可变剪接在卵巢癌中的作用研究进展
Research Progress on the Role of Variable Splicing in Ovarian Cancer
DOI: 10.12677/ACM.2024.143812, PDF, HTML, XML, 下载: 29  浏览: 79 
作者: 冉黔川, 廖德仲*:贵州中医院大学基础医学院,贵州 贵阳
关键词: 可变剪接卵巢癌耐药精准治疗Alternative Splicing Ovarian Cancer Drug Resistance Precision Medicine
摘要: 卵巢癌(ovarian cancer, OC)是发生在卵巢的恶性肿瘤性疾病。卵巢癌大多发病隐匿,进展迅速,加之缺乏高效的早期诊断措施,许多病人初次诊断时已属晚期。在诊断和治疗方面已取得了一定的进展,但其五年生存率仍然低,所以迫切需要研究OC的发生和发展机制。中心法则中RNA是由DNA转录而来的,作为一个转录本来源的DNA转录区域却不一定是由某个连续DNA片段提供的,甚至可能有间隔DNA转录区的交叉,不同区域不同顺序的转录产物共同组成一个转录本,极大增加了DNA产生RNA的复杂度。人类基因组中多数基因都会发生RNA的可变剪接(alternative splicing, AS),AS可实现相同的前信使RNA生成多个mRNA剪接异构体和下游蛋白质亚型。一个基因的不同编码区可以以不同的方式剪接,导致该基因的多种转录状态,最终的蛋白产物可能具有不同的或相互拮抗的功能和结构特征。这在很大程度上扩大了人类基因的复杂性和多样性,影响着肿瘤细胞表型和信号通路,从而影响肿瘤的发生、发展。OC中也发现可变剪接事件,笔者就AS在OC中的作用作综述。
Abstract: Ovarian cancer (OC) is a malignant tumor disease that occurs in the ovaries. The incidence of ovari-an cancer is mostly hidden, rapid progress, coupled with the lack of efficient early diagnosis measures, many patients are in the late stage when they are diagnosed for the first time. Some pro-gress has been made in diagnosis and treatment, but the five-year survival rate is still low. There-fore, there is an urgent need to study the occurrence and development mechanism of OC. In the central rule, RNA is transcribed from DNA, but the DNA transcriptional region as a transcript source is not necessarily provided by a continuous DNA fragment, and there may even be intersecting DNA transcripts. Transcripts from different regions and different sequences form a transcript, which greatly increases the complexity of DNA to produce RNA. However, RNA alternative splicing (alter-native splicing, AS) occurs in most genes in the human genome, and AS can achieve the same pre-messenger that enables RNA to produce multiple mRNA splicing isomers and downstream protein subtypes. Different coding regions of a gene can be spliced in different ways, resulting in a variety of transcriptional states of the gene, and the final protein products may have different or mutually antagonistic functional and structural characteristics. This greatly expands the complexity and diversity of human genes and affects the phenotype and signal pathway of tumor cells, thus af-fecting the occurrence and development of tumors. Alternative splicing events are also found in OC. The author summarizes the role of AS in OC.
文章引用:冉黔川, 廖德仲. 可变剪接在卵巢癌中的作用研究进展[J]. 临床医学进展, 2024, 14(3): 1077-1082. https://doi.org/10.12677/ACM.2024.143812

1. 引言

可变剪接(alternative splicing, AS)是指一个mRNA前体通过不同的剪接方式产生不同的mRNA剪接异构体的过程,可变剪接增加了mRNA和蛋白质的多样性 [1] 。一个基因可以发生多次可变剪接事件,可变剪接事件的发生频率高,数量多 [2] 。很多的研究结果表明,可变剪接在癌症的发展和进展中起主导作用,因为在癌症中,AS是高度失调的,参与了肿瘤细胞的几乎所有特征 [3] ,并且剪接变体的调控生产对于几乎所有生物过程的重要功能都是必需 [4] 。癌细胞经常利用AS灵活性来产生促进生长和生存的蛋白质。以这种方式产生的许多同种异构体受到发育调节,并在肿瘤中优先重新表达 [5] 。在可变剪接7种剪接类型中最常见的是外显子的跳跃 [6] 。在肿瘤治疗中DNA或RNA的分析有重要意义 [7] 。可变剪接是一个动态的过程,与细胞生命活动密不可分 [8] 。可使蛋白质组多样化以便执行复杂的生物学功能来适应外部和内部环境变化 [9] 。可变剪接的过程是很复杂繁琐的,我们对其过程有一定了解。可变剪接的机制之一就是剪接因子与沉默子或增强子的调节位点之间的RNA-蛋白质相互作用 [10] 。越来越多的证据表明,异常选择性剪接(AS)事件与癌症的发病机制有关,AS与卵巢癌发展密切相关,在10,582个基因中鉴定出48,049个AS事件,包含7种可变剪接类型 [11] 。

卵巢癌(ovarian cancer, OC)是致死率最高的妇科恶性肿瘤 [12] ,早期症状不典型,晚期预后不可控,易复发易耐药,为临床诊疗带来巨大的负担。OC的5年生存率约为47%,而死亡原因是复发和化疗耐药 [13] 。2021年美国新发卵巢癌发病率很高 [14] ,中国每年新发卵巢癌52,971例,并呈现出上升趋势,每年约30,886例女性患者因OC而死亡 [15] 。Yao等探索了丰富的与OC预后相关的RNA剪接网络和调控模式,AS为OV的治疗提供了大量的生物标志物和潜在靶点,并且在OC综合治疗中,干扰AS的潜在的意义 [16] 。

2. 可变剪接与卵巢癌的分子分型

卵巢癌的分型一直在完善,目前无统一的结论,但为今后建立成熟的卵巢癌的分子分型体系奠定了坚实基础和重大参考价值。目前最新的是2020年对约6000例非卵巢癌患者的输卵管上皮细胞进行单细胞RNA测序,发现4分泌细胞亚型,在TCGA等多个数据库中对每个癌组织中五种细胞亚型的占比进行分析,发现EMT亚型占比高的肿瘤患者预后差 [17] 。上皮型卵巢癌通常出现在晚期,是妇科癌症死亡的最常见原因,治疗需要专家的多学科护理 [18] 。上皮剪接调节蛋白(Epithelial Splicing Regulatory Protein, ESRPs)是上皮细胞特异性RNA结合蛋白,可调节上皮细胞的可变剪接,从而参与上皮-间质转化。在OC细胞中,DNA低甲基化与ESRP1或ESRP2过表达相关,ESRP1的过表达调节了EMT标记和癌症相关基因的可变剪接,从而导致从间质表型向上皮表型的转换 [19] 。卵巢癌与可变剪接有密切关系,但相关研究比较少。卵巢癌不仅存在着不同的分子亚型,同一分子亚型也存在着异质性,对卵巢癌异质性的深入探索有利于进行精准治疗、并改善患者的预后和生存质量。

3. 可变剪接与卵巢癌发生、发展

可变剪接主要是从以下三个经典层面进行调控:RNA层面、转录层面、表观遗传学层面。

近年来研究证据表明,剪接因子肿瘤的发生和发展中发挥着重要作用 [20] [21] 。SF3B4是经典剪接因子家族SF3B的一个亚基 [22] 。体外和体内实验表明,SF3B4的过表达促进OC细胞增殖和迁移,下调SF3B4则会相反。其中非编码小分子RNA 509 3p (micro RNA 509 3p, miR-509-3p)直接与SF3B4的3'-UTR结合降低SF3B4 mRNA的表达,因为其发生可变剪接:第8内含子的保留和过早终止密码子的产生,而SF3B4的低表达会导致RAD52的低表达。此外,RAD52的表达降低还抵消了SF3B4过表达的促瘤作用,也就是说miR-509-3p负调控SF3B4,调控RAD52的可变剪接而促进了OC的进展 [23] 。剪接因子的异常表达在肿瘤的发生发展中起着重要作用。在所有的剪接因子突变中,剪接因子SF3B1、U2AF1、SRSF2、ZRSR2的主要杂合点突变是促进疾病进展的驱动突变因素 [24] 。RNA测序研究进一步揭示,所有这些突变都改变了剪接体的功能,从而导致了许多序列特异性的错误剪接事件 [25] [26] [27] [28] 。剪接因子BUD31的调控的是卵巢癌细胞生长和卵巢癌进展的关键因素,剪接因子BUD31促进BCL2家族成员BCL2L12第三外显子的包含从而产生全长BCL2L12,全长的BCL2L12抗凋亡的并促进卵巢癌的进展,相反敲低BUD31促进第三外显子跳跃,从而导致BCL2L12的截断异构体经历无义介导的mRNA衰变,卵巢癌细胞随后发生凋亡 [29] 。

RNA结合蛋白(RBPs)影响肿瘤的发生和发展,可以作为癌症治疗的新的潜在靶点。MEX-3 RNA结合家族成员A (mex-3 RNA binding family member A, MEX3A)一种包含环指结构域和RNA结合域的双功能蛋白,在卵巢癌中是一个重要的致癌因子,促进了的卵巢癌细胞生长,影响着肿瘤发生 [30] ,MEX3A基因敲除导致timeless circadian regulator (TIMELESS) mRNA的第23内含子的保留,并且由于无义介导的RNA衰变的刺激,TIMELESS mRNA减少,抑制卵巢癌细胞的生长和侵袭 [31] 。小核核糖核蛋白多肽B (small nuclear ribonucleoprotein polypeptides B and B1, SNRPB)是剪接体的核心成分,调控着Pre-mRNA的可变剪接。然而,其在卵巢癌中的作用和潜在机制仍不清楚。Li等研究通过对TCGA和CPTAC数据库的分析,确定SNRPB是卵巢癌的关键驱动因素与正常输卵管相比,新鲜冷冻卵巢癌组织中SNRPB的表达显著增加。免疫组织化学显示,在福尔马林固定、石蜡包埋的卵巢癌切片中SNRPB的表达增加,且与卵巢癌的不良预后呈正相关。在功能上,SNRPB基因敲除抑制了卵巢癌细胞的增殖和侵袭,而过表达则起到相反的作用。且在顺铂处理后SNRPB表达增加。根据RNA-seq,几乎所有与DNA复制和同源重组相关的差异表达基因在SNRPB被敲除后下调。BRCA2是肿瘤抑制基因,其突变型易患乳腺癌和卵巢癌。深入的研究表明,BRCA蛋白参与了许多关键的细胞过程 [32] 。外显子3跳跃导致DEGS DNA聚合酶α1POLA1提前终止密码子,导致无意义介导的RNA衰退;第三外显子跳跃导致BRCA2同源重组所必需的PALB2结合域丢失,并增加卵巢癌细胞对顺铂的敏感性。POLA1或BRCA2基因敲除可部分抑制SNRPB过表达的卵巢癌细胞恶性程度的增加,总而言之,SNRPB是一个重要的致癌驱动因素,抑制了POLA1和BRCA2的第三外显子跳跃来促进卵巢癌的进展。因此,SNRPB是卵巢癌潜在的治疗靶点和预后标志物 [33] 。

有诸多与卵巢癌相关的可变剪接事件,如剪接因子USP39通过靶向高迁移率族AT Hook蛋白2 (high mobility group AT-hook 2, HMGA2)促进OC进展 [34] 。胰岛素样生长因子2-MRNA结合蛋白3 (insulin like growth factor 2 mRNA binding protein 3, IGF2BP3)和lin-28 homolog B, Lin28B与OC患者耐药有关 [35] 。富含脯氨酸和谷氨酰胺的剪接因子(splicing factor proline and glutamine rich, SFPQ)通过调节OC中富含丝氨酸和精氨酸的剪接因子2 (serine and arginine rich splicing factor 2, SRSF2)的活性来调节铂的反应 [36] 。SORBS2抑制OC的免疫逃避 [37] 。可见AS影响着OC的关系极密切,影响着OC的生物学行为,AS让我们从多个维度全面了解OC,从而为OC治疗提供思路。

4. 可变剪接与卵巢癌预后、治疗

Zhang等单因素COX回归分析结果显示:在OC中的15,278个基因中,有31,286个基因与AS事件相关,其中1524个AS事件与OS显著相关 [38] 。耐药正是治疗肿瘤面临的一大挑战,可变剪接改变了靶mRNA 3'UTR结合位点,而这种改变会影响产生的蛋白质,以及影响靶蛋白的药物亲和力,最终导致耐药性 [39] ,细胞外基质蛋白-1a (extracellular matrix protein 1a, ECM1a)是ECM1的一种分泌型亚型,分泌型ECM1a亚型通过GPR基序结合整合素αXβ2和激活AKT/FAK/Rho/细胞骨架信号而诱导肿瘤发生。ATP结合盒亚家族G成员1 (ATP binding cassette subfamily G member 1, ABCG1)转导ECM1a整合素αXβ2的相互作用信号,促AKT/FAK/Rho/细胞骨架分子的磷酸化,并通过上调CD326介导的细胞干细胞来增强癌细胞对顺铂的耐药性。相反,非分泌型ECM1b亚型结合肌球蛋白并阻断其磷酸化,损害细胞骨架介导的信号传导和肿瘤发生。此外,ECM1a诱导异种核核糖核蛋白L样(heterogeneous nuclear ribonucleoprotein L like, hnRNPLL)蛋白的表达,从而有利于发生ECM1a的mRNA可变剪接。ECM1a、αXβ2、ABCG1和hnRNPLL高表达与生存率低相关,而ECM1b高表达与生存率高相关。异构体通过与肌球蛋白结合来抑制肌球蛋白的磷酸化,阻止细胞骨架诱导的肿瘤发生。ECM1b增加hnRNPLL剪接因子的表达,这导致ECM1的剪接增加,从而产生多种异构体 [40] ,影响OC的治疗效果。

综上所述,国内外对可变剪接在卵巢癌的研究尚处于起步阶段,可变剪接异常参与OC的全程,包括分型、发生、进展和化疗耐药,所以可能为其诊断提供新的标志物,为其治疗提供新的靶点,也可为其预后提供新的标志物。但仍有很多需要深入细化探索的知识。而目前对于可变剪接抗肿瘤药物开发正在进行中,继续探索可变剪接在卵巢癌的发生发展的机制,很可能是改善卵巢癌早期诊断和治疗的新思路。2023年3月22日,国家癌症中心在《中华肿瘤杂志》发布了最新的全国癌症统计数据 [41] ,公布2016年中国恶性肿瘤流行数据,卵巢癌在全国的发病例数位居第18位,在贵州居于第15位。笔者希望可以通对可变剪接在卵巢癌中的作用的研究进一步了解卵巢癌基因表达调控的机制,并为下一步卵巢癌精准医疗奠定基础。

NOTES

*通讯作者。

参考文献

[1] Bonnal, S.C., López-Oreja, I. and Valcárcel, J. (2020) Roles and Mechanisms of Alternative Splicing in Can-cer—Implications for Care. Nature Reviews Clinical Oncology, 17, 457-474.
https://doi.org/10.1038/s41571-020-0350-x
[2] Zhang, S., Wu, X., Diao, P., et al. (2020) Identification of a Prognostic Alternative Splicing Signature in Oral Squamous Cell Carcinoma. Journal of Cellular Physiology, 235, 4804-4813.
https://doi.org/10.1002/jcp.29357
[3] Bernard, A., Boidot, R. and Végran, F. (2022) Alternative Splicing in Cancer and Immune Cells. Cancers, 14, Article No. 1726.
https://doi.org/10.3390/cancers14071726
[4] Chabot, B. and Shkreta, L. (2016) Defective Control of Pre-Messenger RNA Splicing in Human Disease. Journal of Cell Biology, 212, 13-27.
[5] David, C.J. and Manley, J.L. (2010) Alternative Pre-MRNA Splicing Regulation in Cancer: Pathways and Programs Unhinged. Genes & Development, 24, 2343-2364.
https://doi.org/10.1101/gad.1973010
[6] Ding, Y., Feng, G. and Yang, M. (2020) Prognostic Role of Alternative Splicing Events in Head and Neck Squamous Cell Carcinoma. Cancer Cell International, 20, Article No. 168.
https://doi.org/10.1186/s12935-020-01249-0
[7] Donoghue, M.T.A., Schram, A.M., Hyman, D.M., et al. (2020) Discovery through Clinical Sequencing in Oncology. Nature Cancer, 1, 774-783.
https://doi.org/10.1038/s43018-020-0100-0
[8] Wright, C.J., Smith, C.W.J. and Jiggins, C.D. (2022) Alternative Splicing as a Source of Phenotypic Diversity. Nature Reviews Genetics, 23, 697-710.
https://doi.org/10.1038/s41576-022-00514-4
[9] Murphy, A.J., Li, A.H., Li, P. and Sun, H. (2022) Therapeutic Targeting of Alternative Splicing: A New Frontier in Cancer Treatment. Frontiers in Oncology, 12, Article ID: 868664.
https://doi.org/10.3389/fonc.2022.868664
[10] Lee, Y. and Rio, D.C. (2015) Mechanisms and Regulation of Al-ternative Pre-MRNA Splicing. Annual Review of Biochemistry, 84, 291-323.
https://doi.org/10.1146/annurev-biochem-060614-034316
[11] Wang, S., Wang, S., Zhang, X., Meng, D., Xia, Q., Xie, S., Shen, S., Yu, B., Hu, J., Liu, H. and Yan, W. (2022) Comprehensive Analysis of Prognosis-Related Alternative Splicing Events in Ovarian Cancer. RNA Biology, 19, 1007-1018.
https://doi.org/10.1080/15476286.2022.2113148
[12] Gansler, T., Ganz, P.A., Grant, M., et al. (2010) Sixty Years of CA: A Cancer Journal for Clinicians. CA: A Cancer Journal for Clinicians, 60, 345-350.
https://doi.org/10.3322/caac.20088
[13] Eisenhauer, E.A. (2017) Real-World Evidence in the Treatment of Ovarian Cancer. Annals of Oncology: Official Journal of the European Society for Medical Oncology, 28, viii61-viii65.
https://doi.org/10.1093/annonc/mdx443
[14] Siegel, R.L., Miller, K.D., Fuchs, H.E. and Jemal, A. (2021) Cancer Statistics, 2021. CA: A Cancer Journal for Clinicians, 71, 7-33.
https://doi.org/10.3322/caac.21654
[15] Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[16] Yao, S., Yuan, C., Shi, Y., Qi, Y., Sridha, R., Dai, M. and Cai, H. (2022) Alternative Splicing: A New Therapeutic Target for Ovarian Cancer. Technology in Cancer Research & Treatment, 21.
https://doi.org/10.1177/15330338211067911
[17] Hu, Z., Artibani, M., Alsaadi, A., et al. (2020) The Repertoire of Serous Ovarian Cancer Non-Genetic Heterogeneity Revealed by Single-Cell Sequencing of Normal Fallopian Tube Epi-thelial Cells. Cancer Cell, 37, 226-242.
https://doi.org/10.1016/j.ccell.2020.01.003
[18] Lheureux, S., Gourley, C., Vergote, I. and Oza, A.M. (2019) Epi-thelial Ovarian Cancer. The Lancet, 393, 1240-1253.
https://doi.org/10.1016/S0140-6736(18)32552-2
[19] Jeong, H.M., Han, J., Lee, S.H., Park, H.J., Lee, H.J., Choi, J.S., et al. (2017) ESRP1 Is Overexpressed in Ovarian Cancer and Promotes Switching from Mesenchymal to Epithelial Phenotype in Ovarian Cancer Cells. Oncogenesis, 6, E391.
https://doi.org/10.1038/oncsis.2017.89
[20] Pereira, B., Billaud, M. and Almeida, R. (2017) RNA-Binding Proteins in Cancer: Old Players and New Actors. Trends in Cancer, 3, 506-528.
https://doi.org/10.1016/j.trecan.2017.05.003
[21] Hong, S. (2017) RNA Binding Protein as an Emerging Therapeutic Target for Cancer Prevention and Treatment. Journal of Cancer Prevention, 22, 203-210.
https://doi.org/10.15430/JCP.2017.22.4.203
[22] Cretu, C., Schmitzova, J., Ponce-Salvatierra, A., Dybkov, O., De Laurentiis, E.I., Sharma, K., et al. (2016) Molecular Architecture of SF3b and Structural Consequences of Its Can-cer-Related Mutations. Molecular Cell, 64, 307-319.
https://doi.org/10.1016/j.molcel.2016.08.036
[23] Diao, Y., Li, Y., Wang, Z., Wang, S., Li, P. and Kong, B. (2022) SF3B4 Promotes Ovarian Cancer Progression by Regulating Alternative Splicing of RAD52. Cell Death & Disease, 13, 179.
https://doi.org/10.1038/s41419-022-04630-1
[24] Haferlach, T., et al. (2014) Landscape of Genetic Lesions in 944 Patients with Myelodysplastic Syndromes. Leukemia, 28, 241-247.
[25] Darman, R.B., et al. (2015) Can-cer-Associated SF3B1 Hotspot Mutations Induce Cryptic 3’ Splice Site Selection through Use of a Different Branch Point. Cell Reports, 13, 1033-1045.
https://doi.org/10.1016/j.celrep.2015.09.053
[26] Qian, Y., Chen, Y. and Li, X. (2021) CSF3R T618I, SETBP1 G870S, SRSF2 P95H, and ASXL1 Q780* Tetramutation Co-Contribute to Myeloblast Transformation in a Chronic Neutrophilic Leukemia. Annals of Hematology, 100, 1459-1461.
https://doi.org/10.1007/s00277-021-04491-2
[27] Obeng, E., Chappell, R., Seiler, M., et al. (2016) Physiologic Expression of Sf3b1K700E Causes Impaired Erythropoiesis, Aberrant Splicing, and Sensitivity to Therapeutic Spliceo-some Modulation. Cancer Cell, 30, 404-417.
https://doi.org/10.1016/j.ccell.2016.08.006
[28] Shirai, C.L., Ley, J.N., White, B.S., et al. (2015) Mutant U2AF1 Expression Alters Hematopoiesis and Pre-MRNA Splicing in Vivo. Cancer Cell, 27, 631-643.
https://doi.org/10.1016/j.ccell.2015.04.008
[29] Wang, Z., Wang, S., Qin, J., Zhang, X., Lu, G., Liu, H., Guo, H., Wu, L., Shender, V.O., Shao, C., Kong, B. and Liu, Z. (2022) Splicing Factor BUD31 Promotes Ovarian Cancer Pro-gression through Sustaining the Expression of Anti-Apoptotic BCL2L12. Nature Communications, 13, Article No. 6246.
https://doi.org/10.1038/s41467-022-34042-w
[30] Wang, C.K., Chen, T.J., Tan, G.Y.T., Chang, F.P., Sridharan, S., Yu, C.A., Chang, Y.H., Chen, Y.J., Cheng, L.T. and Hwang-Verslues, W.W. (2023) MEX3A Mediates P53 Degrada-tion to Suppress Ferroptosis and Facilitate Ovarian Cancer Tumorigenesis. Cancer Research, 83, 251-263.
https://doi.org/10.1158/0008-5472.CAN-22-1159
[31] Li, F., Zhao, C., Diao, Y., Wang, Z., Peng, J., Yang, N., Qiu, C., Kong, B. and Li, Y. (2022) MEX3A Promotes the Malignant Progression of Ovarian Cancer by Regulating In-tron Retention in TIMELESS. Cell Death & Disease, 13, Article No. 553.
https://doi.org/10.1038/s41419-022-05000-7
[32] Yoshida, K. and Miki, Y. (2010) Role of BRCA1 and BRCA2 as Regulators of DNA Repair, Transcription, and Cell Cycle in Response to DNA Damage. Cancer Science, 95, 866-871.
https://doi.org/10.1111/j.1349-7006.2004.tb02195.x
[33] Li, Y., Chen, Z., Peng, J., Yuan, C., Yan, S., Yang, N., Li, P. and Kong, B. (2023) The Splicing Factor SNRPB Promotes Ovarian Cancer Progression through Regulating Ab-errant Exon Skipping of POLA1 and BRCA2. Oncogene, 42, 2386-2401.
https://doi.org/10.1038/s41388-023-02763-x
[34] Wang, S., Wang, Z., Li, J., Qin, J., Song, J., Li, Y., et al. (2021) Splicing Factor USP39 Promotes Ovarian Cancer Malignancy through Maintaining Efficient Splicing of Oncogenic HMGA2. Cell Death & Disease, 12, Article No. 294.
https://doi.org/10.1038/s41419-021-03581-3
[35] Hsu, K.F., Shen, M.R., Huang, Y.F., Cheng, Y.M., Lin, S.H., Chow, N.H., et al. (2015) Overexpression of the RNA- Binding Proteins Lin28B and IGF2BP3 (IMP3) Is Associated with Chemoresistance and Poor Disease Outcome in Ovarian Cancer. British Journal of Cancer, 113, 414-424.
https://doi.org/10.1038/bjc.2015.254
[36] Pellarin, I., Dall’Acqua, A., Gambelli, A., Pellizzari, I., D’Andrea, S., Sonego, M., et al. (2020) Splicing Factor Proline- and Glutamine-Rich (SFPQ) Protein Regulates Platinum Response in Ovarian Cancer-Modulating SRSF2 Activity. Oncogene, 39, 4390-4403.
https://doi.org/10.1038/s41388-020-1292-6
[37] Zhao, L., Wang, W., Huang, S., Yang, Z., Xu, L., Yang, Q., et al. (2018) The RNA Binding Protein SORBS2 Suppresses Metastatic Colonization of Ovarian Cancer by Stabilizing Tu-mor-Suppressive Immunomodulatory Transcripts. Genome Biology, 19, Article No. 35.
https://doi.org/10.1186/s13059-018-1412-6
[38] Zhang, D., Zou, D., Deng, Y. and Yang, L. (2021) Systematic Analysis of the Relationship between Ovarian Cancer Prognosis and Alternative Splicing. Journal of Ovarian Research, 14, Article No. 120.
https://doi.org/10.1186/s13048-021-00866-1
[39] Yin, H., Wang, J., Li, H., Yu, Y., Wang, X., Lu, L., Lv, C., Chang, B., Jin, W., Guo, W., et al. (2021) Extracellular Matrix Protein-1 Secretory Isoform Promotes Ovarian Cancer through Increasing Alternative MRNA Splicing and Stemness. Nature Communications, 12, Article No. 4230.
https://doi.org/10.1038/s41467-021-24315-1
[40] Marima, R., Francies, F.Z., Hull, R., Molefi, T., Oyomno, M., Khanyile, R., Mbatha, S., Mabongo, M., Owen Bates, D. and Dlamini, Z. (2021) MicroRNA and Alternative MRNA Splicing Events in Cancer Drug Response/Resistance: Potent Therapeutic Targets. Biomedicines, 9, Article No. 1818.
https://doi.org/10.3390/biomedicines9121818
[41] 陈延君, 刘晓菲, 刘涵, 等. 中医药干预肿瘤相关巨噬细胞极化治疗乳腺癌的研究进展[J]. 中国现代普通外科进展, 2023, 26(9): 741-744.