Scholar] [CrossRef]
|
|
[38]
|
王琪. 异常凝血酶原对原发性肝癌的诊断价值[D]: [硕士学位论文]. 苏州: 苏州大学, 2019.
|
|
[39]
|
Oshima, C.T., Iriya, K. and Forones, N.M. (2005) Ki-67 as a Prognostic Marker in Colorectal Cancer but Not in Gastric Cancer. Neoplasma, 52, 420-424.
|
|
[40]
|
Schlüter, C., Duchrow, M., Wohlenberg, C., Becker, M.H., Key, G., Flad, H.D. and Gerdes, J. (1993) The Cell Proliferation-Associated Antigen of Antibody Ki-67: A Very Large, Ubiquitous Nuclear Protein with Numerous Repeated Elements, Representing a New Kind of Cell Cycle-Maintaining Proteins. Journal of Cell Biology, 123, 513-522. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Chierico, L., Rizzello, L., Guan, L., Joseph, A.S., Lewis, A. and Battaglia, G. (2017) The Role of the Two Splice Variants and Extranuclear Pathway on Ki-67 Regulation in Non-Cancer and Cancer Cells. PLOS ONE, 12, e0171815. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Nakano, T., Ohno, T., Ishikawa, H., Suzuki, Y. and Takahashi, T. (2010) Current Advancement in Radiation Therapy for Uterine Cervical Cancer. Journal of Radiation Research, 51, 1-8. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Xu, L., Zhang, S.M., Wang, Y.P., Zhao, F.K., Wu, D.Y. and Yan, X. (1999) Relationship between DNA Ploidy, Expression of Ki-67 Antigen and Gastric Cancer Metastasis. World Journal of Gastroenterology. 5, 10-11. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
辛彦, 吴东英, 赵凤凯, 等. Ki-67抗原表达与胃癌病理生物学行为关系的研究[J]. 中华肿瘤杂志, 1997, 19(5): 382-384.
|
|
[45]
|
Cullis, C.A. (2002) The Use of DNA Polymorphisms in Genetic Mapping. In: Setlow, J.K., Eds., Genetic Engineering. Genetic Engineering: Principles and Methods, Vol. 24, Springer, Boston, 179-189. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Hause, R.J., Pritchard, C.C., Shendure, J. and Salipante, S.J. (2016) Classification and Characterization of Microsatellite Instability across 18 Cancer Types. Nature Medicine, 22, 1342-1350. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Choi, Y.Y., Bae, J.M., An, J.Y., et al. (2014) Is Microsatellite Instability a Prognostic Marker in Gastric Cancer?: A Systematic Review with Meta-Analysis. Journal of Surgical On-cology, 110, 129-135. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Kim, C.G., Ahn, J.B., Jung, M., et al. (2016) Effects of Microsatellite Insta-bility on Recurrence Patterns and Outcomes in Colorectal Cancers. British Journal of Cancer, 115, 25-33. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Mohan, H.M., Ryan, E., Balasubramanian, I., et al. (2016) Microsatellite Instability Is Associated with Reduced Disease Specific Survival in Stage III Colon Cancer. European Journal of Surgi-cal Oncology, 42, 1680-1686. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
The Cancer Genome Atlas Research Network (2014) Comprehen-sive Molecular Characterization of Gastric Adenocarcinoma. Nature, 513, 202-209. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Cortes-Ciriano, I., Lee, S., Park, W.Y., Kim, T.M. and Park, P.J. (2017) A Molecular Portrait of Microsatellite Instability across Multiple Cancers. Nature Communications, 8, Article No. 15180. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Travaglino, A., Raffone, A., Gencarelli, A., et al. (2020) TCGA Classi-fication of Endometrial Cancer: The Place of Carcinosarcoma. Pathology & Oncology Research, 26, 2067-2073. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Muro, K., Chung, H.C., Shankaran, V., et al. (2016) Pembroli-zumab for Patients with PD-L1-Positive Advanced Gastric Cancer (KEYNOTE-012): A Multicentre, Open-Label, Phase 1b Trial. The Lancet Oncology, 17, 717-726. [Google Scholar] [CrossRef]
|
|
[54]
|
Thiery, J.P., Acloque, H., Huang, R.Y. and Nieto, M.A. (2009) Epithelial-Mesenchymal Transitions in Development and Disease. Cell, 139, 871-890. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Wang, H., Wu, X. and Chen, Y. (2019) Stromal-Immune Score-Based Gene Signature: A Prognosis Stratification Tool in Gastric Cancer. Frontiers in Oncology, 9, Article 1212. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Lamprecht, S., Kaller, M., Schmidt, E.M., et al. (2018) PBX3 Is Part of an EMT Regulatory Network and Indicates Poor Outcome in Colorectal Cancer. Clinical Cancer Research, 24, 1974-1986. [Google Scholar] [CrossRef]
|
|
[57]
|
Zhou, S., Wang, X., Ding, J., Yang, H. and Xie, Y. (2022) Increased ATG5 Expression Predicts Poor Prognosis and Promotes EMT in Cervical Carcinoma. Frontiers in Cell and Developmental Biology, 9, Article 839706. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Thompson, J.C., Hwang, W.T., Davis, C., et al. (2020) Gene Sig-natures of Tumor Inflammation and Epithelial-to-Mesenchymal Transition (EMT) Predict Responses to Immune Check-point Blockade in Lung Cancer with High Accuracy. Lung Cancer, 139, 1-8. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Zhang, P.-F., Wang, F., Wu, J., et al. (2019) LncRNA SNHG3 Induces EMT and Sorafenib Resistance by Modulating the miR-128/CD151 Pathway in Hepatocellular Carcinoma. Journal of Cellular Physiology, 234, 2788-2794. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Lou, Y., Diao, L., Cuentas, E.R., et al. (2016) Epithelial-Mesenchymal Transition Is Associated with a Distinct Tumor Microenvironment Including Elevation of Inflammatory Signals and Mul-tiple Immune Checkpoints in Lung Adenocarcinoma. Clinical Cancer Research, 22, 3630-3642. [Google Scholar] [CrossRef]
|
|
[61]
|
Zhan, H.X., Zhou, B., Cheng, Y.G., et al. (2017) Crosstalk between Stromal Cells and Cancer Cells in Pancreatic Cancer: New Insights into Stromal Biology. Cancer Letters, 392, 83-93. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Zhang, M., Cao, C., Li, X., Gu, Q., Xu, Y., Zhu, Z., Xu, D., Wei, S., Chen, H., Yang, Y., Gao, H., Yu, L. and Li, J. (2023) Five EMT-Related Genes Signature Predicts Overall Survival and Immune Environment in Microsatellite Instability-High Gastric Cancer. Cancer Medicine, 12, 2075-2088. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Bozkaya, Y., Demirci, N.S., Kurtipek, A., Erdem, G.U., Ozdemir, N.Y. and Zengin, N. (2017) Clinicopathological and Prognostic Characteristics in Patients with AFP-Secreting Gastric Carci-noma. Molecular and Clinical Oncology, 7, 267-274. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Li, J., Qin, S., Xu, J., Guo, W., Xiong, J., Bai, Y., Sun, G., Yang, Y., Wang, L., Xu, N., Cheng, Y., Wang, Z., Zheng, L., Tao, M., Zhu, X., Ji, D., Liu, X. and Yu, H. (2013) Apatinib for Chemotherapy-Refractory Advanced Metastatic Gastric Cancer: Results from a Randomized, Placebo-Controlled, Paral-lel-Arm, Phase II Trial. Journal of Clinical Oncology, 31, 3219-3225. [Google Scholar] [CrossRef]
|
|
[65]
|
Arakawa, Y., Tamura, M., Aiba, K., Morikawa, K., Aizawa, D., Ikegami, M., Yuda, M. and Nishikawa, K. (2017) Significant Response to Ramucirumab Monotherapy in Chemothera-py-Resistant Recurrent Alpha-Fetoprotein-Producing Gastric Cancer: A Case Report. Oncology Letters, 14, 3039-3042. [Google Scholar] [CrossRef] [PubMed]
|