细菌分裂调控Min系统的功能、机制及应用研究进展
Bacterial Division Regulatory Min System: Functions, Mechanisms and Applications
DOI: 10.12677/AMB.2024.131004, PDF, HTML, XML, 下载: 32  浏览: 94  国家自然科学基金支持
作者: 张明磊, 何亚文:上海交通大学生命科学技术学院,微生物代谢国家重点实验室,教育部代谢与发育科学国际合作 联合实验室,上海
关键词: 细菌细胞分裂调控Min系统生物学功能应用潜力Bacteria Cell Division Regulation Min System Biological Functions Potential Applications
摘要: 细菌分裂过程及其调控机制是生物学研究中的根本问题。大多数细菌采用“二分裂”方式分裂,分裂过程主要包括染色体复制和分离、FtsZ组装成Z环、细胞内隔膜形成与子细胞形成等关键步骤。Min系统是Z环组装的主要调控系统之一,由FtsZ抑制蛋白MinC、膜结合的ATP酶MinD和结构拓扑因子MinE组成。早期研究大多聚焦在Min系统的细胞分裂调控功能,然而Min系统还作为细胞内部重要的自组装调控系统参与多种细胞代谢生理过程与细胞表型,具有应用开发潜力。本文首先简要概述Min系统的主要类型、结构特征和摆动模型,随后从细胞分裂、细胞运动性、细菌粘附性与致病性、细胞代谢生理过程等方面总结Min系统的生物学功能,最后介绍Min系统在细胞形态工程、抗菌制剂开发和合成生物学应用等方面的应用潜力。
Abstract: Bacterial division and its regulatory mechanisms are fundamental biological research areas. Most of the bacteria divide by binary fission, and the division process mainly involves chromosome replication and segregation, assembly of FtsZ into Z-ring, intracellular septum formation and daughter cell formation. Min system is one of the major regulatory systems for Z-ring assembly and consists of MinC (FtsZ inhibitory protein), MinD (membrane-bound ATPase), and MinE (structural topology factor). Most of the early studies focused on the roles of Min system on bacterial division. However, recent findings suggest that Min system is an important intracellular self-assembly regulatory system and is involved in a variety of cellular metabolism, physiological processes and other phenotypes. In this review, we first briefly outline the major types, structural features and oscillatory models of the Min system. We then summarize the Min system-regulated biological functions, including cell division, cell motility, bacterial adhesion and pathogenicity, and physiological processes of cellular metabolism. Finaly, we introduce the potential applications of the Min system in cellular morphology engineering, antimicrobial agent development and synthetic biology.
文章引用:张明磊, 何亚文. 细菌分裂调控Min系统的功能、机制及应用研究进展[J]. 微生物前沿, 2024, 13(1): 35-48. https://doi.org/10.12677/AMB.2024.131004

1. 引言

细菌分裂机制及调控一直是研究热点。大多数细菌采用“二分裂”方式完成细胞分裂,分裂过程主要包括染色体复制和分离、Z环组装、细胞内隔膜形成与子细胞形成等环节(图1) [1] 。其中,Z环组装是指丝状温度敏感蛋白变体Z (Filamenting Temperature Sensitive Mutant Z, FtsZ)以头–尾结合的方式在细胞中央聚合组装形成环状结构的过程,是细胞分裂过程中的关键步骤,受到精密调控 [1] [2] 。Min系统是Z环组装的关键调控系统,该系统的缺失会导致细胞分裂时Z环的定位和形成时间出现异常,进而引起染色体分裂的错乱和不对称分裂,形成分裂不完全的长丝状细胞和不含染色体的微小细胞(Minicells),这也是其名字的由来 [3] [4] 。本文将首先简要概述Min系统的主要类型、结构特征和摆动模型,随后总结Min系统在细胞分裂、细胞运动性、细菌粘附性与致病性、细胞代谢生理过程等方面的生物学功能,最后介绍Min系统在细胞形态工程、抗菌制剂开发和合成生物学等方面的应用。

Figure 1. The process of bacterial cell division

图1. 细菌细胞分裂过程

2. Min系统的主要类型

根据组成成分可以将Min系统分为革兰氏阴性菌Min系统、革兰氏阳性菌Min系统和蓝细菌Min系统三个类型,同时在植物叶绿体、古细菌中还存在独特的Min系统进化类型。革兰氏阴性菌Min系统以大肠杆菌中的Min系统为代表,由FtsZ功能抑制蛋白MinC、膜结合的ATP酶MinD和结构拓扑因子MinE组成,是研究最为深入的Min系统。MinD是这一系统的核心组分,它定位于细胞两极的细胞膜上,负责招募MinC并与之互作;MinC负责实现对FtsZ组装的抑制 [5] 。MinE则可以与MinC竞争互作位点,与MinD结合,迫使MinCD解体进入游离状态并移动向细胞另一极重新组装,实现Min系统的摆动 [6] [7] 。

革兰氏阳性菌Min系统以枯草芽孢杆菌的Min系统为代表,包含保守的MinC和MinD以及代替MinE功能的DivIVA。DivIVA与MinE不同,它会静态偶联在细胞膜上参与MinCD互作的干扰 [8] [9] 。同时,革兰氏阳性菌Min系统还存在MinJ组分,作为MinCD和DivIVA的连接蛋白参与Min系统的功能 [9] 。

蓝细菌作为革兰氏阴性菌和革兰氏阳性菌的共同祖先,同时具有与革兰氏阴性菌类似的Min系统和与革兰氏阳性菌DivIVA蛋白类似的Cdv3蛋白,两种形式的Min系统共同完成Z环组装的定位调控 [10] 。

此外,Min系统也存在于叶绿体和古细菌中。在叶绿体中仅发现MinD和MinE,未发现MinC的同源蛋白,植物质体分裂蛋白ARC3被认为可能代替MinC的功能 [11] 。古细菌中存在两种分别为膜定位和非膜定位的MinD同源蛋白 [12] [13] [14] ,表明古菌细胞分裂调节机制可能与原核细菌相似。

3. Min系统的结构特征和摆动模型

3.1. MinC、MinD和MinE的结构特征

Min系统中,MinC是真正的FtsZ功能抑制蛋白,MinD是膜定位ATPase,MinE是结构拓扑因子。MinD将MinC定位到细胞膜,MinE与MinC竞争MinD上同样的相互作用位点,迫使MinC进入游离状态,三种组分的相互作用共同保证细胞在两极处不发生异常分裂 [8] 。

以大肠杆菌的Min系统为例(图2),MinC蛋白大小为231个氨基酸,包含N端FtsZ结合结构域(Z domain),C端MinD结合结构域(D domain),两个结构域由一个柔性接头连接,以二聚体形式发挥功能 [15] [16] 。Z domain即使在MinD不存在的条件下仍可以实现对FtsZ组装的抑制 [17] 。D domain主要由疏水残基组成,包含高度保守的RSGQ残基序列,负责介导与MinD的S148、D154和I159进行相互作用 [18] [19] 。

MinD是ParA/MinD家族的二聚体ATPase,单体大小为270个氨基酸,其C端与细胞膜结合 [20] 。MinD的结构中包含N端保守的Walker A基序GKGGVGKT和位于中间部位保守的Walker B基序DSPA,以及C端膜结合结构域(MTS domain) [21] [22] 。MinD依靠保守的Walker基序和Switch I基序实现与MinC、MinE的合作以及ATP的分解。与膜结合的MinD招募MinC形成MinCD与膜的复合体,这一复合体可以抑制FtsZ在细胞膜上组装 [20] 。

MinE是一种以二聚体形式存在的蛋白分子,大小为88个氨基酸,功能为将MinCD复合体限制在细胞两极处 [23] 。MinE具有N端的MinCD拮抗结构域(Anti-MinCD Domain, AMD)和C端的专一性拓扑结构域(Topological Domain, TSD),TSD结构域赋予MinE识别细胞两极和中部的能力 [6] 。MinE与MinD的互作会促进MinD催化ATP水解,这是MinCDE复合体在细胞两极之间摆动的驱动力来源。MinD完成ATP水解催化后会进入细胞质,并在细胞的另一极重新完成膜定位并开启新一轮组装 [24] [25] 。

3.2. Min系统的摆动模型

Min系统发挥功能的经典机制可以用摆动模型进行解释(图3)。MinC与MinD的结合与分离会在细胞两极之间不断往返摆动,这一摆动的驱动力来源是ATP提供能量下的MinC、MinD、MinE三个蛋白分子之间的互作及它们与细胞膜的互作 [26] 。在ATP存在的条件下,MinD会以二聚体的形式与细胞膜结合,当MinC被招募与MinD结合后,MinCD会抑制FtsZ的组装 [18] 。MinE与MinD互作的位点与MinC有重合,当MinE代替MinC与MinD结合后,MinD会催化水解ATP并与膜分离移向细胞另一极重新与MinC组装,这一过程不断重复直至FtsZ仅被限制在细胞中部组装 [18] 。

大肠杆菌的Min系统在革兰氏阴性菌中是相当保守的,大多数革兰氏阴性菌的Min系统发挥功能的机制均与大肠杆菌中摆动模型类似 [27] - [33] 。革兰氏阳性细菌中的Min系统发挥功能的机制略有不同,由于MinE的功能由DivIVA代替,所以Min系统的功能也从摆动模型变化为DivIVA以静态形式抑制MinCD定位 [34] [35] 。蓝细菌中的Min系统同时通过前述两种形式发挥功能 [10] [36] [37] 。

Min系统发挥调控功能还存在浓度比例的问题。MinC在胞内的浓度小于0.7 μM,要比MinD和FtsZ低6~8倍 [38] [39] 。低浓度的MinC如何高效发挥作用值得关注,Ghosa等的结果显示MinC的晶体结构两侧为MinD单体,MinC和MinD在结合时的比例关系为1:1,二者的结合可以被MinE在10~15 min内完全抑制 [40] 。Huang等在铜绿假单胞菌中得到类似的结果:MinC和MinD比例为1:1,MinC、MinD的互作与ATP开始水解之间存在~100秒的滞后时间 [41] 。有趣的是,在对MinCDE缺陷的菌株进行回补时,表达MinCDE基因需要低拷贝的质粒载体而不是高拷贝的质粒载体 [42] 。

Figure 2. Structural characteristics of protein components in the Min system of Escherichia coli [86]

图2. 大肠杆菌Min系统蛋白组分的结构特征 [86]

Figure 3. The swing model for the Min system to perform its functions [87]

图3. Min系统发挥功能的摆动模型 [87]

4. Min系统的生物学功能(表1)

4.1. 调控细胞分裂和细胞形态

Min系统中任一组分的缺失都会使得细胞分裂无法正常进行,最直接的表型是不均等分裂,形成微小细胞和长丝状细胞,这是Min系统缺陷菌株最经典的细胞表型。Min系统对细胞分裂的调节作用在多种革兰氏阴性菌如大肠杆菌、铜绿假单胞菌 [27] [28] 、柑橘黄单胞菌(Xanthomonas citri) [29] 稻黄单胞菌(Xanthomonas oryzae) [30] 淋病奈瑟菌(Neisseria gonorrhoeae) [31] 、福氏志贺菌(Shigella flexneri) [32] 、副溶血性弧菌(Vibrio parahaemolyticus) [32] 和霍乱弧菌(Vibrio cholerae) [33] ,革兰氏阳性菌如枯草芽孢杆菌、艰难梭菌(Clostridium difficile) [35] ,蓝细菌类的细长聚球藻(Synechococcus elongatus) [36] 和聚球藻(Synechocystis sp) [37] 以及古细菌类的盐沼盐杆菌(Halobacterium salinarum) [43] 、沃氏富盐菌(Haloferax volcanii) [13] 和西班牙盐杆菌(Haloarcula japonica) [13] 等一系列种属中均有报道。需要注意的是,Min系统是细菌分裂的重要调控系统,但并不是唯一的调控系统。细菌还通过类核阻塞效应(Nucleoid Occlusion)等机制实现细胞分裂调控 [44] 。

4.2. 影响细胞运动性

细菌通过细胞运动实现对有利环境的趋向和不利环境的远离。细菌运动方式存在细胞群体运动(Swarming Motility)、细胞泳动(Swimming Motility)、细胞皱缩运动(Twiching Motility)等多种形式 [45] 。Min系统对细菌的细胞运动性发挥着调节作用主要是通过与细菌鞭毛调节因子相互作用实现的。在细胞运动性研究的模式菌株奇异变形杆菌(Proteus mirabilis)中,转录因子RcsB抑制鞭毛合成调节因子FlhDC的表达,同时也可以激活MinC的表达。RcsB的缺失会使得奇异变形杆菌的细胞运动性增加,但细胞呈现长丝状变形 [46] 。MinC缺失时细胞的运动性明显降低,这说明MinC可能参与RcsB对FlhDC进行表达调控的过程 [46] 。类似的结果也出现在幽门螺杆菌(Helicobacter pylori)和稻黄单胞菌中观察到 [39] [47] ,Min系统的缺失主要导致细菌群体运动和泳动能力的下降。除此之外,枯草芽孢杆菌、空肠梭菌(Clostridium jejuni)、腐殖质沙瓦氏菌(Shewanella putrefaciens)中均存在的鞭毛调节因子FlhG与大肠杆菌的MinD具有较高的结构相似性 [48] [49] [50] ,表明MinD与FlhG可能是从共同的祖先进化形成,对细菌鞭毛的形成和细菌运动也发挥调节作用。

4.3. 参与细菌粘附性和致病性

细菌粘附性是指细菌与宿主建立连接的过程。除粘附性外,细菌还具有细胞分泌系统、细胞抗氧化性等多种致病因子。Parti等发现肠出血性大肠杆菌EHEC中MinD的缺失降低了细菌的粘附性,出现了微小细胞和长丝状细胞等典型表型 [51] 。在致病性淋病奈瑟菌中,MinD或MinC的缺失也导致该病原菌对尿道上皮细胞粘附性降低 [40] 。淋病奈瑟菌的氧化还原转录因子编码基因oxyR位于minD下游274 bp的位置,与minD共转录,二者的缺失均会导致细胞分裂异常 [40] 。OxyR负调控minD的转录,OxyR突变体中minD的表达上调;在氧化应激条件下,minD的表达水平也明显上升 [52] 。Ahlund等在新凶手弗郎西斯菌(Francisella novicida)中证实MinC和MinD调控病原菌的毒力因子产生 [53] [54] 。Anthony等在土拉伦氏弗朗西斯菌(Francisella tularensis)中发现MinC突变后的菌株对氧化压力刺激更加敏感,推测这可能是因为MinD与细胞壁完整性维持和氧自由基的外排有关 [55] 。

稻黄单胞菌是水稻白叶枯病的致病菌,III型分泌系统(Type 3 Secretion System, T3SS)及其分泌的效应子是稻黄单胞菌关键的毒力因子。Yan等发现MinCDE的共同缺失和MinC、MinD的单独缺失均导致T3SS的结构蛋白编码基因hrpB1hrpF转录活性增强,这一过程需要T3SS两个关键调节因子HrpG和HrpX的存在 [39] 。然而,MinC或MinD并不能与hrpG启动子序列结合。因此,作者猜测Min系统通过其他未知途径调控T3SS [39] 。Wu等将感病水稻叶片上的稻黄单胞菌提取后进行蛋白质组学分析,发现MinD受到宿主的诱导而表达水平有所上升;MinD缺失菌株对宿主的致病性显著下降,因此,Min基因簇可能为稻黄单胞菌的一种新型毒力决定簇 [56] 。

4.4. 调控叶绿体分裂

叶绿体分裂调控系统起源于蓝藻祖先中的调控系统。叶绿体分裂的第一步是Z环的组装,这一过程被ARC3、MinD、MinE和MCD1限制在叶绿体中间位置 [57] 。Nakanishi等研究发现植物特异性叶绿体分裂因子MCD1与叶绿体内部的MinD存在直接相互作用共同调节叶绿体中的Z环定位 [58] 。当MinD过表达时,叶绿体Z环的组装受到抑制,而MCD1的过表达没有影响 [58] 。Maple等的实验结果显示植物质体分裂蛋白ARC3可能是叶绿体中代替MinC行使功能的蛋白质。ARC3的结构中包括FtsZ互作结构域等三个结构域,可以与MinD和MinE产生直接相互作用 [59] 。ARC3的过表达抑制叶绿体的分裂,ARC3的缺失则会导致叶绿体的异常分裂,且ARC3还具有基质与膜双定位特点 [59] 。

4.5. 其他生物学功能

大肠杆菌中RNA降解:RNA降解是细菌细胞内一种程序性执行的过程,由RNA降解小体(RNA Degradosomes)完成。RNA降解小体由RNaseE、PNPase、RhlB和烯醇化酶四种组分组成,其中RNaseE负责切割mRNA的5’末端,随后其他组分将mRNA进一步降解 [60] [61] 。Montero等研究发现大肠杆菌中RNA降解过程具有明显的空间组织性 [62] 。Taghbalout和Rothfield发现MinD与RNaseE存在直接相互作用,进一步研究发现缺失MinD中与RNaseE互作的第378~659个氨基酸残基导致染色体分离和细胞分裂的异常 [63] 。

枯草芽孢杆菌孢子形成:Autret和Errington发现ParA家族转录因子Soj结合枯草芽孢杆菌复制起始位点oriC过程表现出对MinD的依赖性 [64] 。Kloosterman等发现枯草芽孢杆菌孢子中Soj与oriC的结合需要MinD的存在,而MinC的缺失没有影响 [65] 。目前,MinD-ComN-MinJ-Soj共同调节枯草芽孢杆菌孢子形成的作用模型已经被提出。

Min系统互作蛋白质网络:为了系统探索Min系统调控的生物学功能,Taviti等使用蛋白质–蛋白质相互作用网络数据库检索方法构建了大肠杆菌中Min系统互作蛋白质网络 [50] 。在互作蛋白数据库中并没有找到除FtsZ之外能够与MinC、MinE互作的蛋白质 [50] ,找到了一些与MinD互作的蛋白质,根据功能分为细胞分裂、RNA降解、细胞分泌系统和蛋白质分子伴侣四类 [50] 。这些MinD互作蛋白中包括已知的SecA (一种具有ATP酶活性的锌结合蛋白,参与介导膜蛋白插入细胞膜的过程) [66] 、分子伴侣蛋白GroL和转录因子NagC (参与调节N-乙酰基-D-葡萄糖胺和葡萄糖胺的摄取和降解)。

Table 1. The biological functions of the Min system

表1. Min系统的生物学功能

5. Min系统的生物学应用

5.1. 细胞形态工程

细胞形态工程是通过改造与细胞形态相关的基因从而实现细胞高产化学品的一种技术方法,目前已经在构建高值化学品工程菌株等领域展现出良好的应用潜能。清华大学陈国强课题组一直致力于盐单胞菌(Halomonas spp)制造聚羟基脂肪酸酯(Polyhydroxyalkanoates, PHA)及相关高分子研发。在盐单胞菌中过表达MinCD可以抑制FtsZ,导致细胞呈现长丝状变形,更有利于PHA等化学品的积累,提高PHA产量和生产效率 [67] 。同时,长丝状细胞会在发酵体系中形成复杂交织的网络,在离心过程中更容易与短小的细胞分开,大大提升下游加工处理效率 [67] 。Ma等在盐单胞菌中利用受油酸诱导的启动子驱动MinCD的表达,实现更大尺度细胞形态的编辑,胞内生产的PHB积累量相对没有油酸诱导的对照组高出近10% [68] 。Wu等将大肠杆菌的minCD敲除后,在相同的发酵条件下胞内PHB积累量所占干重比例达到70%,显著高于野生型的51% [69] 。未来是否可以在谷氨酸棒状杆菌(Corynebacterium glutamicum)、纹膜醋酸杆菌(Acetobacter aceti)乃至酿酒酵母(Saccharomyces cerevisiae)等多种常用底盘中开展Min系统编辑,实现高效生物制造,仍有待探索。

5.2. 抗菌制剂开发

随着抗生素滥用和耐药性细菌不断出现,开发新型作用机制的抗菌制剂需求迫切。Min系统和FtsZ蛋白是细菌细胞分裂的必需蛋白,当他们的功能受到抑制时,细菌无法完成细胞分裂,导致死亡;另一方面,Min系统具有细菌中的保守性、人体的非同源性、细胞生长的基础作用性等特点,因此开发新型抗菌药的良好靶点。目前针对FtsZ为靶点的抗菌药物,如血根碱(Sanguinarine) [70] [71] [72] 、黄连素(Berberine) [73] [74] 、3-甲氧基苯甲酰胺(3-MBA) [75] 、罗丹宁类衍生物OTBA [76] 等,均可以通过作用于FtsZ实现对细菌的生长抑制。Hu等发现一株可以用于植物根系益生菌群构建的铜绿假单胞菌中Min系统对其帮助植物抵抗病原微生物入侵是关键的 [77] 。因此,针对Min系统和FtsZ蛋白的新型抗菌制剂是用于应对抗生素危机的有效解决方案。

5.3. 合成生物学应用

合成生物学是采用工程科学理念,将基因工程、代谢工程、系统生物学等学科融合交叉,实现对生物体有目标的设计改造乃至人工合成的新兴学科,在进入21世纪以来正以迅猛态势蓬勃发展。在合成生物学技术策略中,光遗传学元件、胞内分子的时空控制等技术方法正发挥着日益凸显的重要作用。Min系统组成上的简单性和功能上的复杂性使得合成生物学研究者对它产生了兴趣,最近有关的Min系统研究也已经在球形细菌耐辐射球菌(Deinococcus radiodurans) [78] 和丝状多细胞的鱼腥藻(Anabaena sp) [79] 中进行,它具有成为人造细胞中分裂机制关键组分的潜力。Glock等使用光异构体交联剂修饰MinE从而实现了利用光信号调节细胞形态的控制,这一方法将为DNA存储技术中将信息存储入细胞系统中的步骤提供新的可能 [80] 。

Min系统还被改造用于实现细胞内其他功能因子时空分布的调节。Ramm等发现当MinC不存在时,MinDE可以被改造用于任意膜分子的空间定位 [81] 。Litschel等将MinDE系统包装在囊泡中,囊泡便可以实现周期性的振荡,这为活性囊泡的设计提供新方法 [82] 。Kohyama等也已经成功将Min系统应用于微小细胞构建 [83] ,微小细胞有利于细胞有序排列的控制,这有助于冷冻电镜样品的准备和个性化药物递送系统的底盘构建 [84] [85] 。

6. 总结展望

Min系统是广泛存在于细菌中,具有自组装特性的细胞分裂调控系统。主要由FtsZ抑制蛋白MinC、膜定位的ATPase蛋白MinD和结构拓扑因子MinE构成,在革兰氏阴性菌、革兰氏阳性菌、蓝细菌、叶绿体和古细菌中因进化差异而存在组成成分的区别。Min系统的调控功能主要为通过将FtsZ的组装抑制在细胞中央进而维持细胞分裂的正常运行而实现。越来越多的研究成果证明Min系统还参与调控细胞形态、染色体分离、细胞生长、细胞鞭毛的组装和运动性、细菌粘附性等多种致病因子、细胞群体感应和分泌系统、叶绿体分裂、RNA降解等多种细胞代谢生理过程和细胞功能。这些调控功能已经在细胞形态工程、光遗传学、胞内组分时空定位等领域展现出良好的应用性,并且在新型抗菌制剂开发、新型药物递送系统的开发等方面展现出巨大的潜力。

未来Min系统功能研究在如下几个方面如有深入探索的必要:

1) 目前,有关Min系统在不同种属细菌中的进化演变及基本的功能性质已有一定研究,但有关Min系统发挥功能时各蛋白质组分及相关蛋白分子的浓度依赖性特征,以及其背后隐藏的蛋白质结构变化和相互作用机制等有待深入研究。

2) Min系统在细胞分裂及相关生理过程中的重要作用已经得到证实,然而,最近的研究也证实Min系统对细胞分裂来说也并不是安全不可或缺的,这启发研究人员Min系统在其他细胞生理代谢过程中的功能值得挖掘。基于MinD与鞭毛调节因子的结构相似性能否探究Min系统对鞭毛生成和细胞运动性的调控机制,Min系统参与细胞粘附性等致病因子的调节机制是否是通过全局样的转录因子抑或存在单独的信号通路介导等问题仍有待解决。

3) 抗生素的发明和使用对人类的贡献巨大,但随着耐药性的不断出现,发现新的抗菌抑菌分子用以替代抗生素是关键的,Min系统具有细菌的种属特异性、保守性,是良好的抗菌抑菌潜在靶点,然而,目前仍仅有较少的研究致力于开发以此为靶点的抗菌抑菌分子。

4) 当前,合成生物学的发展方兴未艾。合成生物学构造人工生命系统过程中非常重要的一点是生命系统的自组装性,而Min系统是一种天然具有自组装性质的细胞功能系统,目前虽然在囊泡定位等方面有些许尝试,但能否在合成生物学系统中发挥更加关键的功能?是否可以作为微生物学与合成生物学学科之间新的融合点?

基金项目

国家自然科学基金(31972231, 32172355)。

参考文献

[1] Rowlett, V.W. and Margolin, W. (2015) The Min System and Other Nucleoid-Independent Regulators of Z Ring Positioning. Frontiers in Microbiology, 6, Article No. 478.
https://doi.org/10.3389/fmicb.2015.00478
[2] Adams, D.W. and Errington, J. (2009) Bacterial Cell Division: Assembly, Maintenance and Disassembly of the Z Ring. Nature Reviews Microbiology, 7, 642-653.
https://doi.org/10.1038/nrmicro2198
[3] Rothfield, L., Justice, S. and Garcia-Lara, J. (1999) Bacterial Cell Division. Annual Review of Genetics, 33, 423-448.
https://doi.org/10.1146/annurev.genet.33.1.423
[4] Pichoff, S. and Lutkenhaus, J. (2001) Escherichia coli Division Inhibitor MinCD Blocks Septation by Preventing Z-Ring Formation. Journal of Bacteriology, 183, 6630-6635.
https://doi.org/10.1128/JB.183.22.6630-6635.2001
[5] Zhou, H., Schulze, R., Cox, S., Saez, C., Hu, Z. and Luthenhaus, J. (2005) Analysis of MinD Mutations Reveals Residues Required for MinE Stimulation of the MinD ATPase and Residues Required for MinC Interaction. Journal of Bacteriology, 187, 629-638.
https://doi.org/10.1128/JB.187.2.629-638.2005
[6] Zhao, C.R., De Boer, P.A. and Rothfield, L.I. (1995) Proper Placement of the Escherichia coli Division Site Requires Two Functions That Are Associated with Different Domains of the MinE Protein. Proceedings of the National Academy of Sciences of the United States of America, 92, 4313-4317.
https://doi.org/10.1073/pnas.92.10.4313
[7] Huang, J., Cao, C. and Luthenhaus, J. (1996) Interaction between FtsZ and Inhibitors of Cell Division. Journal of Bacteriology, 178, 5080-5085.
https://doi.org/10.1128/jb.178.17.5080-5085.1996
[8] Luthenhaus, J. (2007) Assembly Dynamics of the Bacterial MinCDE System and Spatial Regulation of the Z Ring. Annual Review of Biochemistry, 76, 539-562.
https://doi.org/10.1146/annurev.biochem.75.103004.142652
[9] Patrick, J.E. and Kearns, D.B. (2008) MinJ (YvjD) Is a Topological Determinant of Cell Division in Bacillus subtilis. Molecular Microbiology, 70, 1166-1179.
https://doi.org/10.1111/j.1365-2958.2008.06469.x
[10] 卞丽. 蓝藻细胞分裂关键蛋白FtsZ的性质及其调控[D]: [硕士学位论文]. 西安: 西北大学, 2019.
[11] Maple, J. and Moller, S.G. (2007) Plastid Division: Evolution, Mechanism and Complexity. Annals of Botany, 99, 565-579.
https://doi.org/10.1093/aob/mcl249
[12] Wang, X. and Luthenhaus, J. (2003) FtsZ Ring: The Eubacterial Division Apparatus Conserved in Archaebacteria. Molecular Microbiology, 21, 313-320.
https://doi.org/10.1046/j.1365-2958.1996.6421360.x
[13] Walsh, J.C., Angatmann, C.N., Bisson-Filho, A.W., Garner, E.C., Duggin, I.G. and Curmi, P.M.G. (2019) Division Plane Placement in Pleomorphic Archaea Is Dynamically Coupled to Cell Shape. Molecular Microbiology, 112, 785-799.
https://doi.org/10.1111/mmi.14316
[14] Szeto, T.H., Rowland, S.L., Rothfield, L.I. and King, G.F. (2002) Membrane Localization of MinD Is Mediated by a C-Terminal Motif That Is Conserved across Eubacteria, Archaea, and Chloroplasts. Proceedings of the National Academy of Sciences of the United States of America, 99, 15693-15698.
https://doi.org/10.1073/pnas.232590599
[15] Cordell, S.C., Aaderson, R.E. and Lowe, J. (2001) Crystal Structure of the Bacterial Cell Division Inhibitor MinC. The EMBO Journal, 20, 2454-2461.
https://doi.org/10.1093/emboj/20.10.2454
[16] Hu, Z. and Luthenhaus, J. (2000) Analysis of MinC Reveals Two Independent Domains Involved in Interaction with MinD and FtsZ. Journal of Bacteriology, 182, 3965-3971.
https://doi.org/10.1128/JB.182.14.3965-3971.2000
[17] Shen, B. and Luthenhaus, J. (2009) The Conserved C-Terminal Tail of FtsZ Is Required for the Septal Localization and Division Inhibitory Activity of MinC(C)/MinD. Molecular Microbiology, 72, 410-424.
https://doi.org/10.1111/j.1365-2958.2009.06651.x
[18] Wu, W., Park, K.T., Holyoak, T. and Luthenhaus, J. (2011) Determination of the Structure of the MinD-ATP Complex Reveals the Orientation of MinD on the Membrane and the Relative Location of the Binding Sites for MinE and MinC. Molecular Microbiology, 79, 1515-1528.
https://doi.org/10.1111/j.1365-2958.2010.07536.x
[19] Ma, L., King, G.F. and Rothfield, L. (2004) Positioning of the MinE Binding Site on the MinD Surface Suggests a Plausible Mechanism for Activation of the Escherichia coli MinD ATPase during Division Site Selection. Molecular Microbiology, 54, 99-108.
https://doi.org/10.1111/j.1365-2958.2004.04265.x
[20] Szeto, T.H., Rowland, S.L., Habrukowich, C.L. and King, G.F. (2003) The MinD Membrane Targeting Sequence Is a Transplantable Lipid-Binding Helix. The Journal of Biological Chemistry, 278, 40050-40056.
https://doi.org/10.1074/jbc.M306876200
[21] Hayashi, I., Oyama, T. and Morikawa, K. (2001) Structural and Functional Studies of MinD ATPase: Implications for the Molecular Recognition of the Bacterial Cell Division Apparatus. The EMBO Journal, 20, 1819-1828.
https://doi.org/10.1093/emboj/20.8.1819
[22] Huang, K.C., Meir, Y. and Wingreen, N.S. (2003) Dynamic Structures in Escherichia coli: Spontaneous Formation of MinE Rings and MinD Polar Zones. Proceedings of the National Academy of Sciences of the United States of America, 100, 12724-12728.
https://doi.org/10.1073/pnas.2135445100
[23] King, G.F., Shih, Y.L., Maciejewski, M.W., Bains, N.P., Pan, B., Rowland, S.L., Mullen, G.P. and Rothfield, L.I. (2000) Structural Basis for the Topological Specificity Function of MinE. Nature Structural Biology, 7, 1013-1017.
https://doi.org/10.1038/80917
[24] Loose, M., Fischer-Friedrich, E., Ries, J., Kruse, K. and Schwille, P. (2008) Spatial Regulators for Bacterial Cell Division Self-Organize into Surface Waves in Vitro. Science (New York, N.Y.), 320, 789-792.
https://doi.org/10.1126/science.1154413
[25] Kruse, K., Howard, M. and Margolin, W. (2007) An Experimentalist’s Guide to Computational Modelling of the Min System. Molecular Microbiology, 63, 1279-1284.
https://doi.org/10.1111/j.1365-2958.2007.05607.x
[26] Veiga, H., Joege, A.M. and Pinho, M.G. (2011) Absence of Nucleoid Occlusion Effector Noc Impairs Formation of Orthogonal FtsZ Rings during Staphylococcus aureus Cell Division. Molecular Microbiology, 80, 1366-1380.
https://doi.org/10.1111/j.1365-2958.2011.07651.x
[27] 张婷婷. 铜绿假单胞菌调控蛋白MinC与MinD聚合的特性[D]: [硕士学位论文]. 西安: 西北大学, 2021.
[28] 黄海艳. 铜绿假单胞菌FtsZ及其调控系统的生化特性[D]: [硕士学位论文]. 西安: 西北大学, 2018.
[29] Lorenzoni, A.S.G., Dantas, G.C., Bergsma, T., Ferreira, H. and Scheffers, D.J. (2017) Xanthomonas citri MinC Oscillates from Pole to Pole to Ensure Proper Cell Division and Shape. Frontiers in Microbiology, 8, Article No. 1352.
https://doi.org/10.3389/fmicb.2017.01352
[30] Yan, Y., Wang, Y., Yang, X., Fang, Y., Cheng, G., Zou, L. and Chen, G. (2022) The MinCDE Cell Division System Participates in the Regulation of Type III Secretion System (T3SS) Genes, Bacterial Virulence, and Motility in Xanthomonas oryzae Pv. oryzae. Microorganisms, 10, Article No. 1549.
https://doi.org/10.3390/microorganisms10081549
[31] Parti, R.P., Biswas, D., Helgeson, S., Michael, F.S., Cox, A. and Dillon, J.A. (2011) Attenuated Virulence of Min Operon Mutants of Neisseria gonorrhoeae and Their Interactions with Human Urethral Epithelial Cells. Microbes and Infection, 13, 545-554.
https://doi.org/10.1016/j.micinf.2011.01.018
[32] Macdiarmid, J.A., Mugridge, N.B., Weiss, J.C., Phillips, L., Burn, A.L., Paulin, R.P., Haasdyk, J.E., Dickson, K.A., Brahmbhatt, V.N., Pattison, S.T., James, A.C., Al-Bakri, G., Straw, R.C., Stillman, B., Graham, R.M. and Brahmbhatt, H. (2007) Bacterially Derived 400 nm Particles for Encapsulation and Cancer Cell Targeting of Chemotherapeutics. Cancer Cell, 11, 431-445.
https://doi.org/10.1016/j.ccr.2007.03.012
[33] Galli, E., Poidevin, M., Le-Bars, R., Desfontaines, J.M., Muresan, L., Paly, E., Yamaichi, Y. and Barre, F.X. (2016) Cell Division Licensing in the Multi-Chromosomal Vibrio cholerae Bacterium. Nature Microbiology, 1, Article No. 16094.
https://doi.org/10.1038/nmicrobiol.2016.94
[34] Marston, A.L., Thomaides, H.B., Edwards, D.H., Sharpe, M.E. and Errington, J. (1998) Polar Localization of the MinD Protein of Bacillus subtilis and Its Role in Selection of the Mid-Cell Division Site. Genes and Development, 12, 3419-3430.
https://doi.org/10.1101/gad.12.21.3419
[35] Valenčikova, R., Krascsenitsova, E., Labajova, N., Makroczyova, J. and Barak, I. (2018) Clostridial DivIVA and MinD Interact in the Absence of MinJ. Anaerobe, 50, 22-31.
https://doi.org/10.1016/j.anaerobe.2018.01.013
[36] Maccready, J.S., Schossau, J., Oateryoung, K.W. and Ducat, D.C. (2017) Robust Min-System Oscillation in the Presence of Internal Photosynthetic Membranes in Cyanobacteria. Molecular Microbiology, 103, 483-503.
https://doi.org/10.1111/mmi.13571
[37] Mazouni, K., Domain, F., Cassier-Chauvant, C. and Chauvat, F. (2004) Molecular Analysis of the Key Cytokinetic Components of Cyanobacteria: FtsZ, ZipN and MinCDE. Molecular Microbiology, 52, 1145-1158.
https://doi.org/10.1111/j.1365-2958.2004.04042.x
[38] Erickson, H.P. and Osawa, M. (2017) FtsZ Constriction Force: Curved Protofilaments Bending Membranes. Sub-Cellular Biochemistry, 84, 139-160.
https://doi.org/10.1007/978-3-319-53047-5_5
[39] Li, G.W., Burkhardt, D., Gross, C. and Weissman, J.S. (2014) Quantifying Absolute Protein Synthesis Rates Reveals Principles Underlying Allocation of Cellular Resources. Cell, 157, 624-635.
https://doi.org/10.1016/j.cell.2014.02.033
[40] Ghosal, D., Trambaiolo, D., Amos, L.A. and Lowe, J. (2014) MinCD Cell Division Proteins Form Alternating Copolymeric Cytomotive Filaments. Nature Communications, 5, Article No. 5341.
https://doi.org/10.1038/ncomms6341
[41] Huang, H., Wang, P., Bian, L., Osawa, M., Erickson, H.P. and Chen, Y. (2018) The Cell Division Protein MinD from Pseudomonas aeruginosa Dominates the Assembly of the MinC-MinD Copolymers. The Journal of Biological Chemistry, 293, 7786-7795.
https://doi.org/10.1074/jbc.RA117.001513
[42] De-Boer, P.A., Crossley, R.E. and Rothfield, L.I. (1988) Isolation and Properties of MinB, a Complex Genetic Locus Involved in Correct Placement of the Division Site in Escherichia coli. Journal of Bacteriology, 170, 2106-2112.
https://doi.org/10.1128/jb.170.5.2106-2112.1988
[43] Eun, Y.J., Ho, P.Y., Kim, M., Larussa, S., Robert, L., Renner, L.D., Schmid, A., Garner, E. and Amir, A. (2018) Archaeal Cells Share Common Size Control with Bacteria despite Noisier Growth and Division. Nature Communications, 3, 148-154.
https://doi.org/10.1038/s41564-017-0082-6
[44] Mulder, E. and Woldringh, C.L. (1989) Actively Replicating Nucleoids Influence Positioning of Division Sites in Escherichia coli Filaments Forming Cells Lacking DNA. Journal of Bacteriology, 171, 4303-4314.
https://doi.org/10.1128/jb.171.8.4303-4314.1989
[45] Thormann, K.M., Beta, C. and Kuhn, M.J. (2022) Wrapped Up: The Motility of Polarly Flagellated Bacteria. Annual Review of Microbiology, 76, 349-367.
https://doi.org/10.1146/annurev-micro-041122-101032
[46] Howery, K.E., Clemmerl, K.M., Simsek, E., Kim, M. and Rather, P.N. (2015) Regulation of the Min Cell Division Inhibition Complex by the Rcs Phosphorelay in Proteus Mirabilis. Journal of Bacteriology, 197, 2499-2507.
https://doi.org/10.1128/JB.00094-15
[47] Chiou, P.Y., Luo, C.H., Chang, K.C. and Lin, N.T. (2013) Maintenance of the Cell Morphology by MinC in Helicobacter pylori. PLOS ONE, 8, e71208.
https://doi.org/10.1371/journal.pone.0071208
[48] Schuhmacher, J.S., Rossmann, F., Dempwolff, F., Knauer, C., Altegoerl, F., Steinchen, W., Dorrich, A.K., Klingl, A., Stephan, M., Linne, U., Thormann, K.M. and Bange, G. (2015) MinD-Like ATPase FlhG Effects Location and Number of Bacterial Flagella during C-Ring Assembly. Proceedings of the National Academy of Sciences of the United States of America, 112, 3092-3097.
https://doi.org/10.1073/pnas.1419388112
[49] Schuhmacher, J.S., Thormann, K.M. and Bange, G. (2015) How Bacteria Maintain Location and Number of Flagella? FEMS Microbiology Reviews, 39, 812-822.
https://doi.org/10.1093/femsre/fuv034
[50] Taviti, A.C. and Beuria, T.K. (2019) Bacterial Min Proteins beyond the Cell Division. Critical Reviews in Microbiology, 45, 22-32.
https://doi.org/10.1080/1040841X.2018.1538932
[51] Parti, R.P., Biswas, D., Wang, M., Liao, M. and Dillon, J.A. (2011) A MinD Mutant of Enterohemorrhagic E. coli O157:H7 Has Reduced Adherence to Human Epithelial Cells. Microbial Pathogenesis, 51, 378-383.
https://doi.org/10.1016/j.micpath.2011.07.003
[52] Parti, R.P., Horbay, M.A., Liao, M. and Dillon, J.A. (2013) Regulation of MinD by OxyR in Neisseria gonorrhoeae. Research in Microbiology, 164, 406-415.
https://doi.org/10.1016/j.resmic.2013.02.002
[53] Ahlund, M.K., Ryden, P., Sjostedt, A. and Stoven, S. (2010) Directed Screen of Francisella novicida Virulence Determinants Using Drosophila melanogaster. Infection and Immunity, 78, 3118-3128.
https://doi.org/10.1128/IAI.00146-10
[54] Su, J., Yang, J., Zhao, D., Kawula, T.H., Banas, J.A. and Zhang, J.R. (2007) Genome-Wide Identification of Francisella tularensis Virulence Determinants. Infection and Immunity, 75, 3089-3101.
https://doi.org/10.1128/IAI.01865-06
[55] Anthony, L.S., Cowley, S.C., Mdluli, K.E. and Nano, F.E. (1994) Isolation of a Francisella tularensis Mutant That Is Sensitive to Serum and Oxidative Killing and Is Avirulent in Mice: Correlation with the Loss of MinD Homologue Expression. FEMS Microbiology Letters, 124, 157-165.
https://doi.org/10.1111/j.1574-6968.1994.tb07278.x
[56] Wu, G., Zhang, Y., Wang, B., Li, K., Lou, Y., Zhao, Y. and Liu, F. (2021) Proteomic and Transcriptomic Analyses Provide Novel Insights into the Crucial Roles of Host-Induced Carbohydrate Metabolism Enzymes in Xanthomonas oryzae Pv. oryzae Virulence and Rice-Xoo Interaction. Rice (New York, N.Y.), 14, Article No. 57.
https://doi.org/10.1186/s12284-021-00503-x
[57] Terbush, A.D., Yoshida, Y. and Oateroung, K.W. (2013) FtsZ in Chloroplast Division: Structure, Function and Evolution. Current Opinion in Cell Biology, 25, 461-470.
https://doi.org/10.1016/j.ceb.2013.04.006
[58] Nakanishi, H., Suzuki, K., Kabeya, Y. and Miyagishima, S.Y. (2009) Plant-Specific Protein MCD1 Determines the Site of Chloroplast Division in Concert with Bacteria-Derived MinD. Current Biology, 19, 151-156.
https://doi.org/10.1016/j.ceb.2013.04.006
[59] Maple, J., Vojta, L., Soll, J. and Moller, S.G. (2007) ARC3 Is a Stromal Z-Ring Accessory Protein Essential for Plastid Division. EMBO Reports, 8, 293-299.
https://doi.org/10.1038/sj.embor.7400902
[60] Callaghan, A.J., Marcaide, M.J., Stead, J.A., Mcdowall, K.J., Scott, W.G. and Luisi, B.F. (2005) Structure of Escherichia coli RNase E Catalytic Domain and Implications for RNA Turnover. Nature, 437, 1187-1191.
https://doi.org/10.1038/nature04084
[61] Carpousis, A.J. (2007) The RNA Degradosome of Escherichia coli: An MRNA-Degrading Machine Assembled on RNase E. Annual Review of Microbiology, 61, 71-87.
https://doi.org/10.1146/annurev.micro.61.080706.093440
[62] Montero-Llopis, P., Jackson, A.F., Sliusarenko, O., Surovtsev, I., Heinritz, J., Emonet, T. and Jacoba-Wagner, C. (2010) Spatial Organization of the Flow of Genetic Information in Bacteria. Nature, 466, 77-81.
https://doi.org/10.1038/nature09152
[63] Taghbalout, A. and Rothfield, L. (2007) RNaseE and the Other Constituents of the RNA Degradosome Are Components of the Bacterial Cytoskeleton. Proceedings of the National Academy of Sciences of the United States of America, 104, 1667-1672.
https://doi.org/10.1073/pnas.0610491104
[64] Autret, S. and Errington, J. (2003) A Role for Division-Site-Selection Protein MinD in Regulation of Internucleoid Jumping of Soj (ParA) Protein in Bacillus subtilis. Molecular Microbiology, 47, 159-169.
https://doi.org/10.1046/j.1365-2958.2003.03264.x
[65] Kloosterman, T.G., Lenarcic, R., Willis, C.R., Roberts, D.M., Hamoen, L.W., Errington, J. and Wu, L.J. (2016) Complex Polar Machinery Required for Proper Chromosome Segregation in Vegetative and Sporulating Cells of Bacillus subtilis. Molecular Microbiology, 101, 333-350.
https://doi.org/10.1111/mmi.13393
[66] Butland, G., Peregrin-Alvarez, J.M., Li, J., Yang, W., Yang, X., Canadien, V., Starostine, A., Richards, D., Beattie, B., Krogan, N., Davey, M., Parkinson, J., Greenblatt, J. and Emili, A. (2005) Interaction Network Containing Conserved and Essential Protein Complexes in Escherichia coli. Nature, 433, 531-537.
https://doi.org/10.1038/nature03239
[67] Tan, D., Wu, Q., Chen, J.C. and Chen, G.Q. (2014) Engineering Halomonas TD01 for the Low-Cost Production of Polyhydroxyalkanoates. Metabolic Engineering, 26, 34-47.
https://doi.org/10.1016/j.ymben.2014.09.001
[68] Ma, Y., Zheng, X., Lin, Y., Zhang, L., Yuan, Y., Wang, H., Winterburn, J., Wu, F., Wu, Q., Ye, J.W. and Chen, G.Q. (2022) Engineering an Oleic Acid-Induced System for Halomonas, E. coli and Pseudomonas. Metabolic Engineering, 72, 325-336.
https://doi.org/10.1016/j.ymben.2022.04.003
[69] Wu, H., Chen, J. and Chen, G.Q. (2016) Engineering the Growth Pattern and Cell Morphology for Enhanced PHB Production by Escherichia coli. Applied Microbiology and Biotechnology, 100, 9907-9916.
https://doi.org/10.1007/s00253-016-7715-1
[70] Fu, C., Guan, G. and Wang, H. (2018) The Anticancer Effect of Sanguinarine: A Review. Current Pharmaceutical Design, 24, 2760-2764.
https://doi.org/10.2174/1381612824666180829100601
[71] Beuria, T.K., Santra, M.K. and Panda, D. (2005) Sanguinarine Blocks Cytokinesis in Bacteria by Inhibiting FtsZ Assembly and Bundling. Biochemistry, 44, 16584-16593.
https://doi.org/10.1021/bi050767+
[72] Liu, J., Ma, R., Bi, F., Zhang, F., Hu, C., Venter, H., Semple, S.J. and Ma, S. (2018) Novel 5-Methyl-2-Phenylphe- nanthridium Derivatives as FtsZ-Targeting Antibacterial Agents from Structural Simplification of Natural Product Sanguinarine. Bioorganic and Medicinal Chemistry Letters, 28, 1825-1831.
https://doi.org/10.1016/j.bmcl.2018.04.015
[73] Domadia, P.N., Bhunia, A., Sivaraman, J., Swarup, S. and Dasgupta, D. (2008) Berberine Targets Assembly of Escherichia coli Cell Division Protein FtsZ. Biochemistry, 47, 3225-3234.
https://doi.org/10.1021/bi7018546
[74] Sun, N., Chan, F.Y., Lu, Y.J., Neves, M.A., Lui, H.K., Wang, Y., Chow, K.Y., Chan, K.F., Yan, S.C., Leung, Y.C., Abagyan, R., Chan, T.H. and Wong, K.Y. (2014) Rational Design of Berberine-Based FtsZ Inhibitors with Broad-Spectrum Antibacterial Activity. PLOS ONE, 9, E97514.
https://doi.org/10.1371/journal.pone.0097514
[75] Ohashi, Y., Chijiiwa, Y., Suzuki, K., Takahashi, K., Nanamiya, H., Sato, T., Hosoyo, Y., Ochi, K. and Kawamura, F. (1999) The Lethal Effect of A Benzamide Derivative, 3-Methoxybenzamide, Can Be Suppressed by Mutations within a Cell Division Gene, FtsZ, in Bacillus subtilis. Journal of Bacteriology, 181, 1348-1351.
https://doi.org/10.1128/JB.181.4.1348-1351.1999
[76] Beuria, T.K., Singh, P., Surolia, A. and Panda, D. (2009) Promoting Assembly and Bundling of FtsZ as a Strategy to Inhibit Bacterial Cell Division: A New Approach for Developing Novel Antibacterial Drugs. The Biochemical Journal, 423, 61-69.
https://doi.org/10.1042/BJ20090817
[77] Hu, S., Wang, X., Sun, W., Wang, L. and Li, W. (2021) In Vitro Study of Biocontrol Potential of Rhizospheric Pseudomonas aeruginosa against Pathogenic Fungi of Saffron (Crocus sativus L.). Pathogens, 10, Article No. 1423.
https://doi.org/10.3390/pathogens10111423
[78] Chaudhary, R., Kota, S. and Misra, H.S. (2021) DivIVA Regulates Its Expression and the Orientation of New Septum Growth in Deinococcus radiodurans. Journal of Bacteriology, 203, E0016321.
https://doi.org/10.1128/JB.00163-21
[79] Liu, J., Xing, W.Y., Liu, B. and Zhang, C.C. (2022) Three-Dimensional Coordination of Cell-Division Site Positioning in a Filamentous Cyanobacterium. Proceedings of the National Academy of Sciences of the United States of America Nexus, 2, Pgac307.
https://doi.org/10.1093/pnasnexus/pgac307
[80] Glock, P., Broichhagen, J., Kretschmer, S., Blumhardt, P., Muchsch, J., Trauner, D. and Schwille, P. (2018) Optical Control of a Biological Reaction-Diffusion System. Angewandte Chemie International Edition, 57, 2362-2366.
https://doi.org/10.1002/anie.201712002
[81] Shih, Y.L., Huang, L.T., Tu, Y.M., Lee, B.F., Bau, Y.C., Hong, C.Y., Lee, H.L.H., Shih, Y.P., Hsu, M.F., Chen, J.S., Lu, Z.X. and Chao, L. (2019) Active Transport of Membrane Components by Dynamic Min Protein Waves. Biophysical Journal, 116, 1469-1482.
https://doi.org/10.1016/j.bpj.2019.03.011
[82] Litschel, T., Ramm, B., Maas, R., Heymann, M. and Schwille, P. (2018) Beating Vesicles: Encapsulated Protein Oscillations Cause Dynamic Membrane Deformations. Angewandte Chemie International Edition, 57, 16286-16290.
https://doi.org/10.1002/anie.201808750
[83] Kohyama, S., Merino-Salomon, A. and Schwille, P. (2022) In Vitro Assembly, Positioning and Contraction of a Division Ring in Minimal Cells. Nature Communications, 13, Article No. 6098.
https://doi.org/10.1038/s41467-022-33679-x
[84] Farley, M., Hu, B., Margolin, W. and Liu, J. (2016) Minicells, Back in Fashion. Journal of Bacteriology, 198, 1186-1195.
https://doi.org/10.1128/JB.00901-15
[85] Carleton, H.A., Lara-Tejero, M., Liu, X. and Galan, J.E. (2013) Engineering the Type III Secretion System in Non-Replicating Bacterial Minicells for Antigen Delivery. Nature Communications, 4, Article No. 1590.
https://doi.org/10.1038/ncomms2594
[86] Ramm, B., Heermann, T. and Schwille, P. (2019) The E. coli MinCDE System in the Regulation of Protein Patterns and Gradients Cellular and Molecular Life Sciences. CMLS, 76, 4245-4273.
https://doi.org/10.1007/s00018-019-03218-x
[87] Merino-Salomon, A., Babl, L. and Schwille, P. (2021) Self-Organized Protein Patterns: The MinCDE and ParABS Systems. Current Opinion in Cell Biology, 72, 106-115.
https://doi.org/10.1016/j.ceb.2021.07.001