聚对苯二甲酸乙二醇酯解聚为高附加值化学品的研究进展
Research Progress in Depolymerization of Polyethylene Terephthalate into High Value-Added Chemicals
DOI: 10.12677/HJCET.2024.142011, PDF, HTML, XML, 下载: 52  浏览: 90 
作者: 刘吉星*, 龚智婷, 聂思恒:浙江师范大学含氟新材料研究所,浙江 金华
关键词: 聚对苯二甲酸乙二醇酯催化解聚化学回收Polyethylene Terephthalate Catalytic Depolymerization Chemical Recycling
摘要: 聚对苯二甲酸乙二醇酯(PET)因其具有透明度高、重量轻和无毒等特性,广泛应用于饮料瓶、纺织品、塑料薄膜和食品包装等领域。随着PET的生产和消费快速增长,大量废弃PET造成的环境污染问题日益突出。本文概述了PET化学解聚为高附加值化学品的方法,主要包括水解法﹑醇解法﹑糖解法、胺解法和氢解法,同时讨论了不同化学解聚方法的优缺点,并对未来PET升级回收进行了展望。
Abstract: Polyethylene terephthalate (PET) is widely used in beverage bottles, textiles, plastic films, and food packaging due to its high transparency, light weight, and non-toxic properties. With the rapid growth of PET production and consumption, the environmental pollution caused by a large amount of waste PET has become increasingly prominent. In this paper, the methods of chemical depolymerization of PET into high value-added chemicals are summarized, including hydrolysis, methanolysis, glycolysis, aminolysis and hydrogenolysis. The advantages and disadvantages of different chemical depolymerization methods are discussed, and the future upgrading and recycling of PET are prospected.
文章引用:刘吉星, 龚智婷, 聂思恒. 聚对苯二甲酸乙二醇酯解聚为高附加值化学品的研究进展[J]. 化学工程与技术, 2024, 14(2): 98-105. https://doi.org/10.12677/HJCET.2024.142011

1. 引言

塑料因其重量轻、低成本、高机械加工性等优良特性,对人类生活和全球经济至关重要。塑料制品已经深入到现代生活的各个方面,包括电气设备、纺织品、包装、绝缘材料和建筑材料等。聚对苯二甲酸乙二醇酯(PET)是仅次于低密度聚乙烯、高密度聚乙烯和聚丙烯的第四大塑料,约占全球塑料年产量的11%,年生产规模约为5000万吨 ‎[1] 。聚对苯二甲酸乙二醇酯,英文名为Polythylene Terephthalate (PET)是一种最常见和应用最广泛的热塑性聚酯塑料,化学式为(C10H8O4)n,由对苯二甲酸与乙二醇缩聚反应制得的半结晶热塑性聚酯,密度为1.38 g/cm3,熔融温度为255~265℃,颜色为乳白色或浅黄色,表面平滑有光泽,PET的发展始于20世纪40年代,自那时起,它以其独特的性质受到了越来越多的关注。随着塑料工业的蓬勃发展和技术不断进步,PET的生产成本降低,在现今社会的工业生产与日常生活中扮演着至关重要的角色 ‎[2] 。

PET因其具有透明度高、重量轻、机械稳定、经济耐用和无毒等特性,广泛应用于饮料瓶、纺织品、塑料薄膜、食品包装、合成纤维和绝缘材料等。PET给人类生活带来便利的同时,由于其生产量大、使用周期短、化学结构稳定,在自然界中难以降解,大部分被倒入海洋或埋入土地,大量废弃PET造成的环境污染问题日益突出 ‎[3] 。尽管废弃PET的降解引起了全球越来越多的关注,但大多数国家的废弃PET回收率不到30% ‎[4] 。因此,将废弃PET升级化学回收制备高附加值化学品具有重要意义 ‎[5] ‎[6] ‎[7] 。本文主要论述了PET解聚为高附加值化学品的研究进展。

2. PET解聚为高附加值化学品

目前,对于工业界和学术界来说,开发绿色环保高效的PET回收方法是一项重要而紧迫的挑战,因为它对二氧化碳排放、减少垃圾污染和资源高效利用有重大影响。常见的废弃PET的回收方法为物理回收法和化学回收法。物理回收也称为机械回收,但是物理回收产品的附加值往往不高,且回收次数有限,每次物理回收后,PET的分子链可能会缩短,导致材料的物理性能下降,如降低抗张强度、韧性和透明度等,因此其应用范围较小。

而化学回收是将废弃PET材料通过化学工艺分解为其单体或其他小分子化学品的过程,其产物可以作为聚合PET的原料,用途更为广泛,真正实现PET的绿色循环使用并减少化石资源的消耗。但是化学解聚反应的能垒通常很高,这些反应需要在高温、高压的条件下才能发生。因此,通过开发高效催化剂在温和反应条件下解聚PET已经引起了整个研究领域的广泛关注,常见的PET化学解聚方法包括水解法﹑醇解法﹑糖解法、胺解法和氢解法 ‎[8] ‎[9] ‎[10] ‎[11] ‎[12] ‎[13] 。

2.1. 水解法

PET水解可以分为酸性水解、中性水解、碱性水解,生成对苯二甲酸(TPA)和乙二醇(EG),PET水解反应式如图1。酸性水解的溶剂一般为强酸,如浓硫酸、浓硝酸、浓磷酸等无机酸 ‎[14] 。Yoshioka等人采用硝酸水溶液解聚PET,反应温度为70~100℃,水解时间为72 h,研究发现减小PET颗粒尺寸、增加硝酸浓度、提高反应温度均可以提高PET的水解速率 ‎[15] 。Yoshioka等人采用硫酸水溶液为催化剂,PET在190℃水解1 h,转化率为100%,研究表明PET的降解程度随硫酸浓度和反应温度的增加而增加 ‎[16] 。Mancini等人也采用硫酸水溶液为催化剂,PET在135℃水解5 h,TPA的收率为87% ‎[17] 。由于高酸性反应条件,容易腐蚀设备、产生大量的无机盐及废水,同时TPA的提纯较为困难,因此酸性水解应用受限 ‎[18] 。

中性水解一般以水为溶剂,反应温度和压力分别为200~300℃、1~4 MPa。Wang等报道高浓度70% ZnCl2/H2O能显著加快PET水解速率,在453 K条件下反应8 h,对苯二甲酸的收率和纯度分别达到98.31%和97.14% ‎[19] 。Liu等人以醋酸锌为催化剂,PET在240℃水解1 h,TPA收率为90.5% ‎[20] 。中性水解可以避免酸碱性水解生成无机盐,同时也可以避免酸碱对设备的腐蚀,因此,中性水解引起了越来越多的研究者关注,但在中性水解过程中,反应温度较高,同时PET的残留杂质固体会影响产物对苯二甲酸的纯度。

碱性水解的溶剂一般是浓度为4~20%的NaOH或KOH的水溶液,产物是乙二醇和对苯二甲酸钠或对苯二甲酸钾,通过酸化得到对苯二甲酸,反应温度和压力分别为90~250℃、1.4~2 MPa。Mishara等人对PET在NaOH溶液中水解进行了动力学和热力学研究,在99℃反应2.5 h,对苯二甲酸收率达到85% ‎[21] 。Paliwal等人采用四丁基碘化铵为催化剂,以NaOH水溶液为溶剂,PET在90℃解聚0.75 h,TPA收率为99% ‎[22] 。碱性水解也会产生大量废水污染环境。综上所述,由于PET水解过程反应条件较为苛刻,产物对苯二甲酸纯化过程复杂,严重限制了其工业应用,需要结合更多创新和高效的技术来降低水解反应的能耗。

图1. PET水解反应式

2.2. 醇解法

图2. PET甲醇醇解反应式

PET醇解指的是PET在一定反应条件下与一元醇发生的解聚反应,大多数醇解是以甲醇为溶剂通过酯交换进行解聚,其他一元醇的报道较少。甲醇醇解是在催化剂的作用下,反应温度和压力分别为180~280℃、2~4 MPa,主要产物为对苯二甲酸二甲二甲酯(DMT)和乙二醇(EG),其反应式如图2,其中DMT和EG可重新用于生产PET、增塑剂、表面活性剂等。传统上PET甲醇分解是在超临界甲醇和接近超临界条件下进行的,PET在超临界状态下的解聚速率与产率都更有优势,Sako等人发现PET在超临界甲醇环境中(330℃、8.1 MPa)仅反应20 min,目标产物DMT的产率就达到了95% ‎[23] 。但在这种方法中,反应必须在高温高压下进行,反应条件苛刻且难以工业化应用,因此需要开发高效催化剂在温和的反应条件下解聚。

目前,常见醇解的催化剂为各种形式的金属盐,包括金属醋酸盐(如醋酸锌、醋酸铅)、金属氧化物和金属氢氧化物等。Mishral等人用醋酸锌和醋酸铅催化PET的醇解,同时研究了反应温度、PET粒径、反应时间对PET醇解的影响,在温度为120℃、反应时间为2 h,PET最佳粒径为127.5  µm时,PET的最佳转化率为97.8%,通过升高温度到130℃时,PET的转化率为100%,DMT的收率也接近100% ‎[24] 。Du等人以ZnO纳米粒子为催化剂,PET在170℃醇解15 min,PET的转化率为97%,其中DMT的选择性为95% ‎[25] 。Kurokawa等人以三异丙醇铝(AIP)为催化剂,PET在160℃醇解2 h,PET的转化率为100%,其中DMT的选择性为80% ‎[26] 。

Pham等人开发了一种低能PET醇解途径,以廉价无毒的碳酸钾盐(K2CO3)为催化剂,探索了常温解聚PET的新途径。与之前甲醇分解工艺相比,该体系的整体反应速度相对较慢且稳定,在25℃反应24 h,PET的转化率为100%,DMT的收率为93.1% ‎[27] 。这些金属盐催化剂在PET醇解中表现出很高的催化性能,它们对设备的腐蚀性略低于液态酸和液碱。但是PET醇解的也存在缺点,比如催化剂失活、微量水的生成引起的DMT(目标产物)进一步水解为TPA(副产物)、甲醇的低沸点导致设备成本高。

2.3. 糖解法

PET糖解指的是PET在一定反应条件下与二元醇或多元醇发生的解聚反应,大多数研究者采用乙二醇为二元醇进行PET的解聚,主要产物为对苯二甲酸双羟乙酯(BHET)和乙二醇(EG),其反应式如图3,其中BHET可重新用于生产PET,同时它还可以作为不饱和聚酯和聚氨酯的原料。糖解与甲醇醇解类似,也是通过酯交换解聚,PET糖解温度一般在180~250℃,反应时间为8~10 h,常用的催化剂为醋酸盐、金属氧化物、有机催化剂、和离子液体(IL)等。

图3. PET乙二醇糖解反应式

Wang等人合成了高活性、高稳定性的过渡金属离子液体[Bmim]2 [CoC14]催化剂,PET在175 ℃糖解1.5 h,PET的转化率为100%,BHET收率为81.1%。同时该研究表明PET粒径、反应温度和反应时间对PET的解聚起着关键作用 ‎[28] 。Le等人开发了一种新型糖解催化方法,在糖解反应体系中加入具有烷氧基取代的芳香族化合物(如苯甲醚)作为绿色助溶剂,催化剂为醋酸钠,PET在153℃,2 h内完全解聚,BHET收率为86% ‎[29] 。

Shirazimoghaddam等人合成了硫酸改性的铌基催化剂用于PET的糖解,在195℃,220 min,PET与EG质量比为1:6的最佳条件下,PET的转化率为100%、BHET收率为85% ‎[30] 。利用廉价的铌基催化剂将PET解聚成BHET,该催化剂可循环利用,具有较好的工业应用前景。

Fehér等人合成了Si-TEA和Si-TBD有机催化剂,最佳反应条件为190℃,PET与EG摩尔比为0.08,反应时间为1.7 h,两种催化剂的BHET收率都很高(Si-TEA为89%,Si-TBD为88%),该催化剂Si-TEA和Si-TBD可以通过简单过滤回收再次使用,对环境的影响很小,这两种催化剂都可以作为有机催化剂或其他非均相催化剂的良好替代品,以高产率和选择性应用于PET糖解 ‎[31] 。Wang等人用尿素改性的ZnCl2催化剂,PET在170℃糖解30 min,PET的转化率100%,其中BHET的选择性为83%,该反应条件较为温和且解聚时间较短 ‎[32] 。

PET糖解制BHET的效率有显著提高,但工业生产厂家旨在降低运行成本,实现高值转化。从节约能源的角度出发,在保证高转化率的同时,反应温度和EG的加入量应尽可能低。另外催化剂的稳定性、串联反应体系、有效的产品分离工艺和高质量的纯产品对PET回收也有重要影响。因此,仅仅关注提高产品效率而忽视PET升级回收的整体经济可行性是不利于工业生产的。

2.4. 胺解法

PET胺解是指PET和不同种类的胺发生胺解反应生成对应的苯酰胺,胺解的原理是利用胺基的亲核性攻击PET链上的酯键,从而使PET解聚。常见的胺解试剂为乙胺,乙醇胺,乙二胺和甲胺。大多数研究者以乙醇胺(EA)为溶剂,产物为双(2-羟乙基)对苯二甲酸二酰胺(BHETA)、乙二醇和水,BHETA可以用于聚氨酯的合成。PET胺解的反应条件较为温和,常用的催化剂有醋酸钠、醋酸、硫酸钠和碳酸钠等。

Parab等人采用b-沸石分子筛作为催化剂,EA为溶剂,PET在170℃反应4 h,BHETA的收率为85%,同时也研究了蒙脱石KSF催化剂在相同的反应条件下,BHETA的收率为86% ‎[33] 。这两种催化剂制备简单,容易回收且无毒,可替代重金属催化剂,使得该催化体系更加经济便捷。Palekar等人以离子液体[Bmim] HSO4为催化剂,PET在EA中196℃胺解1 h,BHETA的收率为84% ‎[34] 。该催化体系大大缩短了反应时间,但是催化剂分离较为困难。More等人以醋酸锌为催化剂,PET与乙醇胺的质量比为1:4,解聚温度为160℃,反应时间为3 h,BHETA收率为81%,将BHETA与庚酸反应,所得产物可用作聚氯乙烯的增塑剂 ‎[35] 。

Shukla等人采用冰醋酸或醋酸钠作为催化剂,PET与乙醇胺的摩尔比为1:6,将PET进行解聚8 h,得到了较高纯度的BHETA,其收率为91% ‎[36] 。Vinitha等人合成了Sn-ZnO纳米催化剂用于PET胺解,先加热到155~160℃将PET溶于乙醇胺,再加入Sn-ZnO催化剂,BHETA的收率高达95%,BHETA不需要再进一步纯化,易于分离,该催化剂使用多次后仍有较高的活性,但是反应体系的温度相对较高 ‎[37] 。

PET的胺解为PET升级回收提供了一种新的途径,由于PET的胺解反应速率较慢,产物收率受胺解试剂和催化剂用量的影响,产物纯度也还有待提高,需进一步探索提高PET回收的整体经济性。

2.5. 氢解法

PET氢解是指PET在高温高压的条件下,通入一定量的氢气与催化剂发生的解聚反应,得到高附加值化学品,如芳烃、饱和环烷烃等。它们都可以被用作燃料,芳烃是化工、医药、农药等工业领域的重要原料,同时也可以合成树脂和橡胶。氢解催化剂一般是有金属负载的酸性载体,比如Ru/Nb2O5、Ru/TiO2、Co/TiO2等。对于PET的氢解,负载贵金属Ru基催化剂比其他贵金属(如Pt、Pd)催化剂活性更高、BTX(苯、甲苯、二甲苯)选择性更高。

Ye等人使用Ru/TiO2催化剂在水溶剂中、初始氢压为0.3 MPa、温度为230℃,氢解PET 12 h,BTX收率为77%。该研究表明通过调整Ru/TiO2催化剂中的Ru配位环境,将PET高效转化为BTX ‎[38] 。Jing等人使用Ru/Nb2O5催化剂将PET在水溶剂中、初始氢压为0.3 MPa、200℃反应12 h,总收率为95.2%,芳烃的选择性为87.1%。结果表明,亚纳米Ru粒子阻止了芳环的加氢,Nb2O5上的Lewis酸、Brønsted酸位点分别有利于C-O、C-C键活化 ‎[39] 。Tang等人也报道了通过贵金属基催化剂将PET解聚为芳烃和C7-C8环烷烃 ‎[40] 。Ru基催化剂氢解PET为芳烃的活性很高,但是贵金属使得其反应体系成本大大提高。

Hongkailers等人开发了一种非贵金属Co/TiO2催化剂,以十二烷为溶剂、初始氢压为3 MPa、温度为340℃,氢解PET 24 h,芳烃(甲苯和二甲苯)收率为78.9% ‎[41] 。最近,Gao等人也报道了一种高效回收PET的方法,通过水热法合成CuNa/SiO2催化剂,反应条件为210℃、6 h、甲醇作为溶剂并提供氢源,PET的转化率和对二甲苯的收率均为100% ‎[42] 。芳烃的主要来源是通过石油催化裂解,PET氢解为制备芳烃提供了一种新的途径。PET氢解为高附加值化学品取得了较大进展,但是催化剂失活、催化体系成本较高等问题导致无法大规模回收PET,需要进一步降低能耗实现PET高质回收。

3. 总结与展望

综上所述,PET通过化学解聚为高附加值化学品,既实现了PET的循环利用,又解决了废弃PET环境污染问题,具有广阔的应用前景和重大的现实意义。未来需要开发更温和、高效、经济的PET化学解聚催化体系,完善PET解聚过程的理论研究,降低反应能耗,提高解聚产物的收率和选择性并实现其功能化利用。

NOTES

*通讯作者。

参考文献

[1] Geyer, R., Jambeck, J.R. and Law, K.L. (2017) Production, Use, and Fate of All Plastics Ever Made. Science Ad-vances, 3, e1700782.
https://doi.org/10.1126/sciadv.1700782
[2] Xin, J., Zhang, Q. Huang, J., Huang, R., et al. (2021) Progress in the Catalytic Glycolysis of Polyethylene Terephthalate. Journal of Environmental Manage-ment, 296, Article ID: 113267.
https://doi.org/10.1016/j.jenvman.2021.113267
[3] Vollmer, I., Jenks, M.J., Roelands, M.C., et al. (2020) Beyond Mechanical Recycling: Giving New Life to Plastic Waste. Angewandte Chemie International Edition, 59, 15402-15423.
https://doi.org/10.1002/anie.201915651
[4] Rorrer, N.A., Nichol-son, S., Carpenter, A., et al. (2019) Combining Reclaimed PET with Bio-Based Monomers Enables Plastics Upcy-cling. Joule, 3, 1006-1027.
https://doi.org/10.1016/j.joule.2019.01.018
[5] Jiang, M.K., Wang, X.L., Xi, W.L., et al. (2024) Chemical Catalytic Upgrading of Polyethylene Terephthalate Plastic Waste into Value-Added Materials, Fuels and Chemicals. Science of the Total Environment, 912, Article ID: 169342.
https://doi.org/10.1016/j.scitotenv.2023.169342
[6] Nisticò, R., (2020) Polyethylene Terephthalate (PET) in the Packaging Industry. Polymer Testing, 90, Article ID: 106707.
https://doi.org/10.1016/j.polymertesting.2020.106707
[7] Shojaei, B., Abtahi, M. and Najafi, M. (2020) Chemical Recycling of PET: A Stepping-Stone toward Sustainability. Polymers Advanced Technologies, 31, 2912-2938.
https://doi.org/10.1002/pat.5023
[8] Chu, M.Y., Liu, Y., Lou, X.X., et al. (2022) Rational Design of Chemical Catalysis for Plastic Recycling. ACS Catalysis, 12, 4659-4679.
https://doi.org/10.1021/acscatal.2c01286
[9] Zheng, K., Wu, Y., Hu, Z., et al. (2023) Progress and Perspective for Conversion of Plastic Wastes into Valuable Chemicals. Chemical Society Reviews, 52, 8-29.
https://doi.org/10.1039/D2CS00688J
[10] George, N. and Kurian, T. (2014) Recent Developments in the Chemical Recycling of Postconsumer Poly (Ethylene Terephthalate) Waste. Industrial &Engineering Chemistry Research, 53, 14185-14198.
https://doi.org/10.1021/ie501995m
[11] Raheem, A.B., Noor, Z.Z., Hassan, A., et al. (2019) Current Devel-opments in Chemical Recycling of Post-Consumer Polyethylene Terephthalate Wastes for New Materials Production: A Review. Journal of Cleaner Production, 225, 1052-1064.
https://doi.org/10.1016/j.jclepro.2019.04.019
[12] Cano, I., Martin, C., Fernandes, J.A., et al. (2020) Para-magnetic Ionic Liquid-Coated SiO2@Fe3O4Nanoparticles—The Next Generation of Magnetically Recoverable Nanocatalysts Applied in the Glycolysis of PET. Applied Catalysis B: Environmental, 260, Article ID: 118110.
https://doi.org/10.1016/j.apcatb.2019.118110
[13] Sheel, A. and Pant, D. (2018) 6-Chemical Depolymeriza-tion of Polyurethane Foams via Glycolysis and Hydrolysis. In: Thomas, S., et al., Eds., Recycling of Polyurethane Foams, William Andrew, Norwich, 67-75.
https://doi.org/10.1016/B978-0-323-51133-9.00006-1
[14] Dutt, K. and Soni, R.K. (2013) A Review on Synthesis of Value Added Products from Polyethylene Terephthalate (PET) Waste. Polymer Science Series B, 55, 430-452.
https://doi.org/10.1134/S1560090413070075
[15] Yoshioka, T., Okayama, N. and Okuwaki, A. (1998) Kinetics of Hydrolysis of PET Powder in Nitric Acid by a Modified Shrinking-Core Model. Industrial & Engineering Chemistry Research, 37, 336-340.
https://doi.org/10.1021/ie970459a
[16] Yoshioka, T., Motoki, T. and Okuwaki, A. (2001) Kinetics of Hy-drolysis of Poly (Ethylene Terephthalate) Powder in Sulfuric Acid by a Modified Shrinking-Core Model. Industrial & Engineering Chemistry Research, 40, 75-79.
https://doi.org/10.1021/ie000592u
[17] Mancini, S.D. and Zanin, M. (2007) Post Consumer Pet Depolymeri-zation by Acid Hydrolysis. Polymer-Plastics Technology and Engineering, 46, 135-144.
https://doi.org/10.1080/03602550601152945
[18] Yoshioka, T., Sato, T. and Okuwaki, A. (1944) Hydrolysis of Waste PET by Sulfuric Acid at 150°C for Achemical Recycling. Journal of Applied Polymer Science, 52, 1353-1355.
https://doi.org/10.1002/app.1994.070520919
[19] Wang, Y.Q., Zhang, Y., Song, H.Y., et al. (2019) Zinc-Catalyzed Ester Bond Cleavage: Chemical Degradation of Polyethylene Terephthalate. Journal of Cleaner Production, 208, 1469-1475.
https://doi.org/10.1016/j.jclepro.2018.10.117
[20] Liu, Y.P., Wang, M.X. and Pan, Z.Y. (2012) Catalytic De-polymerization of Polyethylene Terephthalate in Hot Compressed Water. Journal of Supercritical Fluids, 62, 226-231.
https://doi.org/10.1016/j.supflu.2011.11.001
[21] Mishra, S., Zope, V.S. and Goje, A.S. (2002) Ki-netic and Thermodynamic Studies of Depolymerisation of Poly (Ethylene Terephthalate) by Saponification Reac-tion. Polymer International, 51, 1310-1315.
https://doi.org/10.1002/pi.873
[22] Paliwal, N.R. and Mungray, A.K. (2013) Ultrasound Assisted Alkaline Hydrolysis of Poly (Ethylene Terephthalate) in Presence of Phase Transfer Catalyst. Polymer Degradation and Stability, 98, 2094-2101.
https://doi.org/10.1016/j.polymdegradstab.2013.06.030
[23] Sako, T., Okajima, I., Sugeta, T., et al. (2000) Recovery of Constituent Monomers from Polyethylene Terephthalate with Supercritical Methanol. Polymer Inter-national, 32, 178-181.
https://doi.org/10.1295/polymj.32.178
[24] Mishra, S. and Goje, A. (2003) Kinetic and Thermodynamic Study of Methanolysis of Poly (Ethylene Terephthalate) Waste Powder. Polymer International, 52, 337-342.
https://doi.org/10.1002/pi.1147
[25] Du, J.T., Sun, Q., Zeng, X.F., et al. (2020) ZnO Nanodispersion as Pseudohomogeneous Catalyst for Alcoholysis of Polyethylene Terephthalate. Chemical Engineering Science, 220, Article ID: 115642.
https://doi.org/10.1016/j.ces.2020.115642
[26] Kurokawa, H., Ohshima, M., Sugiyama, K., et al. (2003) Methanolysis of Polyethylene Terephthalate (PET) in the Presence of Aluminium Tiisopropoxide Catalyst to Form Dimethyl Terephthalate and Ethylene Glycol. Polymer Degradation and Stability, 79, 529-533.
https://doi.org/10.1016/S0141-3910(02)00370-1
[27] Pham, D.D. and Cho, J. (2021) Low-Energy Catalytic Methanolysis of Poly (Ethylene Terephthalate). Green Chemistry, 23, 511-525.
https://doi.org/10.1039/D0GC03536J
[28] Wang, Q., Geng, Y.R., Lu, X.M., et al. (2015) First-Row Transition Metal-Containing Ionic Liquids as Highly Active Catalysts for the Glycolysis of Poly (Ethylene Terephthalate) (PET). ACS Sustainable Chemistry & Engineering, 3, 340-348.
https://doi.org/10.1021/sc5007522
[29] Le, N.H., Van, T.T.N., Shong, B., et al. (2022) Low-Temperature Glycolysis of Polyethylene Terephthalate. ACS Sustainable Chemistry & Engineering, 10, 17261-17273.
https://doi.org/10.1021/acssuschemeng.2c05570
[30] Shirazimoghaddam, S., Amin, I., Albanese, J.A.F., et al. (2023) Chemical Recycling of Used PET by Glycolysis Using Niobia-Based Catalysts. ACS Engineering Au, 3, 37-44.
https://doi.org/10.1021/acsengineeringau.2c00029
[31] Fehér, Z., Kiss, J., Kisszékelyi, P., et al. (2022) Optimisation of PET Glycolysis by Applying Recyclable Heterogeneous Organocatalysts. Green Chemistry, 24, 8447-8459.
https://doi.org/10.1039/D2GC02860C
[32] Wang, Q., Yao, X.Q., Geng, Y.R., et al. (2015) Deep Eutectic Solvents as Highly Active Catalysts for the Fast and Mild Glycolysis of Poly (Ethylene Terephthalate) (PET). Green Chemistry, 17, 2473-2479.
https://doi.org/10.1039/C4GC02401J
[33] Parab, Y.S., Shah, R.V. and Shukla, S.R. (2012) Microwave Irra-diated Synthesis and Characterization of 1, 4-Phenylene Bis-Oxazoline Form Bis-(2-Hydroxyethyl) Terephthalamide Obtained by Depolymerization of Poly (Ethylene Terephthalate) (PET) Bottle Wastes. Current Chemistry Letters, 1, 81-90.
https://doi.org/10.5267/j.ccl.2012.3.003
[34] Palekar, V.S., Shah, R.V. and Shukla, S.R. (2012) Ionic Liq-uid-Catalyzed Aminolysis of Poly (Ethylene Terephthalate) Waste. Journal of Applied Polymer Science, 126, 1174-1181.
https://doi.org/10.1002/app.36878
[35] More, A.P., Kute, R.A. and Mhaske, S.T. (2014) Chemical Conversion of PET Waste Using Ethanolamine to Bis (2-Hydroxyethyl) Terephthalamide (BHETA) through Ami-nolysis and a Novel Plasticizer for PVC. Iranian Polymer Journal, 23, 59-67.
https://doi.org/10.1007/s13726-013-0200-0
[36] Shukla, S.R. and Harad, A.M. (2006) Aminolysis of Poly-ethylene Terephthalate Waste. Polymer Degradation and Stability, 91, 1850-1854.
https://doi.org/10.1016/j.polymdegradstab.2005.11.005
[37] Vinitha, V., Preeyanghaa, M., Anbarasu, M., et al. (2022) Aminolytic Depolymerization of Polyethylene Terephthalate Wastes Using Sn-Doped ZnO Nanoparticles. Journal of Polymers and the Environment, 30, 3566-3581.
https://doi.org/10.1007/s10924-022-02455-9
[38] Ye, M.X., Li, Y.R., Yang, Z.R., et al. (2023) Rutheni-um/TiO2-Catalyzed Hydrogenolysis of Polyethylene Terephthalate: Reaction Pathways Dominated by Coordination Environment. Angewandte Chemie International Edition, 62, e202301024.
https://doi.org/10.1002/anie.202301024
[39] Jing, Y.X., Wang, Y.Q., Furukawa, S., et al. (2021) Towards the Circular Economy: Converting Aromatic Plastic Waste back to Arenes over Ru/Nb2O5 Catalyst. Angewandte Chemie International Edition, 60, 5527-5535.
https://doi.org/10.1002/anie.202011063
[40] Tang, H., Li, N., Li, G.Y., et al. (2019) Synthesis of Gasoline and Jet Fuel Range Cycloalkanes and Aromatics from Poly (Ethylene Terephthalate) Waste. Green Chemistry, 21, 2709-2719.
https://doi.org/10.1039/C9GC00571D
[41] Hongkailers, S., Jing, Y.X., Wang, Y.Q., et al. (2021) Recovery of Arenes from Polyethylene Terephthalate (PET) over a Co/TiO2 Catalyst. ChemSusChem, 14, 4330-4339.
https://doi.org/10.1002/cssc.202100956
[42] Gao, Z.W., Ma, B., Chen, S., et al. (2022) Converting Waste PET Plastics into Automobile Fuels and Antifreeze Components. Nature Communications, 13, Article No. 3343.
https://doi.org/10.1038/s41467-022-31078-w